Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 376
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35165193

ABSTRACT

Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.


Subject(s)
Rivers/chemistry , Water Pollution, Chemical/analysis , Water Pollution, Chemical/prevention & control , Ecosystem , Environmental Exposure , Environmental Monitoring , Humans , Pharmaceutical Preparations , Wastewater/analysis , Wastewater/chemistry , Water/analysis , Water/chemistry , Water Pollutants, Chemical/analysis
2.
Environ Sci Technol ; 58(1): 121-131, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38118121

ABSTRACT

The COVID-19 pandemic has resulted in huge amounts of face masks worldwide. However, there is a lack of awareness on the additives and their potential risk to aquatic ecosystems of face masks. To address this issue, the additives and their toxicity in 13 face masks (e.g., polypropylene, polyethylene, and polylactic acid) were determined using nontarget analysis and bioassays. A total of 826 organic additives including intermediates (14.8%), surfactants (9.3%), plasticizers (8.2%), and antioxidants (6.1%) were tentatively identified, with 213 compounds being assigned confidence levels of 1 and 2. Interestingly, polylactic acid masks contained more additives than most polypropylene or polyethylene masks. Among these additives, the concentration of tris(2-ethylhexyl) phosphate in masks was 9.4-978.2 ng/g with a 100% detection frequency. Furthermore, 13 metals such as zinc (up to 202.0 µg/g), copper (32.5 µg/g), and chromium (up to 5.7 µg/g) were detected in the face masks. The methanol extracts of the masks showed the developmental toxicity, swimming behavior, and/or endocrine disruption in embryos/larvae of Oryzias melastigma. The findings demonstrate that face masks contain various toxic additives to marine medaka, which deserves close attention to pollution by face masks.


Subject(s)
Oryzias , Water Pollutants, Chemical , Animals , Humans , Ecosystem , Masks , Pandemics , Polypropylenes , Polyethylenes
3.
Environ Sci Technol ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900493

ABSTRACT

Rubber-derived chemicals (RDCs) originating from tire and road wear particles are transported into road stormwater runoff, potentially threatening organisms in receiving watersheds. However, there is a lack of knowledge on time variation of novel RDCs in runoff, limiting initial rainwater treatment and subsequent rainwater resource utilization. In this study, we investigated the levels and time-concentration profiles of 35 target RDCs in road stormwater runoff from eight functional areas in the Greater Bay Area, South China. The results showed that the total concentrations of RDCs were the highest on the expressway compared with other seven functional areas. N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), 6PPD-quinone, benzothiazole, and 1,3-diphenylguanidine were the top four highlighted RDCs (ND-228840 ng/L). Seasonal and spatial differences revealed higher RDC concentrations in the dry season as well as in less-developed regions. A lag effect of reaching RDC peak concentrations in road stormwater runoff was revealed, with a lag time of 10-90 min on expressways. Small-intensity rainfall triggers greater contamination of rubber-derived chemicals in road stormwater runoff. Environmental risk assessment indicated that 35% of the RDCs posed a high risk, especially PPD-quinones (risk quotient up to 2663). Our findings contribute to a better understanding of managing road stormwater runoff for RDC pollution.

4.
Environ Sci Technol ; 58(14): 6370-6380, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38497719

ABSTRACT

The discovery of the significant lethal impacts of the tire additive transformation product N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-Q) on coho salmon has garnered global attention. However, the bioaccumulation and trophic transfer of tire additives and their transformation products (TATPs) within food webs remain obscure. This study first characterized the levels and compositions of 15 TATPs in the Pearl River Estuary, estimated their bioaccumulation and trophic transfer potential in 21 estuarine species, and identified priority contaminants. Our observations indicated that TATPs were prevalent in the estuarine environment. Eight, six, seven, and 10 TATPs were first quantified in the shrimp, sea cucumber, snail, and fish samples, with total mean levels of 45, 56, 64, and 67 ng/g (wet weight), respectively. N,N'-Diphenyl-p-phenylenediamine (DPPD) and N,N'-bis(2-methylphenyl)-1,4-benzenediamine (DTPD) exhibited high bioaccumulation. Significant biodilution was only identified for benzothiazole, while DPPD and DTPD displayed biomagnification trends based on Monte Carlo simulations. The mechanisms of bioaccumulation and trophodynamics of TATPs could be explained by their chemical hydrophobicity, molecular mass, and metabolic rates. Based on a multicriteria scoring technique, DPPD, DTPD, and 6PPD-Q were characterized as priority contaminants. This work emphasizes the importance of biomonitoring, particularly for specific hydrophobic tire additives.


Subject(s)
Food Chain , Phenylenediamines , Water Pollutants, Chemical , Animals , Bioaccumulation , Environmental Monitoring , Water Pollutants, Chemical/analysis
5.
Bull Environ Contam Toxicol ; 112(4): 51, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38556558

ABSTRACT

Esketamine (ESK) is the S-enantiomer of ketamine racemate (a new psychoactive substance) that can result in illusions, and alter hearing, vision, and proprioception in human and mouse. Up to now, the neurotoxicity caused by ESK at environmental level in fish is still unclear. This work studied the effects of ESK on behaviors and transcriptions of genes in dopamine and GABA pathways in zebrafish larvae at ranging from 12.4 ng L- 1 to 11141.1 ng L- 1 for 7 days post fertilization (dpf). The results showed that ESK at 12.4 ng L- 1 significantly reduced the touch response of the larvae at 48 hpf. ESK at 12.4 ng L- 1 also reduced the time and distance of larvae swimming at the outer zone during light period, which implied that ESK might potentially decrease the anxiety level of larvae. In addition, ESK increased the transcription of th, ddc, drd1a, drd3 and drd4a in dopamine pathway. Similarly, ESK raised the transcription of slc6a1b, slc6a13 and slc12a2 in GABA pathway. This study suggested that ESK could affect the heart rate and behaviors accompanying with transcriptional alterations of genes in DA and GABA pathways at early-staged zebrafish, which resulted in neurotoxicity in zebrafish larvae.


Subject(s)
Dopamine , Ketamine , Humans , Animals , Mice , Dopamine/metabolism , Dopamine/pharmacology , Zebrafish/genetics , Zebrafish/metabolism , Ketamine/metabolism , Ketamine/pharmacology , Larva , gamma-Aminobutyric Acid/metabolism , gamma-Aminobutyric Acid/pharmacology
6.
Environ Sci Technol ; 57(8): 3280-3290, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36795899

ABSTRACT

Bisphenol 4-[1-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexyl] phenol (BPTMC), as a substitute for bisphenol A, has been detected in environments. However, the ecotoxicological data of BPTMC are extremely scarce. Here, the lethality, developmental toxicity, locomotor behavior, and estrogenic activity of BPTMC at different concentrations (0.25-2000 µg/L) in marine medaka (Oryzias melastigma) embryos were examined. In addition, the in silico binding potentials of O. melastigma estrogen receptors (omEsrs) with BPTMC were assessed by docking study. Low-concentration BPTMC exposure (including an environmentally relevant concentration, 0.25 µg/L) resulted in stimulating effects, including hatching rate, heart rate, malformation rate, and swimming velocity. However, elevated concentrations of BPTMC led to an inflammatory response, changed heart rate and swimming velocity in the embryos and larvae. In the meantime, BPTMC (including 0.25 µg/L) altered the concentrations of estrogen receptor, vitellogenin, and endogenous 17 ß-estradiol as well as the transcriptional levels of estrogen-responsive genes in the embryos or/and larvae. Furthermore, elaborate tertiary structures of omEsrs were built by ab initio modeling, and BPTMC exerted potent binding potential with three omEsrs with -47.23, -49.23, and -50.30 kJ/mol for Esr1, Esr2a, and Esr2b, respectively. This work suggests that BPTMC has potent toxicity and estrogenic effects in O. melastigma.


Subject(s)
Oryzias , Water Pollutants, Chemical , Animals , Oryzias/physiology , Estrone/metabolism , Estrogens/metabolism , Phenols/toxicity , Receptors, Estrogen/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
7.
Environ Sci Technol ; 57(36): 13384-13396, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37651267

ABSTRACT

Imidacloprid (IMI) and thiamethoxam (THM) are ubiquitous in aquatic ecosystems. Their negative effects on parental fish are investigated while intergenerational effects at environmentally relevant concentrations remain unclear. In this study, F0 zebrafish exposed to IMI and THM (0, 50, and 500 ng L-1) for 144 days post-fertilization (dpf) was allowed to spawn with two modes (internal mating and cross-mating), resulting in four types of F1 generations to investigate the intergenerational effects. IMI and THM affected F0 zebrafish fecundity, gonadal development, sex hormone and VTG levels, with accumulations found in F0 muscles and ovaries. In F1 generation, paternal or maternal exposure to IMI and THM also influenced sex hormones levels and elevated the heart rate and spontaneous movement rate. LncRNA-mRNA network analysis revealed that cell cycle and oocyte meiosis-related pathways in IMI groups and steroid biosynthesis related pathways in THM groups were significantly enriched in F1 offspring. Similar transcriptional alterations of dmrt1, insl3, cdc20, ccnb1, dnd1, ddx4, cox4i1l, and cox5b2 were observed in gonads of F0 and F1 generations. The findings indicated that prolonged paternal or maternal exposure to IMI and THM could severely cause intergenerational toxicity, resulting in developmental toxicity and endocrine-disrupting effects in zebrafish offspring.


Subject(s)
Maternal Exposure , Zebrafish , Animals , Female , Humans , Thiamethoxam , Ecosystem
8.
Environ Sci Technol ; 57(20): 7809-7817, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37155686

ABSTRACT

The physicochemical exchange dynamics between the solid and solution phases of per- and polyfluoroalkyl substances (PFAS) in soils needs to be better understood. This study employed an in situ tool, diffusive gradients in thin films (DGT), to understand the distribution and exchange kinetics of five typical PFAS in four soils. Results show a nonlinear relationship between the PFAS masses in DGT and time, implying that PFAS were partially supplied by the solid phase in all of the soils. A dynamic model DGT-induced fluxes in soils/sediments (DIFS) was used to interpret the results and derive the distribution coefficients for the labile fraction (Kdl), response time (tc), and adsorption/desorption rates (k1 and k-1). The larger labile pool size (indicated by Kdl) for the longer chain PFAS implies their higher potential availability. The shorter chain PFAS tend to have a larger tc and relatively smaller k-1, implying that the release of these PFAS in soils might be kinetically limited but not for more hydrophobic compounds, such as perfluorooctanesulfonic acid (PFOS), although soil properties might play an important role. Kdl ultimately controls the PFAS availability in soils, while the PFAS release from soils might be kinetically constrained (which may also hold for biota uptake), particularly for more hydrophilic PFAS.


Subject(s)
Soil Pollutants , Soil , Soil/chemistry , Diffusion , Kinetics , Biological Transport , Environmental Monitoring/methods
9.
Anal Bioanal Chem ; 414(22): 6541-6555, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35819475

ABSTRACT

The presence of benzothiazoles (BTHs) and organic ultraviolet filters (UV filters) in aquatic ecosystems has emerged as a significant environmental issue, requiring urgent and efficient determination methods. A new, rapid, and sensitive determination method using gas chromatography triple quadrupole mass spectrometer (GC-MS/MS) was developed for the simultaneous extraction and analysis of 10 commonly used BTHs and 10 organic UV filters in surface water, wastewater, sediment, and sludge. For aqueous samples, solid-phase extraction (SPE) method was employed with optimizing of SPE cartridge type, pH, and elution solvent. For solid samples, ultrasonic extraction-solid-phase extraction purification (UE-SPE) and pressurized liquid extraction (PLE) methods were compared. And extraction conditions for ultrasonic extraction method (extraction solvents and extraction times) and PLE method (extraction temperatures and extraction cycles) were optimized. The limits of quantification for the 20 target compounds in surface water and wastewater were 0.01-2.12 ng/L and 0.05-6.14 ng/L, while those for sediment and sludge with UE-SPE method were 0.04-5.88 ng/g and 0.22-6.61 ng/g, respectively. Among the 20 target compounds, the recoveries ranged from 70 to 130% were obtained for 16, 15, 15, and 15 analytes in the matrix-spiked samples of surface water, wastewater, sediment, and sludge with three levels, respectively. And the precision was also acceptable with relative standard deviation (RSD) below 20% for all analytes. The developed methods were applied for the determination and quantification of target compounds in surface water, sediment, wastewater, and sludge samples collected from two wastewater treatment plants (WWTPs) and the Pearl River in Guangzhou, China. BTHs were frequently detected in surface water and wastewater, while UV filters were mainly found in sediment and sludge. Benzotriazole (BT) and 2-hydroxybenzothiazole (2-OH-BTH) were the two major BTHs in influent wastewater and surface water, respectively, with concentrations up to 966 and 189 ng/L. As for sediment and sludge, 2-(2'-hydroxy-5'-octylphenyl)-benzotriazole (UV-329) was a predominant chemical, detected at concentrations of 111 and 151 ng/g, respectively.


Subject(s)
Sewage , Water Pollutants, Chemical , Benzothiazoles/analysis , Ecosystem , Gas Chromatography-Mass Spectrometry , Sewage/analysis , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods , Wastewater/analysis , Water/chemistry , Water Pollutants, Chemical/analysis
10.
Ecotoxicol Environ Saf ; 229: 113063, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34890985

ABSTRACT

Antibiotic residues and antibiotic resistance have been widely reported in aquatic environments. Hydrolysis of antibiotics is one of the important environmental processes. Here we investigated the hydrolytic transformation of four tetracycline antibiotics i.e. tetracycline (TC), chlortetracycline (CTC), oxytetracycline (OTC) and doxycycline (DC) under different environmental conditions, and determined their parents and transformation products in the wastewater treatment plants (WWTPs). The results showed that the hydrolysis of the four tetracyclines followed first-order reaction kinetics, and the acid-catalyzed hydrolysis rates were significantly lower than the base-catalyzed and neutral pH hydrolysis rates. The effect of temperature on tetracycline hydrolysis was quantified by Arrhenius equation, with Ea values ranged from 42.0 kJ mol-1 to 77.0 kJ mol-1 at pH 7.0. In total, nine, six, eight and nine transformation products at three different pH conditions were identified for TC, CTC, OTC and DC, respectively. The main hydrolysis pathways involved the epimerization/isomerization, and dehydration. According to the mass balance analysis, 4-epi-tetracycline and iso-chlortetracycline were the main hydrolytic products for TC and CTC, respectively. The 2 tetracyclines and 4 hydrolysis products were found in the sludge samples in two WWTPs, with concentrations from 15.8 ng/g to 1418 ng/g. Preliminary toxicity evaluation for the tetracyclines and their hydrolysis products showed that some hydrolysis products had higher predicted toxicity than their parent compounds. These results suggest that the hydrolysis products of tetracycline antibiotics should also be included in environmental monitoring and risk assessment.


Subject(s)
Tetracycline , Water Purification , Anti-Bacterial Agents , Hydrolysis , Kinetics , Tetracycline/toxicity , Tetracyclines
11.
Ecotoxicology ; 31(7): 1111-1119, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35841472

ABSTRACT

The concentrations, distribution, and ecological risks of 24 typical antibiotics in Hong Kong rivers and seawater were investigated using high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UHPLC-EI-MS/MS). The results showed that the select antibiotics were widely distributed in the study area. Among the target antibiotics, the detection rate of tetracyclines (TCs) was 100%, which indicated the widespread use of TCs in Hong Kong. The detection rates of sulfonamides (SAs) (57.1-100%), fluoroquinolones (FQs) (78.6-100%), roxithromycin (RTM) (50%) and novobiocin (NOV) (50%) were all above 50%. Compared with river water (7.9-114.26 ng/L, medium: 27.7 ng/L), concentrations of the most antibiotics in seawater (9.5-32.0 ng/L, medium: 13.3 ng/L) were lower; seawater concentrations were similar to those reported from other coastal cities, such as Guangzhou and Zhuhai in China, which implied that the source of marine antibiotic pollution may be the nearby rivers, and the vastness of the ocean causes environmental dilution of antibiotics. According to the ratio of the measured environmental concentration (MEC) to the predicted no-effect concentration (PNEC), ofloxacin (OFX) (average risk quotient: 1.94E-01) and ciprofloxacin (CFX) (average risk quotient: 3.53E-01) posed medium to high ecological risk in most places, whereas other antibiotics posed lower risk. In Yuen Long, where there were many livestock farms nearby, the detected concentration of antibiotics was higher, indicating that livestock wastewater may be the major reason for the increase in antibiotic levels in this area. In general, the detected concentration of antibiotics in Hong Kong was lower than that in the United States, Japan, the United Kingdom, and coastal areas of China, but the long-term existence of low concentrations of antibiotics also poses great risks. According to the risk assessment, Hong Kong should pay more attention to the use of FQs (e.g., OFX and CFX) in the future.


Subject(s)
Anti-Bacterial Agents , Water Pollutants, Chemical , Anti-Bacterial Agents/analysis , China , Environmental Monitoring/methods , Fluoroquinolones/analysis , Risk Assessment , Rivers/chemistry , Tandem Mass Spectrometry , Water/analysis , Water Pollutants, Chemical/analysis
12.
J Environ Manage ; 314: 115069, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35447450

ABSTRACT

Applying pesticides can result in emissions of volatile organic compounds (VOCs), but little is known about VOC emission characteristics and the quantities in particular regions. We investigated the use of pesticides in China based on a large-scale survey of 330 counties in 31 provinces and evaluated the national pesticide VOC emission potentials based on thermogravimetric analysis of 1930 commercial pesticides. The results showed that herbicides were the most extensively used pesticide category in China, accounting for 43.47%; emulsifiable concentrate (EC), suspension concentrate, and wettable powder were the dominant pesticide formulations, with proportions of 26.75%, 17.68%, and 17.31%, respectively. The VOC emission potential coefficient (EP) of the liquid formulations was higher than the solid formulations, and the maximum mean EP was 45.59% for EC and the minimum was 0.76% for WP. Among 437 high-VOC pesticide products used in China, EC accounted for 83.52%, and 16.93% of those contained abamectin. The total VOC emissions derived from commercial pesticides in China were 280 kt (kilotons) in 2018, and 65.35% of the contribution was derived from EC. Shandong, Hunan, and Henan were the three provinces with the highest pesticide VOC emissions (>21 kt/y). The emission rate of VOCs from pesticides was 24.80 t/d in China, which was higher than in San Joaquin Valley, California. These findings suggest that some comprehensive measures (e.g., perfecting pesticide management policy, strict supervision for pesticide production and use, and strengthening pesticide reduction publicity) should be taken to reduce VOC emissions from pesticide applications.


Subject(s)
Air Pollutants , Ozone , Pesticides , Volatile Organic Compounds , Air Pollutants/analysis , China , Environmental Monitoring , Ozone/analysis , Volatile Organic Compounds/analysis
13.
J Environ Sci (China) ; 121: 90-97, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35654519

ABSTRACT

The passive sampling technique, diffusive gradients in thin films (DGT) has attracted increasing interests as an in-situ sampler for organic contaminants including per- and polyfluoroalkyl substances (PFAS). However, its effectiveness has been questioned because of the small effective sampling area (3.1 cm2). In this study, we developed a DGT probe for rapid sampling of eight PFAS in waters and applied it to a water-sediment system. It has a much larger sampling area (27 cm2) and as a result lower method quantification limits (0.15 - 0.21 ng/L for one-day deployment and 0.02 - 0.03 ng/L for one-week deployment) and much higher (by > 10 factors) sampling rate (100 mL/day) compared to the standard DGT (piston configuration). The sampler could linearly accumulate PFAS from wastewater, was sensitive enough even for a 24 hr deployment with performance comparable to grab sampling (500 mL). The DGT probe provided homogeneous sampling performance along the large exposure area. The use of the probe to investigate distributions of dissolved PFAS around the sediment-water interface was demonstrated. This work, for the first time, demonstrated that the DGT probe is a promising monitoring tool for trace levels of PFAS and a research tool for studying their distribution, migration, and fate in aquatic environments including the sediment-water interface.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Environmental Monitoring/methods , Wastewater/analysis , Water , Water Pollutants, Chemical/analysis
14.
Environ Sci Technol ; 55(18): 12459-12470, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34514800

ABSTRACT

Agricultural plastic films have been proven highly advantageous, but they also cause pollution of plastic debris and associated chemicals. Phthalates (phthalic acid esters, PAEs), an important additive of agricultural films, can be released and contaminate the environment. Here, we analyzed the agricultural plastic usage and assessed plastic debris in China and developed a method to estimate PAE emissions from agricultural films. Additionally, the environmental fate of PAEs was evaluated using a fugacity-based multimedia model. The agricultural plastic film usage in China in 2017 was 2,528,600 tons. After agricultural film recycling and water erosion, the plastic debris amount was estimated as 465,016 tons. The water erosion process carried 4329 tons of plastic debris into the aquatic environment. During its lifetime, the agricultural film released a total of 91.5 tons of two typical types of PAEs. PAEs from the mulching film would mostly be removed through degradation, while those from the greenhouse film accumulate in vegetables. Populated regions exhibited more serious PAE pollution in vegetables but with no immediate health risks. The model was well evaluated using comparable measured concentrations and uncertainty analysis based on the Monte Carlo method. The findings from this study demonstrate the serious agricultural plastic pollution problem and associated PAE contamination in China.


Subject(s)
Phthalic Acids , Soil Pollutants , China , Esters , Plastics , Soil Pollutants/analysis
15.
Environ Res ; 194: 110678, 2021 03.
Article in English | MEDLINE | ID: mdl-33417911

ABSTRACT

5-methylbenzotriazole (5-TTri) and 5-chlorobenzotriazole (CBT) are two benzotriazole derivatives widely used in various industrial and domestic applications. This paper reports on the photochemical behaviour of 5-TTri and CBT in aqueous solutions under UV radiation at 254 nm and the influences of pH, salinity, metal species and humic acid (HA) on their photo-transformation processes. The photolysis of 5-TTri and CBT under the exposure to UV light were found to follow the first-order reaction kinetic in all cases with half-lives ranging from 7.1 h to 24.3 h for 5-TTri and 5.1 h-20.5 h for CBT in various aqueous solutions containing metal ions and HA. The photolysis rates for both 5-TTri and CBT were strongly dependent on the solution pH value, and decreased with increasing solution pH. Salinity, metal species Cu2+ and Fe3+, and especially HA had inhibitory effects on the photolysis of 5-TTri and CBT under UV light irradiation at 254 nm. We proposed the tentative photo transformation schemes for both 5-TTri and CBT, which involved two photoproducts (4-methylaniline and N, N-diethylaniline- p-toluidine) and three photoproducts (4-chloroaniline, Aniline and 2,6-diethylaniline), respectively, via N-N and N-NH bond scission and dechlorination process.


Subject(s)
Humic Substances , Water Pollutants, Chemical , Humic Substances/analysis , Hydrogen-Ion Concentration , Photolysis , Salinity , Ultraviolet Rays , Water Pollutants, Chemical/analysis
16.
Environ Res ; 201: 111541, 2021 10.
Article in English | MEDLINE | ID: mdl-34147468

ABSTRACT

Imidacloprid (IMI) is existence in the soil environment with a half-life habitually more than hundred days. This study targets to determine, identify and characterize photo-biodegradation bacteria from neonicotinoids (NEOs) contaminated agricultural field soils. The sub-surface soil had a higher level contamination of NEOs, in specifically greater concentration of IMI (3445.2 ± 0.09 µg/g) and thiacloprid (4084.4 ± 0.09 µg/g) has been found. Three bacteria Ralstonia pickettii (PBMS-2), Bacillus cereus (PBMS-3) and Shinella zoogloeoides (PBMS-4) was identified from soil-free stable enrichment cultures. The biodegradability of IMI (50 mg L-1) by three bacteria under different colors of light-emitting diodes (LEDs) with a constant 12 V power supply was tested and found that the blue-LEDs had greatest efficiency in supporting biodegradation of IMI which is called photo-biodegradation. In specific, the rate of photo-biodegradation of IMI by Ralstonia pickettii (87%), Bacillus cereus (80%) and Shinella zoogloeoides (80%) was measured. Besides this study also tested the effect of aeration (rpm), pH, and temperature on photo-biodegradation of IMI. There were seven intermediate metabolites were measured as biodegradation products of IMI under photo-biodegradation conditions and they are; IMI-urea, IMI-desnitro, 6-chloronicotinic acid, 6-hydroxy nicotinic acid, IMI- aminoguanidine, IMI-nitrosoguanidine and 4,5-hydroxy IMI, these metabolites are may non-toxic to the environment.


Subject(s)
Insecticides , Rhizobiaceae , Neonicotinoids , Nitro Compounds
17.
Ecotoxicol Environ Saf ; 219: 112297, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33991934

ABSTRACT

The pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major challenge to health systems worldwide. Recently, numbers of epidemiological studies have illustrated that climate conditions and air pollutants are associated with the COVID-19 confirmed cases worldwide. Researches also suggested that the SARS-CoV-2 could be detected in fecal and wastewater samples. These findings provided the possibility of preventing and controlling the COVID-19 pandemic from an environmental perspective. With this review, the main purpose is to summarize the relationship between the atmospheric and wastewater environment and COVID-19. In terms of the atmospheric environment, the evidence of the relationship between atmospheric environment (climate factors and air pollution) and COVID-19 is growing, but currently available data and results are various. It is necessary to comprehensively analyze their associations to provide constructive suggestions in responding to the pandemic. Recently, large numbers of studies have shown the widespread presence of this virus in wastewater and the feasibility of wastewater surveillance when the pandemic is ongoing. Therefore, there is an urgent need to clarify the occurrence and implication of viruses in wastewater and to understand the potential of wastewater-based epidemiology of pandemic. Overall, environmental perspective-based COVID-19 studies can provide new insight into pandemic prevention and control, and minimizes the economic cost for COVID-19 in areas with a large outbreak or a low economic level.


Subject(s)
COVID-19/epidemiology , Pandemics , Wastewater-Based Epidemiological Monitoring , Wastewater/virology , Air Pollution , Climate , Humans , SARS-CoV-2/isolation & purification
18.
Ecotoxicol Environ Saf ; 208: 111629, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396149

ABSTRACT

As an alternative to volatile organic solvents, ionic liquids (ILs) are known as "green solvents", and widely used in industrial applications. However, due to their high solubility and stability, ILs have tendency to persist in the water environment, thus having potential negative impacts on the aquatic ecosystem. For assessing the environmental risks of ILs, a fundamental understanding of the toxic effects and mechanisms of ILs is needed. Here we evaluated the cytotoxicity of 1-methyl-3-decylimidazolium chloride ([C10mim]Cl) and elucidated the main toxic mechanism of [C10mim]Cl in human cervical carcinoma (Hela) cells. Microstructural analysis revealed that [C10mim]Cl exposure caused the cell membrane breakage, swollen and vacuolated mitochondria, and spherical cytoskeletal structure. Cytotoxicity assays found that [C10mim]Cl exposure increased ROS production, decreased mitochondrial membrane potential, induced cell apoptosis and cell cycle arrest. These results indicated that [C10mim]Cl could induce damage to cellular membrane structure, affect the integrity of cell ultrastructure, cause the oxidative damage and ultimately lead to the inhibition of cell proliferation. Moreover, alterations of biochemical information including the increased ratios of unsaturated fatty acid and carbonyl groups to lipid, and lipid to protein, and the decreased ratios of Amide I to Amide II, and α-helix to ß-sheet were observed in [C10mim]Cl treated cells, suggesting that [C10mim]Cl could affect the structure of membrane lipid alkyl chain and cell membrane fluidity, promote the lipid peroxidation and alter the protein secondary structure. The findings from this work demonstrated that membrane structure is the key target, and membrane damage is involved in [C10mim]Cl induced cytotoxicity.


Subject(s)
Hazardous Substances/toxicity , Ionic Liquids/toxicity , Cell Membrane/drug effects , Ecosystem , HeLa Cells , Humans , Imidazolines/toxicity , Mitochondria , Protein Structure, Secondary , Solvents
19.
Ecotoxicol Environ Saf ; 227: 112917, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34678628

ABSTRACT

Imidacloprid (IMI) and thiamethoxam (THM) are two commonly applied neonicotinoid insecticides. IMI and THM could cause negative impacts on non-target organisms like bees. However, the information about neurotoxicity of IMI and THM in fish is still scarce. Here we investigated the effects of IMI and THM on locomotor behavior, AChE activity, and transcription of genes related to synaptic transmission in zebrafish exposed to IMI and THM with concentrations of 50 ng L-1 to 50,000 ng L-1 at 14 day post fertilization (dpf), 21 dpf, 28 dpf and 35 dpf. Our results showed that IMI and THM significantly influenced the locomotor activity in larvae at 28 dpf and 35 dpf. THM elevated AChE activity at 28 dpf. The qPCR data revealed that IMI and THM affected the transcription of marker genes belonging to the synapse from 14 dpf to 35 dpf. Furthermore, IMI and THM mainly affected transcription of key genes in γ-aminobutyric acid, dopamine and serotonin pathways in larvae at 28 dpf and 35 dpf. These results demonstrated the neurotoxicity of IMI and THM in zebrafish. The findings from this study suggested that IMI and THM in the aquatic environment may pose potential risks to fish fitness and survival.


Subject(s)
Insecticides , Water Pollutants, Chemical , Animals , Bees , Insecticides/analysis , Insecticides/toxicity , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Synaptic Transmission , Thiamethoxam , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Zebrafish/genetics
20.
Ecotoxicol Environ Saf ; 227: 112908, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34673415

ABSTRACT

Incomplete removal of antibiotics and antibiotic resistance genes (ARGs) has often been reported in wastewater treatment plants. More efficient treatment processes are needed to reduce their risks to the environment. Herein, we evaluated the degradation of antibiotics and ARGs by using magnetic anion exchange resin (MAER) as UV-Fenton catalyst. Sulfamethoxazole (SMZ), ofloxacin (OFX), and amoxicillin (AMX) were selected as the target compounds. The three antibiotics were almost completely degraded (> 99%) following the MAER UV-Fenton reaction for 30 min. From the degradation mechanism study, it was found that Fe3+/Fe2+ could be cyclically transferred from the catalyst at permeable interface, and the photo-generated electrons could be effectively separated. The dominant reactive radicals for antibiotics degradation were hydroxide during the MAER UV-Fenton reaction. The degradation pathway for sulfamethoxazole was proposed. In addition, wastewater samples from a wastewater treatment plant were applied to investigate the removal efficiency of antibiotics and their ARGs by the MAER UV-Fenton system. A rapid decrease in antibiotics and ARGs level was observed with this reaction system. The results from this study suggest that the MAER-mediated UV-Fenton reaction could be applied for the effective removal of antibiotics and ARGs in wastewater.


Subject(s)
Anti-Bacterial Agents , Water Purification , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Hydrogen Peroxide , Magnetic Phenomena , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL