Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Int J Mol Sci ; 25(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474074

ABSTRACT

Pulmonary hypertension (PH) associated with left heart disease (PH-LHD) is the most common form of PH. In PH-LHD, changes in the pulmonary vasculature are assumed to be mainly caused by pulmonary venous congestion. However, the underlying mechanisms of this form of PH are poorly understood. We aimed to establish a model of PH associated with pulmonary venous congestion. Wistar-Kyoto rats underwent partial occlusion of the left pulmonary vein to induce pulmonary venous congestion or sham surgery and were assessed at various time points post-surgery (3, 6, 9, 12 weeks). In vivo cardiopulmonary phenotyping was performed by using echocardiography along with heart catheterization. Histomorphometry methods were used to assess pulmonary vascular remodeling (e.g., wall thickness, degree of muscularization). Left pulmonary vein banding (PVB) resulted in mildly elevated right ventricular systolic pressure and moderate right ventricular hypertrophy. In PVB rats, small- and medium-sized pulmonary vessels in the left lung were characterized by increased wall thickness and muscularization. Taken together, our data demonstrate that left PVB-induced pulmonary venous congestion is associated with pulmonary vascular remodeling and mild PH.


Subject(s)
Hyperemia , Hypertension, Pulmonary , Pulmonary Veins , Rats , Animals , Vascular Remodeling , Rats, Inbred WKY
2.
Herz ; 48(4): 285-290, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37079028

ABSTRACT

Right ventricular (RV) function is a critical determinant of the prognosis of patients with pulmonary hypertension (PH). Upon establishment of PH, RV dysfunction develops, leading to a gradual worsening of the condition over time, culminating in RV failure and premature mortality. Despite this understanding, the underlying mechanisms of RV failure remain obscure. As a result, there are currently no approved therapies specifically targeting the right ventricle. One contributing factor to the lack of RV-directed therapies is the complexity of the pathogenesis of RV failure as observed in animal models and clinical studies. In recent years, various research groups have begun utilizing multiple models, including both afterload-dependent and afterload-independent models, to investigate specific targets and pharmacological agents in RV failure. In this review, we examine various animal models of RV failure and the recent advancements made utilizing these models to study the mechanisms of RV failure and the potential efficacy of therapeutic interventions, with the ultimate goal of translating these findings into clinical practice to enhance the management of individuals with PH.


Subject(s)
Heart Failure , Hypertension, Pulmonary , Ventricular Dysfunction, Right , Animals , Humans , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/therapy , Heart Failure/therapy , Heart Failure/etiology , Heart Ventricles , Models, Theoretical , Ventricular Dysfunction, Right/diagnosis , Ventricular Dysfunction, Right/etiology , Ventricular Dysfunction, Right/therapy , Ventricular Function, Right
3.
Pneumologie ; 77(11): 854-861, 2023 Nov.
Article in German | MEDLINE | ID: mdl-37963475

ABSTRACT

In the recent ESC/ERS guidelines on the diagnosis and management of pulmonary hypertension (PH) several important changes have been made in respect of the definition and classification of PH.The mPAP cut-off for defining PH was lowered. PH is now defined by an mPAP > 20 mmHg assessed by right heart catheterization. Moreover, the PVR threshold for defining precapillary PH was lowered. Precapillary PH is now defined by a PVR > 2 WU and a pulmonary arterial wedge pressure (PAWP) ≤ 15 mmHg. Furthermore, the increasing evidence for the clinical relevance of pulmonary exercise hemodynamics led to the reintroduction of exercise pulmonary hypertension (EPH) 1. EPH is characterized by a mPAP/CO-slope > 3 mmHg/L/min during exercise testing. In the classification of PH five groups are distinguished: Pulmonary arterial hypertension (group 1), PH associated with left heart disease (group 2), PH associated with lung diseases and/or hypoxia (Group 3), PH associated with pulmonary artery obstructions (group 4) and PH with unclear and/or multi-factorial mechanisms (group 5).In the following guideline-translation we focus on novel aspects regarding the definition and classification of PH and to provide additional background information.


Subject(s)
Heart Diseases , Hypertension, Pulmonary , Humans , Hypertension, Pulmonary/diagnosis , Hemodynamics , Cardiac Catheterization , Pulmonary Artery
4.
Pneumologie ; 77(11): 871-889, 2023 Nov.
Article in German | MEDLINE | ID: mdl-37963477

ABSTRACT

The new guidelines for the diagnosis and treatment of pulmonary hypertension include a new diagnostic algorithm and provide specific recommendations for the required diagnostic procedures, including screening methods. These recommendations are commented on by national experts under the auspices of the DACH. These comments provide additional decision support and background information, serving as a further guide for the complex diagnosis of pulmonary hypertension.


Subject(s)
Hypertension, Pulmonary , Humans , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/therapy , Algorithms
5.
Pneumologie ; 77(11): 926-936, 2023 Nov.
Article in German | MEDLINE | ID: mdl-37963482

ABSTRACT

Pulmonary hypertension associated with left heart disease (PH-LHD) corresponds to group two of pulmonary hypertension according to clinical classification. Haemodynamically, this group includes isolated post-capillary pulmonary hypertension (IpcPH) and combined post- and pre-capillary pulmonary hypertension (CpcPH). PH-LHD is defined by an mPAP > 20 mmHg and a PAWP > 15 mmHg, pulmonary vascular resistance (PVR) with a cut-off value of 2 Wood Units (WU) is used to differentiate between IpcPH and CpcPH. A PVR greater than 5 WU indicates a dominant precapillary component. PH-LHD is the most common form of pulmonary hypertension, the leading cause being left heart failure with preserved (HFpEF) or reduced ejection fraction (HFmrEF, HFrEF), valvular heart disease and, less commonly, congenital heart disease. The presence of pulmonary hypertension is associated with increased symptom burden and poorer outcome across the spectrum of left heart disease. Differentiating between group 1 pulmonary hypertension with cardiac comorbidities and PH-LHD, especially due to HFpEF, is a particular challenge. Therapeutically, no general recommendation for the use of PDE5 inhibitors in HFpEF-associated CpcPH can be made at this time. There is currently no reliable rationale for the use of PAH drugs in IpcPH, nor is therapy with endothelin receptor antagonists or prostacyclin analogues recommended for all forms of PH-LHD.


Subject(s)
Heart Diseases , Heart Failure , Hypertension, Pulmonary , Humans , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/etiology , Heart Failure/complications , Stroke Volume , Heart Diseases/complications , Vascular Resistance
6.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L715-L725, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33655769

ABSTRACT

Right ventricular (RV) function determines outcome in pulmonary arterial hypertension (PAH). RV pressure-volume loops, the gold standard for measuring RV function, are difficult to analyze. Our aim was to investigate whether simple assessments of RV pressure-volume loop morphology and RV systolic pressure differential reflect PAH severity and RV function. We analyzed multibeat RV pressure-volume loops (obtained by conductance catheterization with preload reduction) in 77 patients with PAH and 15 patients without pulmonary hypertension in two centers. Patients were categorized according to their pressure-volume loop shape (triangular, quadratic, trapezoid, or notched). RV systolic pressure differential was defined as end-systolic minus beginning-systolic pressure (ESP - BSP), augmentation index as ESP - BSP/pulse pressure, pulmonary arterial capacitance (PAC) as stroke volume/pulse pressure, and RV-arterial coupling as end-systolic/arterial elastance (Ees/Ea). Trapezoid and notched pressure-volume loops were associated with the highest afterload (Ea), augmentation index, pulmonary vascular resistance (PVR), mean pulmonary arterial pressure, stroke work, B-type natriuretic peptide, and the lowest Ees/Ea and PAC. Multivariate linear regression identified Ea, PVR, and stroke work as the main determinants of ESP - BSP. ESP - BSP also significantly correlated with multibeat Ees/Ea (Spearman's ρ: -0.518, P < 0.001). A separate retrospective analysis of 113 patients with PAH showed that ESP - BSP obtained by routine right heart catheterization significantly correlated with a noninvasive surrogate of RV-arterial coupling (tricuspid annular plane systolic excursion/pulmonary arterial systolic pressure ratio; ρ: -0.376, P < 0.001). In conclusion, pressure-volume loop shape and RV systolic pressure differential predominately depend on afterload and PAH severity and reflect RV-arterial coupling in PAH.


Subject(s)
Hypertension, Pulmonary/pathology , Stroke Volume , Systole , Vascular Resistance , Ventricular Dysfunction, Right/complications , Ventricular Pressure , Blood Pressure , Female , Humans , Hypertension, Pulmonary/etiology , Male , Middle Aged , Retrospective Studies
10.
Sci Rep ; 14(1): 12547, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38822042

ABSTRACT

Impaired respiratory variation of right atrial pressure (RAP) in severe pulmonary hypertension (PH) suggests difficulty tolerating increased preload during inspiration. Our study explores whether this impairment links to specific factors: right ventricular (RV) diastolic function, elevated RV afterload, systolic RV function, or RV-pulmonary arterial (PA) coupling. We retrospectively evaluated respiratory RAP variation in all participants enrolled in the EXERTION study. Impaired respiratory variation was defined as end-expiratory RAP - end-inspiratory RAP ≤ 2 mm Hg. RV function and afterload were evaluated using conductance catheterization. Impaired diastolic RV function was defined as end-diastolic elastance (Eed) ≥ median (0.19 mm Hg/mL). Seventy-five patients were included; PH was diagnosed in 57 patients and invasively excluded in 18 patients. Of the 75 patients, 31 (41%) had impaired RAP variation, which was linked with impaired RV systolic function and RV-PA coupling and increased tricuspid regurgitation and Eed as compared to patients with preserved RAP variation. In backward regression, RAP variation associated only with Eed. RAP variation but not simple RAP identified impaired diastolic RV function (area under the receiver operating characteristic curve [95% confidence interval]: 0.712 [0.592, 0.832] and 0.496 [0.358, 0.634], respectively). During exercise, patients with impaired RAP variation experienced greater RV dilatation and reduced diastolic reserve and cardiac output/index compared with patients with preserved RAP variation. Preserved RAP variation was associated with a better prognosis than impaired RAP variation based on the 2022 European Society of Cardiology/European Respiratory Society risk score (chi-square P = 0.025) and survival free from clinical worsening (91% vs 71% at 1 year and 79% vs 50% at 2 years [log-rank P = 0.020]; hazard ratio: 0.397 [95% confidence interval: 0.178, 0.884]). Subgroup analyses in patients with group 1 and group 4 PH demonstrated consistent findings with those observed in the overall study cohort. Respiratory RAP variations reflect RV diastolic function, are independent of RV-PA coupling or tricuspid regurgitation, are associated with exercise-induced haemodynamic changes, and are prognostic in PH.Trial registration. NCT04663217.


Subject(s)
Atrial Pressure , Hypertension, Pulmonary , Aged , Female , Humans , Male , Middle Aged , Hypertension, Pulmonary/physiopathology , Retrospective Studies , Ventricular Function, Right/physiology
11.
Int J Cardiol ; 409: 132189, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38761974

ABSTRACT

AIMS: Hepatic T1-time derived from cardiac magnetic resonance imaging (cMRI) reflects venous congestion and may provide a simple alternative to invasive end-diastolic elastance (Eed) for assessment of right ventricular (RV) diastolic function. We investigated the association of native hepatic T1-time with single-beat Eed and the value of hepatic T1-time for longitudinal monitoring in pulmonary hypertension (PH). METHODS AND RESULTS: We retrospectively enrolled 85 patients with suspected PH (59% female; 78 with PH diagnosed; 7 with PH excluded) who underwent standard right heart catheterization and cMRI within 24 h between 2015 and 2020. Hepatic T1-time showed moderate to strong correlations (rho >0.3, P ≤ 0.002) with pulmonary vascular resistance, native myocardial T1-time, Eed, RV size and function, brain natriuretic peptide (BNP) level, and 6-min walk distance, and a significant association with functional class (Kruskal-Wallis P < 0.001). Eed, myocardial T1-time, and BNP were independently linked to hepatic T1-time in multivariable regression. Hepatic T1-time > 598 ms predicted elevated Eed with 72.9% sensitivity and 82.1% specificity. Hepatic T1-time was superior to Eed in predicting clinical worsening. In 16 patients with follow-up assessments, those with decreasing hepatic T1-time (7 patients) showed significant hemodynamic improvements, whereas those with increasing hepatic T1-time (9 patients) did not. In a second retrospective cohort of 27 patients with chronic thromboembolic PH undergoing balloon pulmonary angioplasty, hepatic T1-time decreased significantly and hemodynamics improved after the procedure. CONCLUSIONS: Hepatic T1-time predicts RV diastolic dysfunction and prognosis, and may be useful for monitoring disease progression and treatment response in PH.


Subject(s)
Disease Progression , Hypertension, Pulmonary , Humans , Female , Male , Retrospective Studies , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/therapy , Middle Aged , Predictive Value of Tests , Magnetic Resonance Imaging, Cine/methods , Ventricular Dysfunction, Right/physiopathology , Ventricular Dysfunction, Right/diagnostic imaging , Aged , Adult , Liver/diagnostic imaging , Liver/physiopathology , Treatment Outcome , Diastole
12.
J Heart Lung Transplant ; 43(7): 1105-1115, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38373557

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) can lead to congestive hepatopathy, known as cardiohepatic syndrome (CHS). Hepatic congestion is associated with increased liver stiffness, which can be quantified using shear wave elastography. We aimed to investigate whether hepatic shear wave elastography detects patients at risk in the early stages of PH. METHODS: Sixty-three prospectively enrolled patients undergoing right heart catheterization (52 diagnosed with PH and 11 with invasive exclusion of PH) and 52 healthy volunteers underwent assessments including echocardiography and hepatic shear wave elastography. CHS was defined as increased levels of ≥2 of the following: gamma-glutamyl transferase, alkaline phosphatase, and bilirubin. Liver stiffness was defined as normal (≤5.0 kPa) or high (>5.0 kPa). RESULTS: Compared with normal liver stiffness, high liver stiffness was associated with impaired right ventricular (RV) and right atrial (RA) function (median [interquartile range] RV ejection fraction: 54 [49; 57]% vs 45 [34; 51]%, p < 0.001; RA reservoir strain: 49 [41; 54]% vs 33 [22; 41]%, p < 0.001), more severe tricuspid insufficiency (p < 0.001), and higher prevalence of hepatovenous backflow (2% vs 29%, p < 0.001) and CHS (2% vs 10%, p = 0.038). In the patient subgroup with precapillary PH (n = 48), CHS and high liver stiffness were associated with increased European Society of Cardiology/European Respiratory Society 2022 risk scores (p = 0.003). CONCLUSIONS: Shear wave liver elastography yields important information regarding right heart function and may complement risk assessment in patients with (suspected) PH.


Subject(s)
Elasticity Imaging Techniques , Hypertension, Pulmonary , Liver , Ventricular Dysfunction, Right , Humans , Female , Male , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/etiology , Middle Aged , Elasticity Imaging Techniques/methods , Prospective Studies , Prognosis , Ventricular Dysfunction, Right/physiopathology , Ventricular Dysfunction, Right/etiology , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Dysfunction, Right/diagnosis , Liver/diagnostic imaging , Liver/physiopathology , Syndrome , Cardiac Catheterization , Adult , Liver Diseases/physiopathology , Liver Diseases/complications , Echocardiography
13.
J Heart Lung Transplant ; 43(7): 1183-1187, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38508504

ABSTRACT

Three-dimensional (3D) echocardiography-derived right ventricular (RV) ejection fraction (EF) and global longitudinal strain (GLS) are valuable RV functional markers; nevertheless, they are substantially load-dependent. Global myocardial work index (GMWI) is a novel parameter calculated by the area of the RV pressure-strain loop. By adjusting myocardial deformation to instantaneous pressure, it may reflect contractility. To test this hypothesis, we enrolled 60 patients who underwent RV pressure-conductance catheterization to determine load-independent markers of RV contractility and ventriculo-arterial coupling. Detailed 3D echocardiography was also performed, and we calculated RV EF, RV GLS, and using the RV pressure trace curve, RV GWMI. While neither RV EF nor GLS correlated with Ees, GMWI strongly correlated with Ees. In contrast, RV EF and GLS showed a relationship with Ees/Ea. By dividing the population based on their Reveal Lite 2 risk classification, different characteristics were seen among the subgroups. RV GMWI may emerge as a useful clinical tool for risk stratification and follow-up in patients with RV dysfunction.


Subject(s)
Echocardiography, Three-Dimensional , Myocardial Contraction , Stroke Volume , Ventricular Function, Right , Humans , Male , Female , Myocardial Contraction/physiology , Middle Aged , Ventricular Function, Right/physiology , Echocardiography, Three-Dimensional/methods , Stroke Volume/physiology , Ventricular Dysfunction, Right/physiopathology , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Pressure/physiology , Heart Ventricles/physiopathology , Heart Ventricles/diagnostic imaging , Cardiac Catheterization , Aged , Adult
14.
Chest ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38508334

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) is a heterogeneous disease with a poor prognosis. Accurate risk stratification is essential for guiding treatment decisions in pulmonary arterial hypertension (PAH). Although various risk models have been developed for PAH, their comparative prognostic potential requires further exploration. Additionally, the applicability of risk scores in PH groups beyond group 1 remains to be investigated. RESEARCH QUESTION: Are risk scores originally developed for PAH predictive in PH groups 1 through 4? STUDY DESIGN AND METHODS: We conducted a comprehensive analysis of outcomes among patients with incident PH enrolled in the multicenter worldwide Pulmonary Vascular Research Institute GoDeep meta-registry. Analyses were performed across PH groups 1 through 4 and further subgroups to evaluate the predictive value of PAH risk scores, including REVEAL Lite 2, REVEAL 2.0, ESC/ERS 2022, COMPERA 3-strata, and COMPERA 4-strata. RESULTS: Eight thousand five hundred sixty-five patients were included in the study, of whom 3,537 patients were assigned to group 1 PH, whereas 1,807 patients, 1,635 patients, and 1,586 patients were assigned to group 2 PH, group 3 PH, and group 4 PH, respectively. Pulmonary hemodynamics were impaired with median mean pulmonary arterial pressure of 42 mm Hg (33-52 mm Hg) and pulmonary vascular resistance of 7 WU (4-11 WU). All risk scores were prognostic in the entire PH population and in each of the PH groups 1 through 4. The REVEAL scores, when used as continuous prediction models, demonstrated the highest statistical prognostic power and granularity; the COMPERA 4-strata risk score provided subdifferentiation of the intermediate-risk group. Similar results were obtained when separately analyzing various subgroups (PH subgroups 1.1, 1.4.1, and 1.4.4; PH subgroups 3.1 and 3.2; group 2 with isolated postcapillary PH vs combined precapillary and postcapillary PH; patients of all groups with concomitant cardiac comorbidities; and severe [> 5 WU] vs nonsevere PH). INTERPRETATION: This comprehensive study with real-world data from 15 PH centers showed that PAH-designed risk scores possess predictive power in a large PH cohort, whether considered as common to the group or calculated separately for each PH group (1-4) and various subgroups.

15.
ESC Heart Fail ; 10(2): 762-775, 2023 04.
Article in English | MEDLINE | ID: mdl-36419369

ABSTRACT

Right ventricular (RV) function and its adaptation to increased afterload [RV-pulmonary arterial (PA) coupling] are crucial in various types of pulmonary hypertension, determining symptomatology and outcome. In the course of disease progression and increasing afterload, the right ventricle undergoes adaptive remodelling to maintain right-sided cardiac output by increasing contractility. Exhaustion of compensatory RV remodelling (RV-PA uncoupling) finally leads to maladaptation and increase of cardiac volumes, resulting in heart failure. The gold-standard measurement of RV-PA coupling is the ratio of contractility [end-systolic elastance (Ees)] to afterload [arterial elastance (Ea)] derived from RV pressure-volume loops obtained by conductance catheterization. The optimal Ees/Ea ratio is between 1.5 and 2.0. RV-PA coupling in pulmonary hypertension has considerable reserve; the Ees/Ea threshold at which uncoupling occurs is estimated to be ~0.7. As RV conductance catheterization is invasive, complex, and not widely available, multiple non-invasive echocardiographic surrogates for Ees/Ea have been investigated. One of the first described and best validated surrogates is the ratio of tricuspid annular plane systolic excursion to estimated pulmonary arterial systolic pressure (TAPSE/PASP), which has shown prognostic relevance in left-sided heart failure and precapillary pulmonary hypertension. Other RV-PA coupling surrogates have been formed by replacing TAPSE with different echocardiographic measures of RV contractility, such as peak systolic tissue velocity of the lateral tricuspid annulus (S'), RV fractional area change, speckle tracking-based RV free wall longitudinal strain and global longitudinal strain, and three-dimensional RV ejection fraction. PASP-independent surrogates have also been studied, including the ratios S'/RV end-systolic area index, RV area change/RV end-systolic area, and stroke volume/end-systolic volume. Limitations of these non-invasive surrogates include the influence of severe tricuspid regurgitation (which can cause distortion of longitudinal measurements and underestimation of PASP) and the angle dependence of TAPSE and PASP. Detection of early RV remodelling may require isolated analysis of single components of RV shortening along the radial and anteroposterior axes as well as the longitudinal axis. Multiple non-invasive methods may need to be applied depending on the level of RV dysfunction. This review explains the mechanisms of RV (mal)adaptation to its load, describes the invasive assessment of RV-PA coupling, and provides an overview of studies of non-invasive surrogate parameters, highlighting recently published works in this field. Further large-scale prospective studies including gold-standard validation are needed, as most studies to date had a retrospective, single-centre design with a small number of participants, and validation against gold-standard Ees/Ea was rarely performed.


Subject(s)
Hypertension, Pulmonary , Humans , Hypertension, Pulmonary/diagnosis , Ventricular Remodeling , Prospective Studies , Retrospective Studies , Echocardiography
16.
Front Cardiovasc Med ; 10: 1161041, 2023.
Article in English | MEDLINE | ID: mdl-37234373

ABSTRACT

Background: Volume overload is often associated with clinical deterioration in precapillary pulmonary hypertension (PH). However, thorough assessment of volume overload is complex and therefore not routinely performed. We examined whether estimated plasma volume status (ePVS) is associated with central venous congestion and prognosis in patients with idiopathic pulmonary arterial hypertension (IPAH) or chronic thromboembolic PH (CTEPH). Methods: We included all patients with incident IPAH or CTEPH enrolled in the Giessen PH Registry between January 2010 and January 2021. Plasma volume status was estimated using the Strauss formula. Results: In total, 381 patients were analyzed. Patients with high ePVS (≥4.7 vs. <4.7 ml/g) at baseline showed significantly increased central venous pressure (CVP; median [Q1, Q3]: 8 [5, 11] mmHg vs. 6 [3, 10] mmHg) and pulmonary arterial wedge pressure (10 [8, 15] mmHg vs. 8 [6, 12] mmHg), while right ventricular function was not altered. In multivariate stepwise backward Cox regression, ePVS was independently associated with transplant-free survival at baseline and during follow-up (hazard ratio [95% confidence interval]: 1.24 [0.96, 1.60] and 2.33 [1.49, 3.63], respectively). An intra-individual decrease in ePVS was associated with a decrease in CVP and predicted prognosis in univariate Cox regression. Patients with high ePVS without edema had lower transplant-free survival than those with normal ePVS without edema. In addition, high ePVS was associated with cardiorenal syndrome. Conclusions: In precapillary PH, ePVS is associated with congestion and prognosis. High ePVS without edema may represent an under-recognized subgroup with poor prognosis.

17.
Front Med (Lausanne) ; 10: 1207474, 2023.
Article in English | MEDLINE | ID: mdl-37547612

ABSTRACT

Background: Cardiac interactions with organs such as the liver or kidneys have been described in different cardiovascular diseases. However, the clinical relevance of hepatorenal dysfunction in chronic thromboembolic pulmonary hypertension (CTEPH) remains unclear. We determined the association of hepatorenal dysfunction (measured using the Model for End-stage Liver Disease Sodium [MELDNa] score) with right heart function and survival in patients with CTEPH. Methods: We analyzed all patients with CTEPH in the Giessen Pulmonary Hypertension Registry who had available MELDNa scores and were not taking vitamin K antagonists. The MELDNa score was calculated as MELD score - serum Na - (0.025 * MELD score * (140 - serum Na)) + 140; the MELD score was calculated as 10*(0.957*ln(creatinine)+0.378*ln(bilirubin)+1.12*ln(International Normalized Ratio))+6.43. Results: Seventy-two patients were included (74% female; median [Q1, Q3] MELDNa: 9 [6, 11]). MELDNa correlated well with right atrial and ventricular function and pulmonary hemodynamics. Forward regression analysis revealed that hepatorenal dysfunction mainly depends on right atrial strain and tricuspid regurgitation, but not right ventricular systolic dysfunction. Hepatorenal dysfunction predicted mortality at baseline and follow-up (adjusted hazard ratios [95% confidence intervals] per unit increase of MELDNa: 1.6 [1.1, 2.4] and 1.8 [1.1, 2.9], respectively). Changes in hepatorenal function also predicted mortality. Conclusion: Hepatorenal dysfunction in CTEPH is primarily associated with venous congestion rather than cardiac forward failure. As a surrogate parameter for hepatorenal dysfunction, MELDNa is a simple method to identify at-risk patients at baseline and follow-up.

18.
J Heart Lung Transplant ; 42(11): 1518-1528, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37451352

ABSTRACT

BACKGROUND: The right ventricle has a complex contraction pattern of uncertain clinical relevance. We aimed to assess the relationship between right ventricular (RV) contraction pattern and RV-pulmonary arterial (PA) coupling defined by the gold-standard pressure-volume loop-derived ratio of end-systolic/arterial elastance (Ees/Ea). METHODS: Prospectively enrolled patients with suspected or confirmed pulmonary hypertension underwent three-dimensional echocardiography, standard right heart catheterization, and RV conductance catheterization. RV-PA uncoupling was categorized as severe (Ees/Ea < 0.8), moderate (Ees/Ea 0.8-1.29), and none/mild (Ees/Ea ≥ 1.3). Clinical severity was determined from hemodynamics using a truncated version of the 2022 European Society of Cardiology/European Respiratory Society risk stratification scheme. RESULTS: Fifty-three patients were included, 23 with no/mild, 24 with moderate, and 6 with severe uncoupling. Longitudinal shortening was decreased in patients with moderate vs no/mild uncoupling (p <0.001) and intermediate vs low hemodynamic risk (p < 0.001), discriminating low risk from intermediate/high risk with an optimal threshold of 18% (sensitivity 80%, specificity 87%). Anteroposterior shortening was impaired in patients with severe vs moderate uncoupling (p = 0.033), low vs intermediate risk (p = 0.018), and high vs intermediate risk (p = 0.010), discriminating high risk from intermediate/low risk with an optimal threshold of 15% (sensitivity 100%, specificity 83%). Left ventricular (LV) end-diastolic volume was decreased in patients with severe uncoupling (p = 0.035 vs no/mild uncoupling). CONCLUSIONS: Early RV-PA uncoupling is associated with reduced longitudinal function, whereas advanced RV-PA uncoupling is associated with reduced anteroposterior movement and LV preload, all in a risk-related fashion. CLINICALTRIALS: GOV: NCT04663217.

19.
ESC Heart Fail ; 10(5): 3209-3215, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37415381

ABSTRACT

AIMS: Commercially available integrated software for echocardiographic measurement of stroke work (SW) is increasingly used for the right ventricle, despite a lack of validation. We sought to assess the validity of this method [echo-based myocardial work (MW) module] vs. gold-standard invasive right ventricular (RV) pressure-volume (PV) loops. METHODS AND RESULTS: From the prospectively recruiting EXERTION study (NCT04663217), we included 42 patients [34 patients with pulmonary arterial hypertension (PAH) or chronic thromboembolic pulmonary hypertension (CTEPH) and 8 patients with absence of cardiopulmonary disease] with RV echocardiography and invasive PV catheterization. Echocardiographic SW was assessed as RV global work index (RVGWI) generated via the integrated pressure-strain MW software. Invasive SW was calculated as the area bounded by the PV loop. An additional parameter derived from the MW module, RV global wasted work (RVGWW), was correlated with PV loop measures. RVGWI significantly correlated with invasive PV loop-derived RV SW in the overall cohort [rho = 0.546 (P < 0.001)] and the PAH/CTEPH subgroup [rho = 0.568 (P < 0.001)]. Overall, RVGWW correlated with invasive measures of arterial elastance (Ea), the ratio of end-systolic elastance (Ees)/Ea, and end-diastolic elastance (Eed) significantly. CONCLUSIONS: Integrated echo measurement of pressure-strain loop-derived SW correlates with PV loop-based assessment of RV SW. Wasted work correlates with invasive measures of load-independent RV function. Given the methodological and anatomical challenges of RV work assessment, evolution of this approach by incorporating more elaborated echo analysis data and an RV reference curve might improve its reliability to mirror invasively assessed RV SW.

20.
ERJ Open Res ; 9(5)2023 Sep.
Article in English | MEDLINE | ID: mdl-37727674

ABSTRACT

Background: Right ventricular (RV) diastolic dysfunction may be prognostic in pulmonary hypertension (PH). However, its assessment is complex and relies on conductance catheterisation. We aimed to evaluate echocardiography-based parameters as surrogates of RV diastolic function, provide validation against the gold standard, end-diastolic elastance (Eed), and define the prognostic impact of echocardiography-derived RV diastolic dysfunction. Methods: Patients with suspected PH who underwent right heart catheterisation including conductance catheterisation were prospectively recruited. In this study population, an echocardiography-based RV diastolic function surrogate was derived. Survival analyses were performed in patients with precapillary PH in the Giessen PH Registry, with external validation in patients with pulmonary arterial hypertension at Sapienza University (Rome). Results: In the derivation cohort (n=61), the early/late diastolic tricuspid inflow velocity ratio (E/A) and early tricuspid inflow velocity/early diastolic tricuspid annular velocity ratio (E/e') did not correlate with Eed (p>0.05). Receiver operating characteristic analysis revealed a large area under the curve (AUC) for the peak lateral tricuspid annulus systolic velocity/right atrial area index ratio (S'/RAAi) to detect elevated Eed (AUC 0.913, 95% confidence interval (CI) 0.839-0.986) and elevated end-diastolic pressure (AUC 0.848, 95% CI 0.699-0.998) with an optimal threshold of 0.81 m2·s-1·cm-1. Subgroup analyses demonstrated a large AUC in patients with preserved RV systolic function (AUC 0.963, 95% CI 0.882-1.000). Survival analyses confirmed the prognostic relevance of S'/RAAi in the Giessen PH Registry (n=225) and the external validation cohort (n=106). Conclusions: Our study demonstrates the usefulness of echocardiography-derived S'/RAAi for noninvasive assessment of RV diastolic function and prognosis in PH.

SELECTION OF CITATIONS
SEARCH DETAIL