Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 543
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 25(2): 268-281, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38195702

ABSTRACT

Melanoma cells, deriving from neuroectodermal melanocytes, may exploit the nervous system's immune privilege for growth. Here we show that nerve growth factor (NGF) has both melanoma cell intrinsic and extrinsic immunosuppressive functions. Autocrine NGF engages tropomyosin receptor kinase A (TrkA) on melanoma cells to desensitize interferon γ signaling, leading to T and natural killer cell exclusion. In effector T cells that upregulate surface TrkA expression upon T cell receptor activation, paracrine NGF dampens T cell receptor signaling and effector function. Inhibiting NGF, either through genetic modification or with the tropomyosin receptor kinase inhibitor larotrectinib, renders melanomas susceptible to immune checkpoint blockade therapy and fosters long-term immunity by activating memory T cells with low affinity. These results identify the NGF-TrkA axis as an important suppressor of anti-tumor immunity and suggest larotrectinib might be repurposed for immune sensitization. Moreover, by enlisting low-affinity T cells, anti-NGF reduces acquired resistance to immune checkpoint blockade and prevents melanoma recurrence.


Subject(s)
Melanoma , Receptor, Nerve Growth Factor , Humans , Receptor, Nerve Growth Factor/genetics , Receptor, Nerve Growth Factor/metabolism , Nerve Growth Factor/genetics , Nerve Growth Factor/metabolism , Tropomyosin , Melanoma/therapy , Receptor, trkA/genetics , Receptor, trkA/metabolism , Cytoprotection , Immune Checkpoint Inhibitors , Memory T Cells , Immunosuppression Therapy , Immunotherapy , Receptors, Antigen, T-Cell
2.
Genes Dev ; 37(19-20): 929-943, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37932012

ABSTRACT

The mismatch repair (MMR) deficiency of cancer cells drives mutagenesis and offers a useful biomarker for immunotherapy. However, many MMR-deficient (MMR-d) tumors do not respond to immunotherapy, highlighting the need for alternative approaches to target MMR-d cancer cells. Here, we show that inhibition of the ATR kinase preferentially kills MMR-d cancer cells. Mechanistically, ATR inhibitor (ATRi) imposes synthetic lethality on MMR-d cells by inducing DNA damage in a replication- and MUS81 nuclease-dependent manner. The DNA damage induced by ATRi is colocalized with both MSH2 and PCNA, suggesting that it arises from DNA structures recognized by MMR proteins during replication. In syngeneic mouse models, ATRi effectively reduces the growth of MMR-d tumors. Interestingly, the antitumor effects of ATRi are partially due to CD8+ T cells. In MMR-d cells, ATRi stimulates the accumulation of nascent DNA fragments in the cytoplasm, activating the cGAS-mediated interferon response. The combination of ATRi and anti-PD-1 antibody reduces the growth of MMR-d tumors more efficiently than ATRi or anti-PD-1 alone, showing the ability of ATRi to augment the immunotherapy of MMR-d tumors. Thus, ATRi selectively targets MMR-d tumor cells by inducing synthetic lethality and enhancing antitumor immunity, providing a promising strategy to complement and augment MMR deficiency-guided immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , DNA Mismatch Repair , Animals , Mice , DNA Mismatch Repair/genetics , Synthetic Lethal Mutations , DNA , Immunotherapy
3.
EMBO Rep ; 25(3): 1326-1360, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38347225

ABSTRACT

ITM2B/BRI2 mutations cause Alzheimer's Disease (AD)-related dementias. We observe heightened ITM2B/BRI2 expression in microglia, a pivotal cell type in AD due to risk-increasing variants in the microglial gene TREM2. Single-cell RNA-sequencing demonstrates a Trem2/Bri2-dependent microglia cluster, underscoring their functional interaction. α-secretase cleaves TREM2 into TREM2-CTF and sTREM2. As BRI2 hinders α-secretase cleavage of the AD-related Aß-Precursor-Protein, we probed whether BRI2 influences TREM2 processing. Our findings indicate a BRI2-TREM2 interaction that inhibits TREM2 processing in heterologous cells. Recombinant BRI2 and TREM2 proteins demonstrate a direct, cell-free BRI2-TREM2 ectodomain interaction. Constitutive and microglial-specific Itm2b-Knock-out mice, and Itm2b-Knock-out primary microglia provide evidence that Bri2 reduces Trem2 processing, boosts Trem2 mRNA expression, and influences Trem2 protein levels through α-secretase-independent pathways, revealing a multifaceted BRI2-TREM2 functional interaction. Moreover, a mutant Itm2b dementia mouse model exhibits elevated Trem2-CTF and sTrem2, mirroring sTREM2 increases in AD patients. Lastly, Bri2 deletion reduces phagocytosis similarly to a pathogenic TREM2 variant that enhances processing. Given BRI2's role in regulating Aß-Precursor-Protein and TREM2 functions, it holds promise as a therapeutic target for AD and related dementias.


Subject(s)
Alzheimer Disease , Dementia , Animals , Humans , Mice , Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases/metabolism , Dementia/genetics , Disease Models, Animal , Membrane Glycoproteins , Mice, Knockout , Microglia/metabolism , Receptors, Immunologic
4.
J Biol Chem ; 299(7): 104868, 2023 07.
Article in English | MEDLINE | ID: mdl-37257821

ABSTRACT

About 2% of Alzheimer's disease (AD) cases have early onset (FAD) and are caused by mutations in either Presenilins (PSEN1/2) or amyloid-ß precursor protein (APP). PSEN1/2 catalyze production of Aß peptides of different length from APP. Aß peptides are the major components of amyloid plaques, a pathological lesion that characterizes AD. Analysis of mechanisms by which PSEN1/2 and APP mutations affect Aß peptide compositions lead to the implication of the absolute or relative increase in Aß42 in amyloid-ß plaques formation. Here, to elucidate the formation of pathogenic Aß cocktails leading to amyloid pathology, we utilized FAD rat knock-in models carrying the Swedish APP (Apps allele) and the PSEN1 L435F (Psen1LF allele) mutations. To accommodate the differences in the pathogenicity of rodent and human Aß, these rat models are genetically engineered to express human Aß species as both the Swedish mutant allele and the WT rat allele (called Apph) have been humanized in the Aß-coding region. Analysis of the eight possible FAD mutant permutations indicates that the CNS levels of Aß43, rather than absolute or relative increases in Aß42, determine the onset of pathological amyloid deposition in FAD knock-in rats. Notably, Aß43 was found in amyloid plaques in late onset AD and mild cognitive impairment cases, suggesting that the mechanisms initiating amyloid pathology in FAD knock-in rat reflect disease mechanisms driving amyloid pathology in late onset AD. This study helps clarifying the molecular determinants initiating amyloid pathology and supports therapeutic interventions targeting Aß43 in AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Rats , Animals , Humans , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Plaque, Amyloid/genetics , Plaque, Amyloid/pathology , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Presenilin-1/genetics , Mutation , Amyloid Precursor Protein Secretases/metabolism
5.
Neuroimage ; 292: 120599, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38608799

ABSTRACT

This study aimed to investigate altered static and dynamic functional network connectivity (FNC) and its correlation with clinical symptoms in patients with knee osteoarthritis (KOA). One hundred and fifty-nine patients with KOA and 73 age- and gender-matched healthy subjects (HS) underwent resting-state functional magnetic resonance imaging (rs-fMRI) and clinical evaluations. Group independent component analysis (GICA) was applied, and seven resting-state networks were identified. Patients with KOA had decreased static FNC within the default mode network (DM), visual network (VS), and cerebellar network (CB) and increased static FNC between the subcortical network (SC) and VS (p < 0.05, FDR corrected). Four reoccurring FNC states were identified using k-means clustering analysis. Although abnormalities in dynamic FNCs of KOA patients have been found using the common window size (22 TR, 44 s), but the results of the clustering analysis were inconsistent when using different window sizes, suggesting dynamic FNCs might be an unstable method to compare brain function between KOA patients and HS. These recent findings illustrate that patients with KOA have a wide range of abnormalities in the static and dynamic FNCs, which provided a reference for the identification of potential central nervous therapeutic targets for KOA treatment and might shed light on the other musculoskeletal pain neuroimaging studies.


Subject(s)
Brain , Magnetic Resonance Imaging , Nerve Net , Osteoarthritis, Knee , Humans , Magnetic Resonance Imaging/methods , Female , Male , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/physiopathology , Middle Aged , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Aged , Brain/diagnostic imaging , Brain/physiopathology , Adult , Connectome/methods , Rest , Brain Mapping/methods
6.
Anal Chem ; 96(22): 9034-9042, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38773734

ABSTRACT

Allysine, a pivotal biomarker in fibrogenesis, has prompted the development of various radioactive imaging probes. However, fluorogenic probes targeting allysine remain largely unexplored. Herein, by leveraging the equilibrium between the nonfluorescent spirocyclic and the fluorescent zwitterionic forms of rhodamine-cyanine hybrid fluorophores, we systematically fine-tuned the environmental sensitivity of this equilibrium toward the development of fluorogenic probes for fibrosis. The trick lies in modulating the nucleophilicity of the ortho-carboxyl group, which is terminated with a hydrazide group for allysine conjugation. Probe B2 was developed with this strategy, which featured an N-sulfonyl amide group and exhibited superior fibrosis-to-control imaging contrast. Initially presenting as nonfluorescent spirocyclic aggregates in aqueous solutions, B2 displayed a notable fluorogenic response upon conjugation with protein allysine through its hydrazide group, inducing deaggregation and switching to the fluorescent zwitterionic form. Probe B2 outperformed the traditional Masson stain in imaging contrast, achieving an about 260-2600-fold ratio for fibrosis-to-control detection depending on fibrosis severity. Furthermore, it demonstrated efficacy in evaluating antifibrosis drugs. Our results emphasize the potential of this fluorogenic probe as an alternative to conventional fibrosis detection methods. It emerges as a valuable tool for antifibrosis drug evaluation.


Subject(s)
Fibrosis , Fluorescent Dyes , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Animals , Optical Imaging , Mice , Humans , Rhodamines/chemistry
7.
Opt Lett ; 49(7): 1749-1752, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38560853

ABSTRACT

Non-contact optical temperature measurement can effectively avoid the disadvantages of traditional contact thermometry and thus, become a hot research topic. Herein, a fluorescence intensity ratio (FIR) thermometry using a time-resolved technique based on La2CaZrO6:Cr3+ (LCZO) is proposed, with a maximum relative sensitivity (Sr - FIR) of 2.56% K-1 at 473 K and a minimum temperature resolution of 0.099 K. Moreover, the relative sensitivity and temperature resolution can be effectively controlled by adjusting the width of the time gate based on the time-resolved technique. Our work provides, to our knowledge, new viewpoints into the development of novel optical thermometers with adjustable relative sensitivity and temperature resolution on an as-needed basis.

8.
Mol Psychiatry ; 28(9): 3955-3965, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37798418

ABSTRACT

Diabetic patients receiving the antidiabetic drug metformin have been observed to exhibit a lower prevalence of anxiety disorders, yet the precise mechanism behind this phenomenon is unclear. In our study, we found that anxiety induces a region-specific reduction in AMPK activity in the medial prefrontal cortex (mPFC). Concurrently, transgenic mice with brain-specific AMPK knockout displayed abnormal anxiety-like behaviors. Treatment with metformin or the overexpression of AMPK restored normal AMPK activity in the mPFC and mitigated social stress-induced anxiety-like behaviors. Furthermore, the specific genetic deletion of AMPK in the mPFC not only instigated anxiety in mice but also nullified the anxiolytic effects of metformin. Brain slice recordings revealed that GABAergic excitation and the resulting inhibitory inputs to mPFC pyramidal neurons were selectively diminished in stressed mice. This reduction led to an excitation-inhibition imbalance, which was effectively reversed by metformin treatment or AMPK overexpression. Moreover, the genetic deletion of AMPK in the mPFC resulted in a similar defect in GABAergic inhibitory transmission and a consequent hypo-inhibition of mPFC pyramidal neurons. We also generated a mouse model with AMPK knockout specific to GABAergic neurons. The anxiety-like behaviors in this transgenic mouse demonstrated the unique role of AMPK in the GABAergic system in relation to anxiety. Therefore, our findings suggest that the activation of AMPK in mPFC inhibitory neurons underlies the anxiolytic effects of metformin, highlighting the potential of this primary antidiabetic drug as a therapeutic option for treating anxiety disorders.


Subject(s)
Anti-Anxiety Agents , Metformin , Humans , Mice , Animals , Anti-Anxiety Agents/pharmacology , AMP-Activated Protein Kinases/pharmacology , Metformin/pharmacology , Hypoglycemic Agents/pharmacology , Prefrontal Cortex , GABAergic Neurons
9.
Chemphyschem ; : e202400505, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978281

ABSTRACT

In the catalytic transformation of bio-oil into liquid fuels having alkanes via hydrodeoxygenation (HDO), the acid and metal sites in the catalyst are pivotal for promoting the HDO of lignin-derived phenolic compounds. This study introduces a novel bifunctional catalyst comprising phosphomolybdenum-vanadium heteropolyacids (H4PMo11VO40) coupled with Ni/C. The HDO reaction of the model compound guaiacol was carried out under reaction conditions of 230 °C, revealing the superior performance of H4PMo11VO40 with Ni/C catalysts compared to the conventional acids, even at low dosage. The Keggin structure of H4PMo11VO40 provided a solid catalyst with strong acidic and redox properties, alongside advantages such as ease of synthesis, cost-effectiveness, and tunable acid and redox properties at the molecular level. Characterization of Ni/C and the prepared acid demonstrated favorable pore structure with a mesopore volume of 0.281 cm3/g and an average pore size of 3.404 nm, facilitating uniform distribution and catalytic activity of Ni-metal. Incorporating acid enhances the acidic sites, fostering synergistic interactions between metal and acidic sites within the catalyst, thereby significantly enhancing HDO performance. Guaiacol conversion at 230 °C reached 100%, with a cyclohexane selectivity of 89.3%. This study presents a promising pathway for converting lignin-derived phenolic compounds.

10.
Cell Commun Signal ; 22(1): 458, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39334477

ABSTRACT

APOE is a major genetic factor in late-onset Alzheimer's disease (LOAD), with APOE4 increasing risk, APOE3 acting as neutral, and APOE2 offering protection. APOE also plays key role in lipid metabolism, affecting both peripheral and central systems, particularly in lipoprotein metabolism in triglyceride and cholesterol regulation. APOE2 is linked to Hyperlipoproteinemia type III (HLP), characterized by mixed hypercholesterolemia and hypertriglyceridemia due to impaired binding to Low-Density Lipoproteins receptors. To explore the impact of human APOE isoforms on LOAD and lipid metabolism, we developed Long-Evans rats with human APOE2, APOE3, or APOE4 in place of rat Apoe. These rats were crossed with those carrying a humanized App allele to express human Aß, which is more aggregation-prone than rodent Aß, enabling the study of human APOE-human Aß interactions. In this study, we focused on 80-day-old adolescent rats to analyze early changes that may be associated with the later development of LOAD. We found that APOE2hAß rats had the highest levels of APOE in serum and brain, with no significant transcriptional differences among isoforms, suggesting variations in protein translation or stability. Aß43 levels were significantly higher in male APOE4hAß rats compared to APOE2hAß rats. However, no differences in Tau or phosphorylated Tau levels were observed across the APOE isoforms. Neuroinflammation analysis revealed lower levels of IL13, IL4 and IL5 in APOE2hAß males compared to APOE4hAß males. Neuronal transmission and plasticity tests using field Input-Output (I/O) and long-term potentiation (LTP) recordings showed increased excitability in all APOE-carrying rats, with LTP deficits in APOE2hAßand APOE4hAß rats compared to ApoehAß and APOE3hAß rats. Additionally, a lipidomic analysis of 222 lipid molecular species in serum samples showed that APOE2hAß rats displayed elevated triglycerides and cholesterol, making them a valuable model for studying HLP. These rats also exhibited elevated levels of phosphatidylglycerol, phosphatidylserine, phosphatidylethanolamine, sphingomyelin, and lysophosphatidylcholine. Minimal differences in lipid profiles between APOE3hAß and APOE4hAß rats reflect findings from mouse models. Future studies will include comprehensive lipidomic analyses in various CNS regions and at older ages to further validate these models and explore the effects of APOE isoforms on lipid metabolism in relation to AD pathology.


Subject(s)
Alzheimer Disease , Apolipoproteins E , Disease Models, Animal , Hyperlipoproteinemia Type III , Protein Isoforms , Animals , Humans , Male , Rats , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/blood , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Apolipoproteins E/genetics , Gene Knock-In Techniques , Hyperlipoproteinemia Type III/genetics , Hyperlipoproteinemia Type III/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Rats, Long-Evans , Rats, Transgenic
11.
Fish Shellfish Immunol ; 146: 109378, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272333

ABSTRACT

In this experiment, we investigated the effects of adding chlorogenic acid (CGA) to the diet on growth performance, immune function, inflammation response, antioxidant capacity and its related mechanisms of common carp (Cyprinus carpio). A total of 600 fish were selected and randomly divided into five treatment groups and fed with CGA containing 0 mg/kg (CK), 100 mg/kg (L100), 200 mg/kg (L200), 400 mg/kg (L400) and 800 mg/kg (L800) for 56 days. The results of the experiment were as follows: addition of CGA significantly increased the WGR, SGR, FER, and PER of common carp (P < 0.05). The addition of 400-800 mg/kg of CGA significantly increased the serum levels of LZM, AKP activity, C3 and C4 concentration, and increased immune function of common carp (P < 0.05). Regarding antioxidant enzyme activities, adding CGA significantly increased SOD, CAT, and GsH-Px activities, while decreasing MDA content (P < 0.05). Compared with the CK group, the mRNA expression levels of NF-κB, TNF-α, and IL-1ß were decreased. The IL-10 and TGF-ß were increased in the liver and intestines of the CGA supplemented group. Meanwhile, the addition of CGA also significantly up-regulated the mRNA expression levels of Nrf2, HO-1, SOD, CAT, and GPX (P < 0.05). CGA also positively contributed to the development of the carp intestinal tract, as demonstrated by decreased serum levels of DAO, D-LA, and ET-1. And the mucosal fold height was increased significantly with increasing levels of CGA. In conclusion, the addition of CGA in the feed can enhance the growth performance, immune function and antioxidant capacity of common carp, and improve the health of the intestine and liver. According to the results of this experiment, the optimal addition amount in common carp diets was 400 mg/kg.


Subject(s)
Antioxidants , Carps , Animals , Antioxidants/metabolism , NF-kappa B/metabolism , Carps/metabolism , NF-E2-Related Factor 2/metabolism , Chlorogenic Acid/pharmacology , Signal Transduction , Dietary Supplements , Diet/veterinary , Intestines , Liver/metabolism , Immunity, Innate , RNA, Messenger/metabolism , Superoxide Dismutase/metabolism , Animal Feed/analysis
12.
Fish Shellfish Immunol ; 144: 109294, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38092096

ABSTRACT

N-acetylcysteine (NAC) positively contributes to enhancing animal health, regulating inflammation and reducing stress by participating in the synthesis of cysteine, glutathione, and taurine in the body. The present study aims to investigate the effects of dietary different levels of NAC on the morphology, function and physiological state of hepatopancreas in juvenile common carp (Cyprinus carpio). 450 common carps were randomly divided into 5 groups: N1 (basal diet), N2 (1.5 g/kg NAC diet), N3 (3.0 g/kg NAC diet), N4 (4.5 g/kg NAC diet) and N5 (6.0 g/kg NAC diet), and fed for 8 weeks. The results indicated that dietary 3.0-6.0 g/kg NAC reduced hepatopancreas lipid vacuoles and nuclear translocation, and inhibited apoptosis in common carp. Simultaneously, the activities of hepatopancreas alanine aminotransferase and aspartate aminotransferase progressively increased with rising dietary NAC levels. Dietary NAC enhanced the non-specific immune function of common carp, and exerted anti-inflammatory effects by inhibiting the MAPK/NF-κB signaling pathway. Additionally, dietary 3.0-6.0 g/kg NAC significantly improved the antioxidant capacity of common carp, which was associated with enhanced glutathione metabolism, clearance of ROS and the activation of Nrf2 signaling pathway. In summary, NAC has the potential to alleviate inflammation, mitigate oxidative stress and inhibit apoptosis via the MAPK/NF-κB/Nrf2 signaling pathway, thereby improving hepatopancreas function and health of common carp. The current findings provide a theoretical basis for promoting the application of NAC in aquaculture and ecological cultivation of aquatic animals.


Subject(s)
Antioxidants , Carps , Animals , Antioxidants/metabolism , NF-kappa B/metabolism , Acetylcysteine/pharmacology , Carps/metabolism , NF-E2-Related Factor 2/metabolism , Hepatopancreas/metabolism , Signal Transduction , Diet/veterinary , Inflammation/veterinary , Glutathione , Dietary Supplements
13.
Acta Pharmacol Sin ; 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39349767

ABSTRACT

Depressive disorders are a global mental health challenge that is closely linked to inflammation, especially in the post-COVID-19 era. The JAK-STAT pathway, which is primarily associated with inflammatory responses, is not fully characterized in the context of depressive disorders. Recently, a phase 3 retrospective cohort analysis heightened that the marketed JAK inhibitor tofacitinib is beyond immune diseases and has potential for preventing mood disorders. Inspired by these clinical facts, we investigated the role of the JAK-STAT signaling pathway in depression and comprehensively assessed the antidepressant effect of tofacitinib. We found that aberrant activation of the JAK-STAT pathway is highly conserved in the hippocampus of classical depressive mouse models: LPS-induced and chronic social defeat stress (CSDS)-induced depressive mice. Mechanistically, the JAK-STAT pathway mediates proinflammatory cytokine production and microgliosis, leading to synaptic defects in the hippocampus of both depressive models. Remarkably, the JAK inhibitor tofacitinib effectively reverses these phenomena, contributing to its antidepressant effect. These findings indicate that the JAK/STAT pathway could be implicated in depressive disorders, and suggest that the JAK inhibitor tofacitinib has a potential translational implication for preventing mood disorders far beyond its current indications.

14.
Cereb Cortex ; 33(7): 3511-3522, 2023 03 21.
Article in English | MEDLINE | ID: mdl-35965072

ABSTRACT

Acupuncture is effective in treating functional dyspepsia (FD), while its efficacy varies significantly from different patients. Predicting the responsiveness of different patients to acupuncture treatment based on the objective biomarkers would assist physicians to identify the candidates for acupuncture therapy. One hundred FD patients were enrolled, and their clinical characteristics and functional brain MRI data were collected before and after treatment. Taking the pre-treatment functional brain network as features, we constructed the support vector machine models to predict the responsiveness of FD patients to acupuncture treatment. These features contributing critically to the accurate prediction were identified, and the longitudinal analyses of these features were performed on acupuncture responders and non-responders. Results demonstrated that prediction models achieved an accuracy of 0.76 ± 0.03 in predicting acupuncture responders and non-responders, and a R2 of 0.24 ± 0.02 in predicting dyspeptic symptoms relief. Thirty-eight functional brain network features associated with the orbitofrontal cortex, caudate, hippocampus, and anterior insula were identified as the critical predictive features. Changes in these predictive features were more pronounced in responders than in non-responders. In conclusion, this study provided a promising approach to predicting acupuncture efficacy for FD patients and is expected to facilitate the optimization of personalized acupuncture treatment plans for FD.


Subject(s)
Acupuncture Therapy , Dyspepsia , Humans , Dyspepsia/diagnostic imaging , Dyspepsia/therapy , Brain/diagnostic imaging , Brain Mapping , Magnetic Resonance Imaging
15.
Environ Res ; 248: 118237, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38244971

ABSTRACT

BACKGROUND: Epidemiological evidence for the association between heavy metals exposure during pregnancy and gestational diabetes mellitus (GDM) is still inconsistent. Additionally, that is poorly understood about the potential cause behind the association, for instance, whether heavy metal exposure is related to the change of insulin secretion phase is unknown. OBJECTIVES: We aimed to explore the relationships of blood levels of arsenic (As), lead (Pb), thallium (Tl), nickel (Ni), cadmium (Cd), cobalt (Co), barium (Ba), chromium (Cr), mercury (Hg) and copper (Cu) during early pregnancy with the odds of GDM, either as an individual or a mixture, as well as the association of the metals with insulin secretion phase after glucose stimulation. METHODS: We performed a nested case-control study consisting of 302 pregnant women with GDM and 302 controls at the First Affiliated Hospital of Anhui Medical University in Hefei, China. Around the 12th week of pregnancy, blood samples of pregnant women were collected and levels of As, Pb, Tl, Ni, Cd, Co, Ba, Cr, Hg and Cu in blood were measured. An oral glucose tolerance test (OGTT) was done in each pregnant woman during the 24-28th week of pregnancy to diagnose GDM and C-peptide (CP) levels during OGTT were measured simultaneously. The four metals (As, Pb, Tl and Ni) with the highest effect on odds of GDM were selected for the subsequent analyses via the random forest model. Conditional logistic regression models were performed to analyze the relationships of blood As, Pb, Tl and Ni levels with the odds of GDM. The weighted quantile sum (WQS) regression and bayesian kernel machine regression (BKMR) were used to assess the joint effects of levels of As, Pb, Tl and Ni on the odds of GDM as well as to evaluate which metal level contributed most to the association. Latent profile analysis (LPA) was conducted to identify profiles of glycemic and C-peptide levels at different time points. Multiple linear regression models were employed to explore the relationships of metals with glycaemia-related indices (fasting blood glucose (FBG), 1-hour blood glucose (1h BG), 2-hour blood glucose (2h BG), fasting C-peptide (FCP), 1-hour C-peptide (1h CP), 2-hour C-peptide (2h CP), FCP/FBG, 1h CP/1h BG, 2h CP/2h BG, area under the curve of C-peptide (AUCP), area under the curve of glucose (AUCG), AUCP/AUCG and profiles of BGs and CPs, respectively. Mixed-effects models with repeated measures data were used to explore the relationship between As (the ultimately selected metal) level and glucose-stimulated insulin secretion phase. The mediation effects of AUCP and AUCG on the association of As exposure with odds of GDM were investigated using mediation models. RESULTS: The odds of GDM in pregnant women increased with every ln unit increase in blood As concentration (odds ratio (OR) = 1.46, 95% confidence interval (CI) = 1.04-2.05). The joint effects of As, Pb, Tl and Ni levels on the odds of GDM was statistically significant when blood levels of four metals were exceeded their 50th percentile, with As level being a major contributor. Blood As level was positively associated with AUCG and the category of glucose latent profile, the values of AUCG were much higher in GDM group than those in non-GDM group, which suggested that As exposure associated with the odds of GDM may be due to that As exposure was related to the impairment of glucose tolerance among pregnant women. The significant and positive relationships of As level with AUCP, CP latent profile category, 2h CP and 2h CP/2h BG were observed, respectively; and the values of 1h CP/1h BG and AUCP/AUCG were much lower in GDM group than those in non-GDM group, which suggested that As exposure may not relate to the impairment of insulin secretion (pancreatic ß-cell function) among pregnant women. The relationships between As level and 2h CP as well as 2h CP/2h BG were positive and significant; additionally, the values of 2h CP/2h BG in GDM group were comparable with those in non-GDM group; the peak value of CP occurred at 2h in GDM group, as well as the values of 2h CP/2h BG in high As exposure group were much higher than those in low As exposure group, which suggested that As exposure associated with the increased odds of GDM may be due to that As exposure was related to the change of insulin secretion phase (delayment of the peak of insulin secretion) among pregnant women. In addition, AUCP mediated 11% (p < 0.05) and AUCG mediated 43% (p < 0.05) of the association between As exposure and the odds of GDM. CONCLUSION: Our results suggested that joint exposure to As, Pb, Tl and Ni during early pregnancy was positively associated with the odds of GDM, As was a major contributor; and the association of environmental As exposure with the increased odds of GDM may be due to that As exposure was related to the impairment of glucose tolerance and change of insulin secretion phase after glucose stimulation (delayment of the peak of insulin secretion) among pregnant women.


Subject(s)
Arsenic , Diabetes, Gestational , Mercury , Metals, Heavy , Pregnancy , Female , Humans , Blood Glucose , Glucose , Cadmium , Case-Control Studies , Insulin Secretion , C-Peptide , Bayes Theorem , Lead , Nickel
16.
BMC Public Health ; 24(1): 2674, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39350134

ABSTRACT

BACKGROUND: This study aimed to investigate the epidemiological changes in scarlet fever before, during and after the COVID-19 pandemic (2005-2023) and predict the incidence of the disease in 2024 and 2025 in Chongqing Municipality, Southwest China. METHODS: Descriptive analysis was used to summarize the characteristics of the scarlet fever epidemic. Spatial autocorrelation analysis was utilized to explore the distribution pattern of the disease, and the seasonal autoregressive integrated moving average (SARIMA) model was constructed to predict its incidence in 2024 and 2025. RESULTS: Between 2005 and 2023, 9,593 scarlet fever cases were reported in Chongqing, which resulted in an annual average incidence of 1.6694 per 100,000 people. Children aged 3-7 were the primary victims of this disease, with the highest average incidence found among children aged 6 (5.0002 per 100,000 people). Kindergarten children were the dominant infected population, accounting for as much as 54.32% of cases, followed by students (34.09%). The incidence for the male was 1.51 times greater than that for the female. The monthly distribution of the incidence showed a bimodal pattern, with one peak occurring between April and June and another in November or December. The spatial autocorrelation analysis revealed that scarlet fever cases were markedly clustered; the areas with higher incidence were mainly concentrated in Chongqing's urban areas and its adjacent districts, and gradually spreading to remote areas after 2020. The incidence of scarlet fever increased by 106.54% and 39.33% in the post-upsurge period (2015-2019) and the dynamic zero-COVID period (2020-2022), respectively, compared to the pre-upsurge period (2005-2014) (P < 0.001). During the dynamic zero-COVID period, the incidence of scarlet fever decreased by 68.61%, 25.66%, and 10.59% (P < 0.001) in 2020, 2021, and 2022, respectively, compared to the predicted incidence. In 2023, after the dynamic zero-COVID period, the reported cases decreased to 1.5168 per 100,000 people unexpectedly instead of increasing. The cases of scarlet fever are predicted to increase in 2024 (675 cases) and 2025 (705 cases). CONCLUSIONS: Children aged 3-7 years are the most affected population, particularly males, and kindergartens and primary schools serving as transmission hotspots. It is predicted that the high incidence of scarlet fever in Chongqing will persist in 2024 and 2025, and the outer districts (counties) beyond urban zone would bear the brunt of the impact. Therefore, imminent public health planning and resource allocation should be focused within those areas.


Subject(s)
COVID-19 , Scarlet Fever , Humans , China/epidemiology , Scarlet Fever/epidemiology , COVID-19/epidemiology , Child , Male , Child, Preschool , Female , Incidence , Adolescent , Adult , Infant , Young Adult , Pandemics , Forecasting , Middle Aged
17.
Appetite ; 197: 107317, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38552365

ABSTRACT

Postprandial distress syndrome (PDS) is the most common functional dyspepsia (FD) subtype. Early satiety is one of the cardinal symptoms of the PDS subtype in FD patients. The heterogeneity of symptoms in FD patients hampered therapy for patients based on specific symptoms, necessitating a symptom-based understanding of the pathophysiology of FD. To investigate the correlation between reward circuit and symptom severity of PDS patients, seed (Nucleus accumbens, NAc, a key node in the reward circuit) based resting-state functional connectivity (FC) was applied in the neuroimaging data analysis. The results demonstrated that the patients with PDS manifested strengthened FC between NAc and the caudate, putamen, pallidum, amygdala, hippocampus, thalamus, anterior cingulate cortex (ACC), and insula. Moreover, the FC between NAc and ACC, insula, thalamus, and hippocampus exhibited significant positive associations with symptom severity. More importantly, the strengthened FC between NAc and the ACC, insula, amygdala, and hippocampus were found associated with the early satiety symptom of patients with PDS. This study indicated that the altered FC of reward circuit regions may play a role in the pathophysiology of patients with PDS, and some of the aberrant NAc-based FC within the reward circuit were more related to the early satiety of patients with PDS. These findings improve our symptom-based understanding of the central pathophysiology of FD, lay the groundwork for an objective diagnosis of FD, and shed light on the precise prescription for treating FD based on symptoms.


Subject(s)
Dyspepsia , Humans , Dyspepsia/complications , Dyspepsia/diagnosis , Nucleus Accumbens , Amygdala/diagnostic imaging , Neuroimaging
18.
Ecotoxicol Environ Saf ; 274: 116223, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38493704

ABSTRACT

Afidopyropen has high activity against pests. However, it poses potential risks to the soil ecology after entering the environment. The toxicity of afidopyropen to earthworms (Eisenia fetida) was studied for the first time in this study. The results showed that afidopyropen had low level of acute toxicity to E. fetida. Under the stimulation of chronic toxicity, the increase of reactive oxygen species (ROS) level activated the antioxidant and detoxification system, which led to the increase of superoxide dismutase (SOD) and glutathione S-transferase (GST) activities. Lipid peroxidation and DNA damage were characterized by the increase of malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) contents. Meanwhile, the functional genes SOD, CAT, GST, heat shock protein 70 (HSP70), transcriptionally controlled tumor protein (TCTP), and annetocin (ANN) played a synergistic role in antioxidant defense. However, the comprehensive toxicity of high concentration still increased on the 28th day. In addition, strong histopathological damage in the body wall and intestine was observed, accompanied by weight loss, which indicated that afidopyropen inhibited the growth of E. fetida. The molecular docking revealed that afidopyrene combined with the surface structure of SOD and GST proteins, which made SOD and GST become sensitive biomarkers reflecting the toxicity of afidopyropen to E. fetida. Summing up, afidopyropen destroys the homeostasis of E. fetida through chronic toxic. These results provide theoretical data for evaluating the environmental risk of afidopyropen to soil ecosystem.


Subject(s)
Heterocyclic Compounds, 4 or More Rings , Lactones , Oligochaeta , Soil Pollutants , Animals , Antioxidants/metabolism , Catalase/metabolism , Ecosystem , Molecular Docking Simulation , Glutathione Transferase/metabolism , Soil Pollutants/metabolism , Superoxide Dismutase/metabolism , Soil/chemistry , Malondialdehyde/metabolism , Oxidative Stress
19.
Ecotoxicol Environ Saf ; 271: 115932, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38232522

ABSTRACT

BACKGROUND: Endometriosis is a common gynecological disease that affects approximately 5 %∼10 % of reproductive-aged women. Zinc (Zn), selenium (Se), copper (Cu), cobalt (Co) and molybdenum (Mo) are essential trace elements and are very important for human health. However, studies on the relationship between mixtures of essential trace elements and the risk of endometriosis are limited and inconsistent. In particular, studies confirming the association via different sample types are limited. OBJECTIVE: This study aimed to investigate the associations between Zn, Se, Cu, Co and Mo concentrations in blood and follicular fluid (FF) and endometriosis risk in a Chinese population. METHODS: A total of 609 subjects undergoing in vitro fertilization (IVF) were recruited; 836 samples were analyzed, including 451 blood samples (234 controls and 217 cases) and 385 FF samples (203 controls and 182 cases). In addition, 227 subjects provided both blood and FF samples. Zn, Se, Cu, Co and Mo concentrations in blood and FF were quantified via inductively coupled plasma-mass spectrometry (ICP-MS). The associations between the levels of Zn, Se, Cu, Co and Mo and the risk of endometriosis were assessed using single-element models (logistic regression models), and the combined effect of the trace elements on endometriosis risk was assessed using multielement models (Bayesian kernel machine regression (BKMR) and weighted quantile sum (WQS) regression). RESULTS: Based on the single-element models, significant associations of Zn concentrations in blood (high-level vs. low-level group: aOR = 14.17, 95 % CI: 7.31, 27.50) and FF (first tertile vs. second tertile group: aOR = 0.34, 95 % CI: 0.16, 0.71; third tertile vs. second tertile group: aOR = 2.32, 95 % CI: 1.38, 3.91, respectively) and Co concentrations in blood (first tertile vs. second tertile group, aOR = 0.24, 95 % CI: 0.12, 0.48) and FF (third tertile vs. second tertile group: aOR = 3.87, 95 % CI: 2.19, 6.84) with endometriosis risk were found after adjustment for all confounders. In FF, Cu and Mo levels were significantly greater among the cases than among the controls, with a positive association with endometriosis risk (Cu (first tertile vs. second tertile group: aOR = 0.39, 95 % CI: 0.19, 0.81; third tertile vs. second tertile group: aOR = 2.73, 95 % CI: 1.61, 4.66, respectively) and Mo (high-level vs. low-level group: aOR = 14.93, 95 % CI: 7.16, 31.12)). However, similar associations between blood Cu and Mo levels and endometriosis risk were not found. In addition, the levels of these five essential trace element mixtures in blood and in FF were significantly and positively associated with endometriosis risk according to the BKMR analyses; the levels of Zn and Cu in blood and the levels of Mo in FF were significantly related to the risk of endometriosis, and the posterior inclusion probabilities (PIPs) were 1.00, 0.99 and 1.00 for Zn and Cu levels in blood and Mo levels in FF, respectively. Furthermore, Zn and Mo were the highest weighted elements in blood and FF, respectively, according to WQS analyses. CONCLUSION: The risk of endometriosis was associated with elevated levels of several essential trace elements (Zn, Cu and Co). Elevated levels of these elements may be involved in the pathomechanism of endometriosis. However, further studies with larger sample sizes will be necessary to confirm these associations.


Subject(s)
Endometriosis , Selenium , Trace Elements , Humans , Female , Adult , Trace Elements/analysis , Zinc , Cobalt , Endometriosis/epidemiology , Bayes Theorem , Molybdenum
20.
Clin Oral Investig ; 28(3): 168, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38396151

ABSTRACT

OBJECTIVES: We investigated the association between dietary flavonoids intake and periodontitis. MATERIALS AND METHODS: This cross-sectional study analyzed data from the US National Health and Nutrition Examination Survey 2009-2010 on 3025 participants aged between 30 and 80 years who had full-mouth periodontal examination and dietary flavonoids intake data. This study used periodontal pocket depth (PPD) and clinical attachment loss (CAL) as periodontitis markers. Data were analyzed using multivariate linear regression. RESULTS: After adjusting confounders, the middle tertile of total dietary flavonoids was associated with decreased mean PPD (0.06 mm, P = 0.016) and mean CAL (0.13 mm, P = 0.001) and the top tertile of total dietary flavonoids was significantly associated with decreases in mean PPD (0.05 mm, P = 0.029) and mean CAL (0.11 mm, P = 0.010). Both the middle and top tertiles of total flavonoids intake were significantly related with decreased mean CAL in females, those flossing 0 days/week, overweight and non-diabetic population but not in males, smokers, those flossing 1-6 days/week and diabetic population. Higher anthocyanidins, flavones and flavonols intake was significantly associated with decreased mean PPD and mean CAL while higher flavanones intake was only significantly associated with decreased mean CAL. Higher anthocyanidins intake was particularly related with greatest decreases in mean CAL (top tertile: 0.22 mm, middle tertile: 0.17 mm, both P < 0.010). However, no significant associations were found between isoflavones and flavan_3_ols intake and mean CAL. CONCLUSIONS: Higher dietary flavonoids intake may be beneficial for periodontal health. CLINICAL RELEVANCE: Additional anthocyanidins, flavanones, flavones and flavonols intake was associated with improved periodontal health.


Subject(s)
Flavanones , Flavones , Periodontitis , Male , Female , Humans , Adult , Middle Aged , Aged , Aged, 80 and over , Cross-Sectional Studies , Nutrition Surveys , Anthocyanins , Periodontitis/epidemiology , Periodontitis/prevention & control , Flavonoids , Polyphenols , Flavonols
SELECTION OF CITATIONS
SEARCH DETAIL