Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
BMC Plant Biol ; 24(1): 164, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38431546

ABSTRACT

BACKGROUND: ABA Insensitive 5 (ABI5) is a basic leucine zipper transcription factor that crucially influences plant growth, development, and stress response. However, there is minimal research on the ABI5 family in foxtail millet. RESULTS: In this study, 16 ABI5 genes were identified in foxtail millet, and their sequence composition, gene structures, cis-acting elements, chromosome positions, and gene replication events were analyzed. To more thoroughly evaluate the developmental mechanisms of the SiABI5 family during evolution, we selected three dicotyledons (S. lycopersicum, A. thaliana, F. tataricum) and three (Z. mays, O. sativa, S. bicolor) specific representative monocotyledons associated with foxtail millet for comparative homology mapping. The results showed that foxtail millet ABI5 genes had the best homology with maize. A promoter sequence analysis showed that the SiABI5s contain numerous cis-acting elements related to hormone and stress responses, indicating that the regulation of SiABI5 expression was complex. The expression responses of 16 genes in different tissues, seed germination, and ear development were analyzed. A total of six representative genes were targeted from five subfamilies to characterize their gene expression responses to four different abiotic stresses. Overexpression of SiABI5.12 confers tolerance to osmotic stress in transgenic Arabidopsis thaliana, which demonstrated the function of SiABI5 responded to abiotic stress. CONCLUSIONS: In summary, our research results comprehensively characterized the SiABI5 family and can provide a valuable reference for demonstrating the role of SiABI5s in regulating abiotic stress responses in foxtail millet.


Subject(s)
Setaria Plant , Setaria Plant/genetics , Setaria Plant/metabolism , Stress, Physiological/genetics , Promoter Regions, Genetic/genetics , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/metabolism , Gene Expression Profiling
2.
Front Plant Sci ; 15: 1355518, 2024.
Article in English | MEDLINE | ID: mdl-38529063

ABSTRACT

Introduction: Selenium-enriched foxtail millet (Setaria italica) represents a functional cereal with significant health benefits for humans. This study endeavors to examine the impact of foliar application of sodium selenite (Na2SeO4) on foxtail millet, specifically focusing on selenium (Se) accumulation and transportation within various plant tissues. Methods: To unravel the molecular mechanisms governing selenium accumulation and transportation in foxtail millet, we conducted a comprehensive analysis of selenium content and transcriptome responses in foxtail millet spikelets across different days (3, 5, 7, and 12) under Na2SeO4 treatment (200 µmol/L). Results: Foxtail millet subjected to selenium fertilizer exhibited significantly elevated selenium levels in each tissue compared to the untreated control. Selenate was observed to be transported and accumulated sequentially in the leaf, stem, and spikes. Transcriptome analysis unveiled a substantial upregulation in the transcription levels of genes associated with selenium metabolism and transport, including sulfate, phosphate, and nitrate transporters, ABC transporters, antioxidants, phytohormone signaling, and transcription factors. These genes demonstrated intricate interactions, both synergistic and antagonistic, forming a complex network that regulated selenate transport mechanisms. Gene co-expression network analysis highlighted three transcription factors in the tan module and three transporters in the turquoise module that significantly correlated with selenium accumulation and transportation. Expression of sulfate transporters (SiSULTR1.2b and SiSULTR3.1a), phosphate transporter (PHT1.3), nitrate transporter 1 (NRT1.1B), glutathione S-transferase genes (GSTs), and ABC transporter (ABCC13) increased with SeO4 2- accumulation. Transcription factors MYB, WRKY, and bHLH were also identified as players in selenium accumulation. Conclusion: This study provides preliminary insights into the mechanisms of selenium accumulation and transportation in foxtail millet. The findings hold theoretical significance for the cultivation of selenium-enriched foxtail millet.

3.
Front Plant Sci ; 13: 1044065, 2022.
Article in English | MEDLINE | ID: mdl-36531412

ABSTRACT

Photosynthetic carbohydrate metabolism is an important biochemical process related to crop production and quality traits. Potassium (K) critically contributes to the process of photosynthetic carbon assimilation and carbohydrate metabolism. We explored the effects of potassium fertilization on physiological mechanisms including carbohydrate metabolism in foxtail millet and its yield. Field experiments were performed using two foxtail millet (Setaria italica L.) cultivars: 1) Jingu 21 (low-K sensitive); and 2) Zhangza 10 (low-K tolerant). Effect of five different potassium fertilizer (K2O) rates (0, 60, 120, 180, and 240 kg·hm-2) were tested in two consecutive years, 2020 and 2021. We found that potassium application significantly increases the K content, dry matter accumulation and yield. Jingu 21 and Zhangza 10 had maximum yields at 180 kg·hm-2 K application, which were 29.91% and 31.51% larger than without K application, respectively. Excessive K application (K240) did not further improve their yields. The suitable K fertilizer application of Jingu 21 and Zhangza 10 are 195.25-204.27 and 173.95-175.87 kg·K2O·hm-2, respectively. The net photosynthetic rate (Pn), ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco), phosphoenolpyruvate carboxylase (PEPC), and fructose-1,6-bisphosphatase (FBPase) were positively correlated with the potassium content. Potassium application improved the availability of carbon sources for carbohydrate synthesis. Compared with the K0 treatment, variations in the activities of sucrose phosphate synthase (SPS) and sucrose synthase (SuSy) in potassium-treated Jingu 21 (K60, K120, K180, and K240) were 17.94%-89.93% and 22.48%-182.10%, respectively, which were greater than those of Zhangza 10 (11.34%-71.12% and 16.18%-109.13%, respectively) and indicate that Jingu 21 is more sensitive to potassium application. The sucrose contents in the Jingu 21 and Zhangza 10 grains were 0.97%-1.15% and 1.04%-1.23%, respectively. The starch contents were 28.99%-37.75% and 24.81%-34.62%, respectively. The sucrose: ratio of Jingu 21 was smaller than that of Zhangza 10, indicating that Jingu 21 utilized nutrients better than Zhangza 10. Stepwise regression and path analysis showed that leaf and grain SuSy activity, by coordinating the source-sink relationship, have the greatest direct effect on Jingu 21 yield, whereas leaf SuSy activity, by promoting the generation of photosynthates at the source leaf, plays a leading role in Zhangza 10 yield increase. In conclusion, optimized K application can increase foxtail millet grain yield by improving photosynthesis and promoting carbohydrate accumulation and distribution.

4.
Metabolites ; 12(11)2022 Oct 23.
Article in English | MEDLINE | ID: mdl-36355093

ABSTRACT

Carotenoids are important compounds of quality and coloration within sweet potato storage roots, but the mechanisms that govern the accumulation of these carotenoids remain poorly understood. In this study, metabolomic and transcriptomic analyses of carotenoids were performed using young storage roots (S2) and old storage roots (S4) from white-fleshed (variety S19) and yellow-fleshed (variety BS) sweet potato types. S19 storage roots exhibited significantly lower total carotenoid levels relative to BS storage roots, and different numbers of carotenoid types were detected in the BS-S2, BS-S4, S19-S2, and S19-S4 samples. ß-cryptoxanthin was identified as a potential key driver of differences in root coloration between the S19 and BS types. Combined transcriptomic and metabolomic analyses revealed significant co-annotation of the carotenoid and abscisic acid (ABA) metabolic pathways, PSY (phytoene synthase), CHYB (ß-carotene 3-hydroxylase), ZEP (zeaxanthin epoxidase), NCED3 (9-cis-epoxycarotenoid dioxygenase 3), ABA2 (xanthoxin dehydrogenase), and CYP707A (abscisic acid 8'-hydroxylase) genes were found to be closely associated with carotenoid and ABA content in these sweet potato storage roots. The expression patterns of the transcription factors OFP and FAR1 were associated with the ABA content in these two sweet potato types. Together, these results provide a valuable foundation for understanding the mechanisms governing carotenoid biosynthesis in storage roots, and offer a theoretical basis for sweet potato breeding and management.

5.
PLoS One ; 9(8): e105310, 2014.
Article in English | MEDLINE | ID: mdl-25165819

ABSTRACT

Radix Isatidis (Isatis indigotica Fort.) is one of the most important traditional Chinese medicine plants. However, there is no suitable herbicide used for weed control in Radix Isatidis field during postemergence stage. To explore the safety of sulfonylurea herbicide nicosulfuron on Radix Isatidis (Isatis indigotica Fort.) seedlings and the photosynthetic physiological response of the plant to the herbicide, biological mass, leaf area, photosynthetic pigment content, photosynthetic rate, chlorophyll fluorescence characteristics, and P700 parameters of Radix Isatidis seedlings were analyzed 10 d after nicosulfuron treatment at 5th leaf stage in this greenhouse research. The results showed that biological mass, total chlorophyll, chlorophyll a, and carotenoids content, photosynthetic rate, stomatal conductance, PS II maximum quantum yield, PS II effective quantum yield, PS II electron transport rate, photochemical quenching, maximal P700 change, photochemical quantum yield of PS I, and PS I electron transport rate decreased with increasing herbicide concentrations, whereas initial fluorescence, quantum yield of non-regulated energy dissipation in PS II and quantum yield of non-photochemical energy dissipation due to acceptor side limitation in PS I increased. It suggests that nicosulfuron ≥1 mg L-1 causes the damage of chloroplast, PS II and PS I structure. Electron transport limitations in PS I receptor side, and blocked dark reaction process may be the main cause of the significantly inhibited growth and decreased photosynthetic rate of Radix Isatidis seedlings.


Subject(s)
Isatis/drug effects , Photosynthesis/drug effects , Pyridines/pharmacology , Seedlings/drug effects , Sulfonylurea Compounds/pharmacology , Chlorophyll/analogs & derivatives , Chlorophyll/physiology , Electron Transport/drug effects , Electron Transport/physiology , Isatis/physiology , Photosynthesis/physiology , Plant Leaves/drug effects , Plant Leaves/physiology , Seedlings/physiology
SELECTION OF CITATIONS
SEARCH DETAIL