Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Carcinogenesis ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39113410

ABSTRACT

As a preventable disease, cervical cancer (cervical squamous cell carcinoma and endocervical adenocarcinoma - CESC) remains a tumor with high morbidity and mortality worldwide, underscoring the pressing need for effective treatment strategies. This research identified Golgi transport 1B (GOLT1B) as a critical gene involved in the development of cervical cancer. Gene Expression Omnibus (GEO) datasets were investigated to determine the upregulation of GOLT1B in cervical cancer tissue compared to normal tissue. Besides, GOLT1B was found to predict poor prognosis in cervical cancer by utilizing Gene Expression Profiling Interactive Analysis (GEPIA). The functional assay indicated that GOLT1B promoted CESC viability and migration in vitro and in vivo. RNA sequencing results suggested that GOLT1B likely influenced NF-κB pathway. The subsequent western blot and dual luciferase reporter assay revealed the interaction between GOLT1B and TBK1, modulating the NF-κB pathway. More importantly, GOLT1B was also found to regulate immune cells infiltration, suggesting its potential role in tumor microenvironment. In conclusion, GOLT1B promotes CESC progression via interaction with TBK1 and augmentation of NF-κB signaling-mediated cancer-associated inflammation, which provides us a new approach to CESC target therapy.

2.
J Am Chem Soc ; 146(8): 5274-5282, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38363827

ABSTRACT

The practical application of the H2/O2 proton-exchange membrane fuel cell (PEMFC) is being greatly limited by the use of high-cost Pt as electrode catalysts. Furthermore, the H2/O2 PEMFC is nonrechargeable and thus precludes kinetics energy recovery when equipped on electric vehicles and peak power regulation when combined to power grids. Here, we demonstrate a rechargeable H2/O2 PEMFC through embedding a redox flow battery into a conventional H2/O2 PEMFC. This flow battery employs H2/O2 reactive redox pairs such as NO3-/NO-Br2/Br- and H4SiW12O40/H5SiW12O40 whose redox potentials are as close as possible to those of O2/H2O and H2/H2O, respectively, so that the chemical potential losses during their reactions with O2 at the cathode and H2 at the anode were minimized. More importantly, the electrochemical reversibility allows the H2/O2 reacted redox pairs to be easily regenerated through fuel cell discharging on catalyst-free carbon electrodes at a low overpotential and brings in the fuel cell both chemical and electrical rechargeability, thereby realizing integrated functions of electricity generation- storage as well as efficient operation (achieving an open-circuit potential of 0.96 V and a peak power density of 0.57 W/cm2, which are comparable to a conventional H2/air PEMFC) with catalyst-free carbon electrodes.

3.
Cancer Cell Int ; 24(1): 262, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048994

ABSTRACT

BACKGROUND: This study investigated the molecular mechanism of long intergenic non-protein coding RNA 1605 (LINC01605) in the process of tumor growth and liver metastasis of pancreatic ductal adenocarcinoma (PDAC). METHODS: LINC01605 was filtered out with specificity through TCGA datasets (related to DFS) and our RNA-sequencing data of PDAC tissue samples from Renji Hospital. The expression level and clinical relevance of LINC01605 were then verified in clinical cohorts and samples by immunohistochemical staining assay and survival analysis. Loss- and gain-of-function experiments were performed to estimate the regulatory effects of LINC01605 in vitro. RNA-seq of LINC01605-knockdown PDAC cells and subsequent inhibitor-based cellular function, western blotting, immunofluorescence and rescue experiments were conducted to explore the mechanisms by which LINC01605 regulates the behaviors of PDAC tumor cells. Subcutaneous xenograft models and intrasplenic liver metastasis models were employed to study its role in PDAC tumor growth and liver metastasis in vivo. RESULTS: LINC01605 expression is upregulated in both PDAC primary tumor and liver metastasis tissues and correlates with poor clinical prognosis. Loss and gain of function experiments in cells demonstrated that LINC01605 promotes the proliferation and migration of PDAC cells in vitro. In subsequent verification experiments, we found that LINC01605 contributes to PDAC progression through cholesterol metabolism regulation in a LIN28B-interacting manner by activating the mTOR signaling pathway. Furthermore, the animal models showed that LINC01605 facilitates the proliferation and metastatic invasion of PDAC cells in vivo. CONCLUSIONS: Our results indicate that the upregulated lncRNA LINC01605 promotes PDAC tumor cell proliferation and migration by regulating cholesterol metabolism via activation of the mTOR signaling pathway in a LIN28B-interacting manner. These findings provide new insight into the role of LINC01605 in PDAC tumor growth and liver metastasis as well as its value for clinical approaches as a metabolic therapeutic target in PDAC.

4.
Small ; 19(15): e2207092, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36631283

ABSTRACT

Controlling crystallization and grain growth is crucial for realizing highly efficient hybrid perovskite solar cells (PSCs). In this work, enhanced PSC photovoltaic performance and stability by accelerating perovskite crystallization and grain growth via 2D hexagonal boron nitride (hBN) nanosheet additives incorporated into the active perovskite layer are demonstrated. In situ X-ray scattering and infrared thermal imaging during the perovskite annealing process revealed the highly thermally conductive hBN nanosheets promoted the phase conversion and grain growth in the perovskite layer by facilitating a more rapid and spatially uniform temperature rise within the perovskite film. Complementary structural, physicochemical, and electrical characterizations further showed that the hBN nanosheets formed a physical barrier at the perovskite grain boundaries and the interfaces with charge transport layers, passivating defects, and retarding ion migration. As a result, the power conversion efficiency of the PSC is improved from 17.4% to 19.8%, along with enhanced device stability, retaining ≈90% of the initial efficiency even after 500 h ambient air storage. The results not only highlight 2D hBN as an effective additive for PSCs but also suggest enhanced thermal transport as one of the pathways for improved PSC performance by 2D material additives in general.

5.
Nanotechnology ; 34(17)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36652701

ABSTRACT

Perovskite solar cells (PSCs) have become one of the state-of-the-art photovoltaic technologies due to their facile solution-based fabrication processes combined with extremely high photovoltaic performance originating from excellent optoelectronic properties such as strong light absorption, high charge mobility, long free charge carrier diffusion length, and tunable direct bandgap. However, the poor intrinsic stability of hybrid perovskites under environmental stresses including light, heat, and moisture, which is often associated with high defect density in the perovskite, has limited the large-scale commercialization and deployment of PSCs. The use of process additives, which can be included in various subcomponent layers in the PSC, has been identified as one of the effective approaches that can address these issues and improve the photovoltaic performance. Among various additives that have been explored, two-dimensional (2D) materials have emerged recently due to their unique structures and properties that can enhance the photovoltaic performance and device stability by improving perovskite crystallization, defect passivation, and charge transport. Here, we provide a review of the recent progresses in 2D material additives for improving the PSC performance based on key representative 2D material systems, including graphene and its derivatives, transitional metal dichalcogenides, and black phosphorous, providing a useful guideline for further exploiting unique nanomaterial additives for more efficient and stable PSCs in the near future.

6.
J Vasc Res ; 59(6): 358-368, 2022.
Article in English | MEDLINE | ID: mdl-36412620

ABSTRACT

OBJECTIVE: Follicle-stimulating hormone (FSH) level changes may be another reason for increasing the risk of cardiovascular disease. In this study, we aimed to investigate the role of FSH in atherosclerosis and its underlying mechanism. METHODS: ApoE-/- mice were divided into 4 groups, namely, the sham group, bilaterally orchidectomized group, FSH group, and testosterone-only group. Blood lipid and hormone levels were tested, aorta Oil Red O staining; the levels of NF-κB, Akt, eNOS, and FSH receptors in the aorta were measured by Western blotting. Expression of VCAM-1 was detected via Western blotting and immunohistochemical staining. Human umbilical vein endothelial cells (HUVECs) were used to induce endothelial injury model by adding FSH, and the levels of NF-κB, Akt, eNOS, and FSHR were tested in HUVECs. RESULTS: FSH treatment exacerbated atherosclerotic lesions in ApoE-/- mice. Moreover, FSH could promote the expression of VCAM-1 protein in HUVECs, and this effect was possibly mediated by the activation of NF-κB, while NF-κB activation was further enhanced by the activation of the PI3K/Akt/eNOS pathway. FSH failed to activate Akt and NF-κB in the presence of the PI3K inhibitor LY294002 in HUVECs. CONCLUSION: FSH promoted the development of atherosclerosis by increasing VCAM-1 protein expression via activating PI3K/Akt/NF-κB pathway.


Subject(s)
Atherosclerosis , Prostatic Neoplasms , Male , Mice , Humans , Animals , NF-kappa B/metabolism , Follicle Stimulating Hormone/metabolism , Follicle Stimulating Hormone/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , Androgens/metabolism , Androgens/pharmacology , Androgen Antagonists/metabolism , Androgen Antagonists/pharmacology , Vascular Cell Adhesion Molecule-1/metabolism , Mice, Knockout, ApoE , Prostatic Neoplasms/metabolism , Atherosclerosis/metabolism , Human Umbilical Vein Endothelial Cells , Apolipoproteins E/genetics
7.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 51(3): 290-297, 2022 Jun 25.
Article in English | MEDLINE | ID: mdl-36207828

ABSTRACT

OBJECTIVE: To investigate the incidence, clinical characteristics, gene mutations and prognosis of fatty acid oxidation disorders (FAOD) in newborns in Chongqing. METHODS: Blood samples were collected from 35 374 newborns for screening of FAOD in the Neonatal Screening Center of Women and Children's Hospital of Chongqing Medical University from July 2020 to February 2022. The acylcarnitine spectrum was detected by tandem mass spectrometry, the positive children in primary screening were recalled within 2 weeks, and the diagnosis of FAOD was confirmed by urine organic acid measurement, blood biochemistry testing and genetic analysis. The confirmed children were given early intervention, treatment and followed-up. RESULTS: Among 35 374 newborns, there were 267 positive children in primary screening, with a positive rate of 0.75%. Five children with FAOD were diagnosed by gene detection, with an incidence rate of 1/7075. Among them, there were 3 cases of primary carnitine deficiency (PCD, 1/11 791), 1 case of short-chain acyl-CoA dehydrogenase deficiency (SCADD, 1/35 374) and 1 case of very long-chain acyl-CoA dehydrogenase deficiency (VLCADD, 1/35 374). The c.1400C>G and c.338G>A were the common mutations of SLC22A5 gene in 3 children with PCD, while c.621G>T was a novel mutation. There were no clinical manifestations during the follow-up period in 2 children with supplementation of L-carnitine. Another child with PCD did not follow the doctor's advice of L-carnitine treatment, and had acute attack at the age of 6 months. The child recovered after treatment, and developed normally during the follow-up. The detected ACADS gene mutations were c.417G>C and c.1054G>A in child with SCADD, who showed normal intelligence and physical development without any clinical symptoms. The mutations of ACADVL gene were c.1349G>A and c.1843C>T in child with VLCADD, who showed acute attack in the neonatal period and recovered after treatment; the child was fed with milk powder rich in medium-chain fatty acids and had normal development during the follow-up. CONCLUSIONS: The incidence of FAOD in Chongqing area is relatively high. PCD is the most common type, and the clinical phenotype of VLCADD is serious. After early diagnosis through neonatal screening, standardized treatment and management is followed, most of FAOD children can have good prognosis.


Subject(s)
Lipid Metabolism, Inborn Errors , Carnitine , Fatty Acids , Female , Follow-Up Studies , Humans , Infant, Newborn , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/epidemiology , Lipid Metabolism, Inborn Errors/genetics , Mutation , Neonatal Screening , Powders , Solute Carrier Family 22 Member 5/genetics
8.
BMC Genomics ; 22(1): 6, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33407091

ABSTRACT

BACKGROUND: DNA methylation (DNAm) profiling has emerged as a powerful tool for characterizing the placental methylome. However, previous studies have focused primarily on whole placental tissue, which is a mixture of epigenetically distinct cell populations. Here, we present the first methylome-wide analysis of first trimester (n = 9) and term (n = 19) human placental samples of four cell populations: trophoblasts, Hofbauer cells, endothelial cells, and stromal cells, using the Illumina EPIC methylation array, which quantifies DNAm at > 850,000 CpGs. RESULTS: The most distinct DNAm profiles were those of placental trophoblasts, which are central to many pregnancy-essential functions, and Hofbauer cells, which are a rare fetal-derived macrophage population. Cell-specific DNAm occurs at functionally-relevant genes, including genes associated with placental development and preeclampsia. Known placental-specific methylation marks, such as those associated with genomic imprinting, repetitive element hypomethylation, and placental partially methylated domains, were found to be more pronounced in trophoblasts and often absent in Hofbauer cells. Lastly, we characterize the cell composition and cell-specific DNAm dynamics across gestation. CONCLUSIONS: Our results provide a comprehensive analysis of DNAm in human placental cell types from first trimester and term pregnancies. This data will serve as a useful DNAm reference for future placental studies, and we provide access to this data via download from GEO (GSE159526), through interactive exploration from the web browser ( https://robinsonlab.shinyapps.io/Placental_Methylome_Browser/ ), and through the R package planet, which allows estimation of cell composition directly from placental DNAm data.


Subject(s)
Epigenesis, Genetic , Epigenome , DNA Methylation , Endothelial Cells , Female , Humans , Placenta/metabolism , Pregnancy
9.
Curr Microbiol ; 76(9): 982-987, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31168648

ABSTRACT

Members of marine Actinobacteria have been highly regarded as potentially important sources of antimicrobial compounds. Here, we isolated a strain of Actinobacteria, SZJ61, and showed that it inhibits the in vitro growth of fungi pathogenic to plants. This new isolate was identified as Streptomyces luteoverticillatus by morphological, biochemical and genetic analyses. Antifungal compounds were isolated from S. luteoverticillatus strain SZJ61 and characterized as carbazomycin B by nuclear magnetic resonance spectra. We then sequenced the genome of the S. luteoverticillatus SZJ61 strain, which consists of only one 7,367,863 bp linear chromosome that has a G+C content of 72.05%. Thirty-five putative biosynthetic gene clusters for secondary metabolites, including a variety of bioactive products, were found. Mining of the genome sequence information revealed the putative biosynthetic gene cluster of carbazomycin B. This genomic information is valuable for interpreting the biosynthetic mechanisms of diverse bioactive compounds that have potential applications in the pharmaceutical industry.


Subject(s)
Genome, Bacterial , Streptomyces/genetics , Streptomyces/metabolism , Antifungal Agents/chemistry , Antifungal Agents/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Composition , Carbazoles/chemistry , Carbazoles/metabolism , China , Geologic Sediments/microbiology , Multigene Family , Phylogeny , Streptomyces/classification , Streptomyces/isolation & purification
10.
Bioconjug Chem ; 29(2): 437-444, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29300459

ABSTRACT

Small molecule modified anticancer drug conjugates (SMMDCs) can self-assemble into nanoparticles (NPs) as therapeutic NP platforms for cancer treatment. Here we demonstrate that the XlogP and Hansen solubility parameters of paclitaxel (PTX) SMMDCs is essential for SMMDCs self-assembling into NPs. The amorphous state of PTX SMMDCs will also affect SMMDCs self-assembling into NPs. However, the antitumor activity of these PTX SMMDCs NPs decreased along with their XlogP values, indicating that a suitable XlogP value for designing the SMMDCs is important for self-assembling into NPs and for possessing antitumor activity. For higher level XlogP SMMDCs, a degradable linker should be considered in the design of SMMDCs to overcome the problem of lower antitumor activity. It is preferable that the hydrophilic groups in the SMMDCs should be present on the surface of self-assembling NPs.


Subject(s)
Antineoplastic Agents/chemistry , Nanoparticles/chemistry , Paclitaxel/analogs & derivatives , Small Molecule Libraries/chemistry , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Cell Survival/drug effects , Humans , Hydrophobic and Hydrophilic Interactions , MCF-7 Cells , Paclitaxel/pharmacology , Small Molecule Libraries/pharmacology , Solubility
11.
AAPS PharmSciTech ; 19(2): 934-940, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29079988

ABSTRACT

Here, the mesoporous silica (Sylysia 350) was selected as mesoporous material, hydroxypropyl methylcellulose (HPMC) was selected as crystallization inhibitor, and febuxostat (FBT) was selected as model drug, respectively. The FBT-Sylysia-HPMC nanomatrix (FBT@SHN) was prepared. The characteristics of FBT@SHN were investigated in vitro and in vivo. Our results indicated that the FBT in FBT@SHN was in amorphous form. The solubility and dissolution of FBT in FBT@SHN were significantly increased. The oral bioavailability of FBT in FBT@SHN was greatly improved 5.8-fold compared with that in FBT suspension. This nanomatrix could be used as a drug delivery platform for improving the oral bioavailability.


Subject(s)
Febuxostat/chemistry , Febuxostat/metabolism , Nanostructures/chemistry , Polymers/chemistry , Polymers/metabolism , Administration, Oral , Animals , Biological Availability , Crystallization , Drug Delivery Systems/methods , Febuxostat/administration & dosage , Gout Suppressants/administration & dosage , Gout Suppressants/chemistry , Gout Suppressants/metabolism , Hypromellose Derivatives/administration & dosage , Hypromellose Derivatives/chemistry , Hypromellose Derivatives/metabolism , Male , Methylcellulose/chemistry , Nanostructures/administration & dosage , Polymers/administration & dosage , Rats , Rats, Sprague-Dawley , Silicon Dioxide/administration & dosage , Silicon Dioxide/chemistry , Silicon Dioxide/metabolism , Solubility
12.
Microorganisms ; 12(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38399664

ABSTRACT

The plum rain season is a special climatic phenomenon in east Asia, which is characterized by persistent rainfall, a high temperature, and humidity, providing suitable environmental conditions for certain pathogenic bacteria, thus increasing the incidence of respiratory, gastrointestinal, and urinary diseases. However, studies on human opportunistic pathogenic bacteria communities during the plum rain season are still limited. In this study, the characteristics of human opportunistic pathogenic bacterial communities on daily necessities during the non-plum and plum rain seasons were investigated using high-throughput sequencing technology. The results revealed that the relative abundance of human opportunistic pathogenic bacteria was higher in the plum rain season (cotton cloth: 2.469%, electric bicycles: 0.724%, rice: 3.737%, and washbasins: 5.005%) than in the non-plum rain season (cotton cloth: 1.425%, electric bicycles: 0.601%, rice: 2.426%, and washbasins: 4.801%). Both temperature and relative humidity affected human opportunistic pathogenic bacterial communities. Stochastic processes dominated the assembly process of human opportunistic pathogenic bacterial communities, and undominated processes prevailed. The stability of the co-occurrence network was higher in the non-plum rain season than that in the plum rain season. In addition, the proportion of deterministic processes showed the same trend as the complexity of the co-occurrence network.

13.
Heliyon ; 10(13): e33581, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39091928

ABSTRACT

Background: Primary Carnitine Deficiency (PCD) is a potentially life-threatening autosomal recessive monogenic disorder arising from mutations in the organic cation transporter 2 (OCTN2) gene. Dilated cardiomyopathy (DCM) is a prevalent symptom associated with this condition, and episodes of metabolic disturbance may lead to sudden death. However, the pathogenic mechanism remains unclear. Here, we sought to investigate the response of cardiomyocytes and alterations in the intercellular communication in individuals with PCD DCM. Methods: The GSE211650 dataset was downloaded. Subsequently, modular analysis was performed using hdWGCNA. SCENIC was employed for transcription factor analysis. Monocle2 and SCP were applied to conduct trajectory inference and characterize dynamic features. CellChat was used to investigate intercellular interactions. Results: OCTN2-deficient cardiomyocytes displayed transcriptomic alterations indicative of reduced contractility, developmental abnormalities, and fibrosis. The reduced expression of genes encoding troponin, myosin, and calcium ion transporters may underlie the observed decrease in contractility. Suppressed Wnt signaling and downregulated transcription factors associated with myocardial development suggest potential developmental disturbances in cardiomyocytes. Growth arrest-specific 6 (GAS6) secreted by TNNC1 high cardiomyocytes is implicated in myocardial inflammation and fibrosis. Macrophages-derived secreted phosphoprotein 1 (SPP1) promotes the activation of fibroblasts. Furthermore, there was a reduction in neuronal genes in the OCTN2-deficient group. Conclusions: Our research has unveiled, for the first time, the responses of cardiomyocytes and alterations in the intercellular communication in PCD DCM, offering valuable insights for the precision treatment of this condition.

14.
Materials (Basel) ; 17(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38473590

ABSTRACT

Transition metals and their oxide compounds exhibit excellent chemical reactivity; however, their easy agglomeration and high cost limit their catalysis applications. In this study, an interpolation structure of a Myriophyllum verticillatum L. biochar-supported Mn/Mg composite (Mn/Mg@MV) was prepared to degrade triphenyl phosphate (TPhP) from wastewater through the activating periodate (PI) process. Interestingly, the Mn/Mg@MV composite showed strong radical self-producing capacities. The Mn/Mg@MV system degraded 93.34% TPhP (pH 5, 10 µM) within 150 min. The experimental results confirmed that the predominant role of IO3· and the auxiliary ·OH jointly contributed to the TPhP degradation. In addition, the TPhP pollutants were degraded to various intermediates and subsequent Mg mineral phase mineralization via mechanisms like interfacial processes and radical oxidation. DFT theoretical calculations further indicated that the synergy between Mn and Mg induced the charge transfer of the carbon-based surface, leading to the formation of an ·OH radical-enriched surface and enhancing the multivariate interface process of ·OH, IO3, and Mn(VII) to TPhP degradation, resulting in the further formation of Mg PO4 mineralization.

15.
Cancer Lett ; 598: 217130, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089666

ABSTRACT

PURPOSE: Cholesterol metabolism reprograming has been acknowledged as a novel feature of cancers. Pancreatic ductal adenocarcinoma (PDAC) is a cancer with a high demand of cholesterol for rapid growth. The underlying mechanism of how cholesterol metabolism homestasis are disturbed in PDAC is explored. EXPERIMENTAL DESIGN: The relevance between PDAC and cholesterol was confirmed in TCGA database. The expression and clinical association were discovered in TCGA and GEO datasets. Knockdown and overexpression of AGFG1 was adopted to perform function studies. RNA sequencing, cholesterol detection, transmission electron microscope, co-immunoprecipitation, and immunofluorescence et al. were utilized to reveal the underlying mechanism. RESULTS: AGFG1 was identified as one gene positively correlated with cholesterol metabolism in PDAC as revealed by bioinformatics analysis. AGFG1 expression was then found associated with poor prognosis in PDAC. AGFG1 knockdown led to decreased proliferation of tumor cells both in vitro and in vivo. By RNA sequencing, we found AGFG1 upregulated expression leads to enhanced intracellular cholesterol biosynthesis. AGFG1 knockdown suppressed cholesterol biosynthesis and an accumulation of cholesterol in the ER. Mechanistically, we confirmed that AGFG1 interacted with CAV1 to relocate cholesterol for the proceeding of cholesterol biosynthesis, therefore causing disorders in intracellular cholesterol metabolism. CONCLUSIONS: Our study demonstrates the tumor-promoting role of AGFG1 by disturbing cholesterol metabolism homestasis in PDAC. Our study has present a new perspective on cancer therapeutic approach based on cholerstrol metabolism in PDAC.

16.
Int J Neonatal Screen ; 10(2)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38651393

ABSTRACT

The aim of this study was to observe the outcomes of newborn screening (NBS) in a certain population by using next-generation sequencing (NGS) as a first-tier screening test combined with tandem mass spectrometry (MS/MS). We performed a multicenter study of 29,601 newborns from eight screening centers with NBS via NGS combined with MS/MS. A custom-designed panel targeting the coding region of the 142 genes of 128 inborn errors of metabolism (IEMs) was applied as a first-tier screening test, and expanded NBS using MS/MS was executed simultaneously. In total, 52 genes associated with the 38 IEMs screened by MS/MS were analyzed. The NBS performance of these two methods was analyzed and compared respectively. A total of 23 IEMs were diagnosed via NGS combined with MS/MS. The incidence of IEMs was approximately 1 in 1287. Within separate statistical analyses, the positive predictive value (PPV) for MS/MS was 5.29%, and the sensitivity was 91.3%. However, for genetic screening alone, the PPV for NGS was 70.83%, with 73.91% sensitivity. The three most common IEMs were methylmalonic academia (MMA), primary carnitine deficiency (PCD) and phenylketonuria (PKU). The five genes with the most common carrier frequencies were PAH (1:42), PRODH (1:51), MMACHC (1:52), SLC25A13 (1:55) and SLC22A5 (1:63). Our study showed that NBS combined with NGS and MS/MS improves the performance of screening methods, optimizes the process, and provides accurate diagnoses.

17.
Gene ; 927: 148735, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38944166

ABSTRACT

BACKGROUND: OCIAD2(Ovarian carcinoma immunoreactive antigen-like protein 2) is a protein reported in various cancers. However, the role of OCIAD2 has not been explored in pan-cancer datasets. The purpose of this research lies in analyzing the expression level and prognostic-related value of OCIAD2 in different human cancers, as well as revealing the underlying mechanism in specific cancer type (pancreatic adenocarcinoma, PAAD). METHODS: The correlation between OCIAD2 expression level and clinical relevance in different human cancers was investigated from bioinformatical perspective (GTEx and TCGA). The OCIAD2 expression level and clinical significance in PAAD were explored in GEO datasets and tissue microarray. Functional experiments were used to determine the OCIAD2 cell functions in vitro and in vivo. GSEA, western blot and immunohistochemistry were used to uncover the potential mechanism. RESULTS: OCIAD2 expression level was closely correlated with clinical relevance in many cancer types through pan-cancer analysis, and we found OCIAD2 was highly expressed in PAAD and associated with poorer prognosis. OCIAD2 acted as the promotor of Warburg effect and influenced PAAD cells proliferation, migration and apoptosis. Mechanistically, OCIAD2 upregulation may boost glycolysis in PAAD via activating the AKT signaling pathway in PAAD. CONCLUSIONS: In PAAD, OCIAD2 promotes Warburg effect via AKT signaling pathway and targeting cancer cells metabolic reprogramming could be a potential treatment.


Subject(s)
Neoplasm Proteins , Pancreatic Neoplasms , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Female , Humans , Male , Mice , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/metabolism , Apoptosis , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , Up-Regulation , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism
18.
Natl Sci Rev ; 11(8): nwae233, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39119219

ABSTRACT

Platinum-based intermetallic compounds (IMCs) play a vital role as electrocatalysts in a range of energy and environmental technologies, such as proton exchange membrane fuel cells. However, the synthesis of IMCs necessitates recombination of ordered Pt-M metallic bonds with high temperature driving, which is generally accompanied by side effects for catalysts' structure and performance. In this work, we highlight that semimetal atoms can trigger covalent interactions to break the synthesis-temperature limitation of platinum-based intermetallic compounds and benefit fuel-cell electrocatalysis. Attributed to partial fillings of p-block in semimetal elements, the strong covalent interaction of d-p π backbonding can benefit the recombination of ordered Pt-M metallic bonds (PtGe, PtSb and PtTe) in the synthesis process. Moreover, this covalent interaction in metallic states can further promote both electron transport and orbital fillings of active sites in fuel cells. The semimetal-Pt IMCs were obtained with a temperature 300 K lower than that needed for the synthesis of metal-Pt intermetallic compounds and reached the highest CO-tolerant oxygen reduction activity (0.794 A mg-1 at 0.9 V and 5.1% decay under CO poisoning) among reported electrocatalysts. We anticipate that semimetal-Pt IMCs will offer new insights for the rational design of advanced electrocatalysts for fuel cells.

19.
J Clin Oncol ; 42(9): 1077-1087, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38113419

ABSTRACT

PURPOSE: About a third of patients with relapsed or refractory classic Hodgkin lymphoma (r/r CHL) succumb to their disease after high-dose chemotherapy followed by autologous stem-cell transplantation (HDC/ASCT). Here, we aimed to describe spatially resolved tumor microenvironment (TME) ecosystems to establish novel biomarkers associated with treatment failure in r/r CHL. PATIENTS AND METHODS: We performed imaging mass cytometry (IMC) on 71 paired primary diagnostic and relapse biopsies using a marker panel specific to CHL biology. For each cell type in the TME, we calculated a spatial score measuring the distance of nearest neighbor cells to the malignant Hodgkin Reed Sternberg cells within the close interaction range. Spatial scores were used as features in prognostic model development for post-ASCT outcomes. RESULTS: Highly multiplexed IMC data revealed shared TME patterns in paired diagnostic and early r/r CHL samples, whereas TME patterns were more divergent in pairs of diagnostic and late relapse samples. Integrated analysis of IMC and single-cell RNA sequencing data identified unique architecture defined by CXCR5+ Hodgkin and Reed Sternberg (HRS) cells and their strong spatial relationship with CXCL13+ macrophages in the TME. We developed a prognostic assay (RHL4S) using four spatially resolved parameters, CXCR5+ HRS cells, PD1+CD4+ T cells, CD68+ tumor-associated macrophages, and CXCR5+ B cells, which effectively separated patients into high-risk versus low-risk groups with significantly different post-ASCT outcomes. The RHL4S assay was validated in an independent r/r CHL cohort using a multicolor immunofluorescence assay. CONCLUSION: We identified the interaction of CXCR5+ HRS cells with ligand-expressing CXCL13+ macrophages as a prominent crosstalk axis in relapsed CHL. Harnessing this TME biology, we developed a novel prognostic model applicable to r/r CHL biopsies, RHL4S, opening new avenues for spatial biomarker development.


Subject(s)
Hodgkin Disease , Humans , Hodgkin Disease/drug therapy , Tumor Microenvironment , Ecosystem , Neoplasm Recurrence, Local , Treatment Outcome , Recurrence
20.
Nutr Diabetes ; 13(1): 21, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37968264

ABSTRACT

BACKGROUND AND AIMS: Sarcopenia is associated with worse prognosis for non-alcoholic fatty liver disease (NAFLD). However, disease progression in the MAFLD-related sarcopenia is largely unknown. We aimed to clarify the relationship between MAFLD and/or sarcopenia with mortality and liver fibrosis in the real world. METHODS: A total of 13,692 individuals were selected from the third National Health and Nutrition Examination Surveys and linked mortality until December 2019. MAFLD is diagnosed based on a radiologically diagnosed hepatic steatosis and the presence of any one of the following three conditions: overweight/obesity, diabetes mellitus (DM), or metabolic dysregulation. Sarcopenia is defined by weight-adjusted skeletal muscle mass. RESULTS: The mean age was 43.7 ± 15.97 years, and 47.3% of the individuals were male. MAFLD was diagnosed in 4207/13,692 (30.73%) participants, and the proportion of sarcopenic was 19.42% amongst subjects with MAFLD. The mean follow-up duration was of 23.7 ± 7.62 years. MAFLD (aHR 1.152, 95% CI 1.070-1.241) and sarcopenia (aHR 1.123, 95% CI 1.042-1.210) were related to increased all-cause mortality in MAFLD after adjustment for age, sex, race, marital status, education, and smoking. Stratified analysis revealed that MAFLD and sarcopenia additively increased the risk of mortality (aHR 1.247, 95% CI 1.132-1.373) and liver fibrosis (aOR 2.296, 95% CI 1.718-3.069 assessed by NFS score >0.676; aOR 2.218, 95% CI 1.788-2.752 assessed by FIB-4 score >1.3) in fully adjusted models (P < 0.001 for all). CONCLUSION: Sarcopenia in individuals with MAFLD portends increased mortality and significant liver fibrosis. Novel therapeutic strategies targeting at increasing skeletal muscle mass should be explored for patients with MAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Sarcopenia , Humans , Male , Adult , Middle Aged , Female , Non-alcoholic Fatty Liver Disease/complications , Educational Status , Liver Cirrhosis/complications , Obesity/complications
SELECTION OF CITATIONS
SEARCH DETAIL