Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
J Clin Biochem Nutr ; 74(1): 37-46, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38292121

ABSTRACT

Quercetin is a natural flavonol and has various health beneficial functions. Our pervious study demonstrated that long-term feeding (13 weeks) of quercetin and its glycosides, isoquercitrin, rutin, and enzymatically modified isoquercitrin, which is a mixture of quercetin monoglycoside and its oligoglycosides, prevented hyperglycemia and adiposity in mice fed a high-fat diet but not standard diet. It is, however, unclear whether a single administration of these compounds prevent postprandial hyperglycemia or not. In the present study, we estimated their prevention effect on acute hyperglycemia by an oral glucose tolerance test in ICR mice and investigated its mechanism. It was found that quercetin glycosides, but not the aglycone, suppressed acute hyperglycemia and isoquercitrin showed the strongest effect among the glycosides. As the underlying mechanism, quercetin glycosides promoted translocation of glucose transporter 4 to the plasma membrane of skeletal muscle of mice through phosphorylation of adenosine monophosphate-activated protein kinase and its upstream Ca2+/calmodulin-dependent protein kinase kinase ß without activating the insulin- and JAK/STAT-signal pathways. In conclusion, single oral administration of quercetin glycosides prevented a blood sugar spike by promoting glucose transporter 4 translocation through activating the CAMKKß/AMPK signaling pathway.

2.
Arch Biochem Biophys ; 747: 109759, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37722527

ABSTRACT

Several pathophysiological abnormalities, including a sedentary lifestyle, chronic diseases, and oxidative stress, can contribute to muscle atrophy triggered by an imbalance in muscle protein synthesis and degradation. Resolving muscle atrophy is a critical issue as it can reduce the quality of life. Here, one of the promising functional food factors, diosgenin (a steroidal sapogenin) showed strong preventive activities against dexamethasone (Dex)-induced muscle atrophy, as determined by the expression levels and morphology of the myosin heavy chain in C2C12 myotubes. Diosgenin inhibited protein expressions of Dex-induced skeletal muscle-specific ubiquitin ligase, including muscle RING finger 1 (MuRF1) and casitas B-lineage lymphoma protooncogene b (Cbl-b) but not atrogin-1. Diosgenin ameliorated Dex-induced declines of Akt phosphorylation at Ser473 and FoxO3a phosphorylation at Ser253, which probably at least partially contributed to the suppression of MuRF1, Cbl-b, and atrogin-1 gene expression. Additionally, diosgenin inhibited Dex-induced nuclear translocation of the glucocorticoid receptor (GR), diosgenin therefore may competitively inhibit the interaction between Dex and GR. These findings suggest that diosgenin is an effective functional food for preventing glucocorticoid-induced skeletal muscle atrophy.

3.
Chem Res Toxicol ; 35(9): 1625-1630, 2022 09 19.
Article in English | MEDLINE | ID: mdl-36001821

ABSTRACT

Several aromatic amine compounds are urinary bladder carcinogens. Activated metabolites and DNA adducts of polycyclic aromatic amines, such as 4-aminobiphenyl, have been identified, whereas those of monocyclic aromatic amines, such as o-toluidine (o-Tol), o-anisidine (o-Ans), and aniline (Ani), have not been completely determined. We have recently reported that o-Tol and o-Ans are metabolically converted in vitro and in vivo to cytotoxic and mutagenic p-semidine-type dimers, namely 2-methyl-N4-(2-methylphenyl) benzene-1,4-diamine (MMBD) and 2-methoxy-N4-(2-methoxyphenyl) benzene-1,4-diamine (MxMxBD), respectively, suggesting their roles in urinary bladder carcinogenesis. In this study, we found that when o-Tol and o-Ans were incubated with S9 mix, MMBD and MxMxBD as well as two isomeric heterodimers, MMxBD and MxMBD, were formed. Therefore, any two of o-Tol, o-Ans, and Ani (10 mM each) were incubated with the S9 mix for up to 24 h and then subjected to LC-MS to investigate their metabolic kinetics. Metabolic conversions to all nine kinds of p-semidine-type homo- and hetero-dimers were observed, peaking at 6 h of incubation with the S9 mix; MxMxBD reached the peak at 6.1 ± 1.4 µM. Homo- and hetero-dimers containing the o-Ans moiety in the diamine structure showed a faster dimerization ratio, whereas levels of these dimers, such as MxMxBD, markedly declined with further incubation. Dimers containing o-Tol and Ani were relatively stable, even after incubation for 24 h. The electron-donating group of the o-Ans moiety may be involved in rapid metabolic conversion. In the cytotoxic assay, dimers with an o-Ans moiety in the diamine structure and MMBD showed approximately two- to four-fold higher cytotoxicity than other dimers in human bladder cancer T24 cells. These chemical and biological properties of homo- and hetero-dimers of monocyclic aromatic amines may be important when considering the combined exposure risk for bladder carcinogenesis.


Subject(s)
Benzene , DNA Adducts , Amines , Aniline Compounds/metabolism , Carcinogenesis , Carcinogens/toxicity , Humans , Phenylenediamines , Toluidines
4.
Molecules ; 27(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35744941

ABSTRACT

Consumption of coffee, tea, wine, curry, and soybeans has been linked to a lower risk of cancer in epidemiological studies. Several cell-based and animal studies have shown that dietary polyphenols like chlorogenic acid, curcumin, epigallocatechin-3-O-gallate, genistein, quercetin and resveratrol play a major role in these anticancer effects. Several mechanisms have been proposed to explain the anticancer effects of polyphenols. Depending on the cellular microenvironment, these polyphenols can exert double-faced actions as either an antioxidant or a prooxidant, and one of the representative anticancer mechanisms is a reactive oxygen species (ROS)-mediated mechanism. These polyphenols can also influence microRNA (miR) expression. In general, they can modulate the expression/activity of the constituent molecules in ROS-mediated anticancer pathways by increasing the expression of tumor-suppressive miRs and decreasing the expression of oncogenic miRs. Thus, miR modulation may enhance the anticancer effects of polyphenols through the ROS-mediated pathways in an additive or synergistic manner. More precise human clinical studies on the effects of dietary polyphenols on miR expression will provide convincing evidence of the preventive roles of dietary polyphenols in cancer and other diseases.


Subject(s)
Catechin , MicroRNAs , Neoplasms , Animals , Catechin/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/drug therapy , Polyphenols/pharmacology , Reactive Oxygen Species , Resveratrol , Tumor Microenvironment
5.
Arch Biochem Biophys ; 686: 108329, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32151565

ABSTRACT

In the body, alcohol dehydrogenase rapidly converts ethanol to its toxic metabolite, acetaldehyde, which is further metabolized to non-toxic acetic acid by aldehyde dehydrogenase (ALDH). 6-(methylsulfinyl)hexyl isothiocyanate (6-MSITC), a major bioactive compound in Wasabi (Wasabia japonica) has various physiological effects such as anti-oxidative, anti-inflammatory and anti-cancer effects. However, the effect of 6-MSITC on alcohol metabolism has not been studied. In this study, we investigated the effects of 6-MSITC on hepatic ALDH activity and protein expression both in vitro and in vivo. 6-MSITC inhibited ethanol- and acetaldehyde-induced cytotoxicity. Treatment with 6-MSITC to HepG2 cells enhanced ALDH activity through the induction of mitochondrial ALDH2 expression, but not cytosolic ALDH1A1. Knockdown of Nrf2 canceled the 6-MSITC-induced ALDH2 expression, indicating that Nrf2 regulated ALDH2 expression. Moreover, 6-MSITC increased the nuclear translocation of Nrf2 and the expression levels of HO-1 and SOD2, Nrf2-regulated phase II drug-metabolizing enzymes. Oral administration of 6-MSITC increased the mitochondrial ALDH2 activity and its expression in the liver of C57BL/6J mice. These results suggested that 6-MSITC is possible to protect acetaldehyde toxicity in hepatocytes by induction of mitochondrial ALDH2 expression through Nrf2/ARE pathway.


Subject(s)
Acetaldehyde/metabolism , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Antineoplastic Agents/pharmacology , Hepatocytes/metabolism , Isothiocyanates/pharmacology , Acetaldehyde/toxicity , Alanine Transaminase/metabolism , Alcohol Dehydrogenase/metabolism , Aldehyde Dehydrogenase, Mitochondrial/genetics , Animals , Aspartate Aminotransferases/metabolism , Ethanol/metabolism , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Heme Oxygenase-1/metabolism , Hep G2 Cells , Humans , Liver/metabolism , Male , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , Phosphorylation , Superoxide Dismutase/metabolism
6.
J Clin Biochem Nutr ; 67(1): 29-35, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32801466

ABSTRACT

Urban particulate matters (PM) exposure is significantly correlated with extrinsic skin aging signs and skin cancer incidence. PM contains polycyclic aromatic hydrocarbons, and they act as the agonists of aryl hydrocarbon receptor (AhR). Activation of AhR promotes generation of intracellular reactive oxygen species (ROS) and inflammation. Enzymatically synthesized glycogen (ESG), which is synthesized from starch, possesses various functions, such as anti-tumor, anti-obesity and antioxidant. However, the effects of ESG on PM-induced skin inflammation remain unclear. In this study, we investigated whether ESG has a protective effect on PM-induced oxidative stress and inflammation in human epidermal keratinocytes. ESG inhibited PM-induced expression of inflammatory cytokines IL6, TNFA and PTGS2. ESG also inhibited PM-induced phosphorylation of MAPKs and ROS accumulation. However, ESG had no effect on PM-induced expression of CYP1A1, one of the target proteins of AhR. On the other hand, ESG increased nuclear translocation of Nrf2 and expression of antioxidant proteins, HO-1 and NQO1. These results suggest that ESG suppressed PM-induced inflammation by decreasing ROS accumulation through the Nrf2 pathway.

7.
J Clin Biochem Nutr ; 67(1): 36-42, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32801467

ABSTRACT

Enzymatically synthesized glycogen is a product from starch. Enzymatically synthesized glycogen has been reported to possess various health beneficial effects such as anti-oxidative and anti-inflammatory effects. In this study, we investigated the effect of enzymatically synthesized glycogen on ultraviolet B-induced oxidative stress and apoptosis in normal human epidermal keratinocytes. Treatment with enzymatically synthesized glycogen suppressed ultraviolet B-induced reactive oxygen species, caspase-3 activity, and DNA fragmentation in normal human epidermal keratinocytes. Furthermore, enzymatically synthesized glycogen increased in the expression level of heme oxygenase-1, NAD(P)H: quinone oxidoreductase 1, and NF-E2-related factor 2, a transcriptional factor for heme oxygenase-1 and NAD(P)H: quinone oxidoreductase 1. Although enzymatically synthesized glycogen did not increase in its mRNA expression level of NF-E2-related factor 2, enzymatically synthesized glycogen retained its protein degradation. Knockdown of heme oxygenase-1 and NAD(P)H: quinone oxidoreductase 1 canceled enzymatically synthesized glycogen-suppressed reactive oxygen species accumulation in normal human epidermal keratinocytes. It is, therefore, concluded that enzymatically synthesized glycogen inhibited ultraviolet B-induced oxidative stress through increasing the expression level of heme oxygenase-1 and NAD(P)H: quinone oxidoreductase 1 through the NF-E2-related factor 2 pathway in normal human epidermal keratinocytes.

8.
J Clin Biochem Nutr ; 67(1): 67-73, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32801471

ABSTRACT

The patients of type I allergic diseases were increased in the developed countries. Recently, many studies have focused on food factors with anti-allergic activities. Enzymatically synthesized glycogen, a polysaccharide with a multi-branched α-1,4 and α-1,6 linkages, is a commercially available product from natural plant starch, and has immunostimulation activity. However, effect of enzymatically synthesized glycogen on the anti-allergic activity was unclear yet. In this study, we investigated that enzymatically synthesized glycogen inhibited allergic and inflammatory responses using a co-culture system consisting of Caco-2 and RBL-2H3 cells. Enzymatically synthesized glycogen inhibited antigen-induced ß-hexosaminidase release and production of TNF-α and IL-6 in RBL-2H3 cells in the co-culture system. Furthermore, enzymatically synthesized glycogen inhibited antigen-induced phosphorylation of tyrosine kinases, phospholipase C γ1/2, mitogen-activated protein kinases and Akt. Anti-allergic and anti-inflammatory activities of enzymatically synthesized glycogen were indirect action through stimulating Caco-2 cells, but not by the direct interaction with RBL-2H3 cells, because enzymatically synthesized glycogen did not permeate Caco-2 cells. These findings suggest that enzymatically synthesized glycogen is an effective food ingredient for prevention of type I allergy through stimulating the intestinal cells.

9.
Arch Biochem Biophys ; 664: 157-166, 2019 03 30.
Article in English | MEDLINE | ID: mdl-30771297

ABSTRACT

Prevention of muscle wasting is known to contribute to improving the quality of life and extending a healthy life. Recently, we have reported that licorice flavonoid oil containing glabridin, which is a prenylated isoflavone, enhances muscle mass in mice. In this study, we investigated the prevention effect of glabridin on dexamethasone-induced muscle atrophy and clarified its mechanism in cultured myotubes and in muscle of mice. Treatment with glabridin to C2C12 myotubes inhibited dexamethasone-induced protein degradation through dexamethasone-induced expression of ubiquitin ligases, MuRF1 and Cbl-b, but not atrogin-1. Mechanistically, glabridin inhibited nuclear translocation of the glucocorticoid receptor. Glabridin directly bound to the glucocorticoid receptor, resulting in the inhibition of binding between dexamethasone and the receptor protein. Glabridin also inhibited dexamethasone-induced phosphorylation of p38 and FoxO3a, as the upstream for the induction of ubiquitin ligases in C2C12 myotubes. Moreover, the glabridin-induced inhibition of protein degradation was eliminated by knockdown of the glucocorticoid receptor, but not by p38 knockdown. These data indicated that the inhibitory mechanism of glabridin against dexamethasone-induced muscle atrophy was mainly mediated by the inhibition of binding between dexamethasone and the glucocorticoid receptor in myotubes. Oral administration of glabridin prevented dexamethasone-induced protein degradation in the tibialis anterior muscle of mice. It was confirmed that glabridin inhibited dexamethasone-induced nuclear translocation of the glucocorticoid receptor and phosphorylation of FoxO3a in the muscle of mice. These findings suggest that glabridin is an effective food ingredient for the prevention of glucocorticoid-induced skeletal muscle atrophy.


Subject(s)
Dexamethasone/antagonists & inhibitors , Isoflavones/pharmacology , Muscular Atrophy/prevention & control , Phenols/pharmacology , Animals , Cell Line , Dexamethasone/metabolism , Dexamethasone/pharmacology , Forkhead Box Protein O3/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/cytology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscular Atrophy/chemically induced , Receptors, Glucocorticoid/metabolism , Signal Transduction/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
10.
Biol Pharm Bull ; 42(2): 212-221, 2019.
Article in English | MEDLINE | ID: mdl-30713253

ABSTRACT

Glucose uptake ability into L6 skeletal muscle cell was examined with eleven kinds of ring fission metabolites of (-)-epigallocatechin gallate (EGCG) produced by intestinal bacteria. The metabolites 5-(3,5-dihydroxyphenyl)-γ-valerolactone (EGC-M5), 4-hydroxy-5-(3,4,5-trihydroxyphenyl)valeric acid (EGC-M6), 5-(3,4,5-trihydroxyphenyl)-γ-valerolactone (EGC-M7) and 5-(3-hydroxyphenyl)valeric acid (EGC-M11) have been found to promote uptake of glucose into L6 myotubes significantly. EGC-M5, which is one of the major ring fission metabolites of EGCG, was also found to have a promotive effect on glucose transporter 4 (GLUT4) translocation accompanied by phosphorylation of AMP-activated protein kinase (AMPK) signaling pathway in skeletal muscle both in vivo and in vitro. Furthermore, the effect of oral single dosage of EGC-M5 on glucose tolerance test with ICR mice was examined and significant suppression of hyperglycemia was observed. These data suggested that EGC-M5 has an antidiabetic effect in vivo.


Subject(s)
Catechin/analogs & derivatives , Glucose/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Myoblasts, Skeletal/drug effects , Myoblasts, Skeletal/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Blood Glucose/metabolism , Catechin/chemistry , Catechin/metabolism , Catechin/pharmacology , Cell Line , Gastrointestinal Microbiome , Glucose Tolerance Test , Hypoglycemic Agents , Lactones/metabolism , Lactones/pharmacology , Male , Mice , Mice, Inbred ICR , Phosphorylation , Signal Transduction/drug effects
11.
Int J Food Sci Nutr ; 70(3): 294-302, 2019 May.
Article in English | MEDLINE | ID: mdl-30304967

ABSTRACT

For over 4000 years, liquorice has been one of the most frequently employed botanicals as a traditional herbal medicine. Although previous reports have found that liquorice flavonoids possess various health beneficial effects, the underlying mechanism responsible for the anti-diabetic effect of liquorice flavonoids remains unclear. The present study demonstrates that liquorice flavonoid oil (LFO) improves type 2 diabetes mellitus through GLUT4 translocation to the plasma membrane by activating both the adenosine monophosphate-activated protein kinase (AMPK) pathway and Akt pathway in muscle of KK-Ay mice. Furthermore, LFO lowered postprandial hyperglycaemia in a human study. These results indicate that LFO may exert a therapeutic effect on metabolic disorders, such as diabetes and hyperglycaemia, by modulating glucose metabolism through AMPK- and insulin-dependent pathways in skeletal muscle.


Subject(s)
Flavonoids/pharmacology , Glucose Transporter Type 4/metabolism , Glycyrrhiza/chemistry , Hyperglycemia/prevention & control , Hypoglycemic Agents/pharmacology , Muscle, Skeletal/metabolism , Plant Oils/pharmacology , Adenylate Kinase/metabolism , Animals , Body Weight/drug effects , Cell Membrane/metabolism , Diabetes Mellitus, Type 2/prevention & control , Diet, High-Fat , Humans , Insulin/blood , Male , Mice , Muscle, Skeletal/enzymology , Organ Size/drug effects , Proto-Oncogene Proteins c-akt/metabolism
12.
Molecules ; 24(2)2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30669635

ABSTRACT

Polyphenols are categorized as plant secondary metabolites, and they have attracted much attention in relation to human health and the prevention of chronic diseases. In recent years, a considerable number of studies have been published concerning their physiological function in the digestive tract, such as their prebiotic properties and their modification of intestinal microbiota. It has also been suggested that several hydrolyzed and/or fission products, derived from the catabolism of polyphenols by intestinal bacteria, exert their physiological functions in target sites after transportation into the body. Thus, this review article focuses on the role of intestinal microbiota in the bioavailability and physiological function of dietary polyphenols. Monomeric polyphenols, such as flavonoids and oligomeric polyphenols, such as proanthocyanidins, are usually catabolized to chain fission products by intestinal bacteria in the colon. Gallic acid and ellagic acid derived from the hydrolysis of gallotannin, and ellagitannin are also subjected to intestinal catabolism. These catabolites may play a large role in the physiological functions of dietary polyphenols. They may also affect the microbiome, resulting in health promotion by the activation of short chain fatty acids (SCFA) excretion and intestinal immune function. The intestinal microbiota is a key factor in mediating the physiological functions of dietary polyphenols.


Subject(s)
Dietary Supplements , Gastrointestinal Microbiome , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Polyphenols/metabolism , Animals , Biological Availability , Energy Metabolism , Gastrointestinal Absorption , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Humans , Hydrolysis , Polyphenols/chemistry , Prebiotics , Research
13.
Biochim Biophys Acta Mol Cell Res ; 1864(12): 2438-2448, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28965824

ABSTRACT

Theobromine, a methylxanthine derived from cacao beans, reportedly has various health-promoting properties but molecular mechanism by which effects of theobromine on adipocyte differentiation and adipogenesis remains unclear. In this study, we aimed to clarify the molecular mechanisms of the anti-adipogenic effect of theobromine in vitro and in vivo. ICR mice (4week-old) were administered with theobromine (0.1g/kg) for 7days. Theobromine administration attenuated gains in body and epididymal adipose tissue weights in mice and suppressed expression of adipogenic-associated genes in mouse adipose tissue. In 3T3-L1 preadipocytes, theobromine caused degradation of C/EBPß protein by the ubiquitin-proteasome pathway. Pull down assay showed that theobromine selectively interacts with adenosine receptor A1 (AR1), and AR1 knockdown inhibited theobromine-induced C/EBPß degradation. Theobromine increased sumoylation of C/EBPß at Lys133. Expression of the small ubiquitin-like modifier (SUMO)-specific protease 2 (SENP2) gene, coding for a desumoylation enzyme, was suppressed by theobromine. In vivo knockdown studies showed that AR1 knockdown in mice attenuated the anti-adipogenic effects of theobromine in younger mice. Theobromine suppresses adipocyte differentiation and induced C/EBPß degradation by increasing its sumoylation. Furthermore, the inhibition of AR1 signaling is important for theobromine-induced C/EBPß degradation.


Subject(s)
Adipogenesis/genetics , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cysteine Endopeptidases/genetics , Receptors, Purinergic P1/genetics , 3T3-L1 Cells , Adipocytes/metabolism , Adipogenesis/drug effects , Animals , Cell Differentiation/genetics , Cysteine Endopeptidases/metabolism , Mice , Proteolysis/drug effects , Signal Transduction , Sumoylation/genetics , Theobromine/administration & dosage
14.
J Clin Biochem Nutr ; 60(2): 108-114, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28366989

ABSTRACT

Black soybean seed coat extract (BE), which contains abundant polyphenols such as procyanidins, cyanidin 3-glucoside, (+)-catechin, and (-)-epicatechin, has been reported on health beneficial functions such as antioxidant activity, anti-inflammatory, anti-obesity, and anti-diabetic activities. In this study, we investigated that prevention of BE and its polyphenols on 2,2'-azobis(2-methylpropionamide) dihydrochloride (AAPH)-induced oxidative DNA damage, and found that these polyphenols inhibited AAPH-induced formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) as a biomarker for oxidative DNA damage in HepG2 cells. Under the same conditions, these polyphenols also inhibited AAPH-induced accumulation of reactive oxygen species (ROS) in the cells. Inhibition of ROS accumulation was observed in both cytosol and nucleus. It was confirmed that these polyphenols inhibited formation of AAPH radical using oxygen radical absorbance capacity assay under the cell-free conditions. These results indicate that polyphenols in BE inhibit free radical-induced oxidative DNA damages by their potent antioxidant activity. Thus, BE is an effective food material for prevention of oxidative stress and oxidative DNA damages.

15.
Bioorg Med Chem Lett ; 26(17): 4237-40, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27491710

ABSTRACT

Several p-terphenyl compounds have been isolated from the edible Chinese mushroom Thelephora vialis. Vialinin A, a p-terphenyl compound, strongly inhibits tumor necrosis factor-α production and release. Vialinin A inhibits the enzymatic activity of ubiquitin-specific peptidase 5, one of the target molecules in RBL-2H3 cells. Here we examined the inhibitory effect of p-terphenyl compounds, including vialinin A, against sentrin/SUMO-specific protease 1 (SENP1) enzymatic activity. The half maximal inhibitory concentration values of vialinin A and thelephantin G against full-length SENP1 were 1.64±0.23µM and 2.48±0.02µM, respectively. These findings suggest that p-terphenyl compounds are potent SENP1 inhibitors.


Subject(s)
SUMO-1 Protein/metabolism , Terphenyl Compounds/metabolism , Tumor Necrosis Factor-alpha/metabolism , Agaricales/chemistry , Agaricales/metabolism , Animals , Cell Line , Humans , Kinetics , Protein Binding , Rats , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , SUMO-1 Protein/antagonists & inhibitors , Terphenyl Compounds/chemistry , Tumor Necrosis Factor-alpha/antagonists & inhibitors
16.
J Nutr Sci Vitaminol (Tokyo) ; 70(1): 53-60, 2024.
Article in English | MEDLINE | ID: mdl-38417852

ABSTRACT

Maintenance of appropriate muscle mass is necessary for good quality of life as skeletal muscles play critical roles in locomotion, metabolic homeostasis, and thermogenesis. Polyamines are essential metabolites that regulate several important cellular functions. In C57BL6 mice who underwent sciatic nerve transection of the hind limb, compensatory muscle hypertrophy is enhanced by the administration of polyamines. However, the action mechanisms of polyamines in muscle hypertrophy remain unclear. Here, we isolated PA YEAST SC-1, a polyamine-rich Saccharomyces cerevisiae, from Baker's yeast. We examined whether PA YEAST SC-1 induces muscle hypertrophy and elucidated the underlying action mechanisms of polyamines and the active ingredients in PA YEAST SC-1 using C2C12 myotubes. PA YEAST SC-1 at 1 mg/mL increased myosin heavy chain expression in C2C12 myotubes. Mechanistically, PA YEAST SC-1 induced the activation of Akt/mechanistic target of rapamycin kinase/p70S6K signaling. Furthermore, PA YEAST SC-1 decreased the expression levels of the ubiquitin ligases, atrogin-1 and muscle RING finger-1, via forkhead box O1 phosphorylation. These findings suggest PA YEAST SC-1 as an effective food ingredient for the treatment of muscle hypertrophy.


Subject(s)
Quality of Life , Saccharomyces cerevisiae , Animals , Mice , Mice, Inbred C57BL , Muscle Fibers, Skeletal , Muscle, Skeletal/metabolism , Hypertrophy/metabolism , Hypertrophy/pathology , Muscular Atrophy/metabolism
17.
Bioorg Med Chem Lett ; 23(15): 4328-31, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23791076

ABSTRACT

Vialinin A, a small compound isolated from the Chinese mushroom Thelephora vialis, exhibits more effective anti-inflammatory activity than the widely used immunosuppressive drug tacrolimus (FK506). Here, we show that ubiquitin-specific peptidase 5/isopeptidase T (USP5/IsoT) is a target molecule of vialinin A, identified by using a beads-probe method. Vialinin A inhibited the peptidase activity of USP5/IsoT and also inhibited the enzymatic activities of USP4 among deubiquitinating enzymes tested. Although USPs are a member of thiol protease family, vialinin A exhibited no inhibitions for other thiol proteases, such as calpain and cathepsin.


Subject(s)
Anti-Inflammatory Agents/chemistry , Endopeptidases/chemistry , Protease Inhibitors/chemistry , Terphenyl Compounds/chemistry , Animals , Anti-Inflammatory Agents/metabolism , Cell Line , Endopeptidases/genetics , Endopeptidases/metabolism , Protease Inhibitors/metabolism , Protein Binding , Rats , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Terphenyl Compounds/metabolism
18.
J Nutr Sci Vitaminol (Tokyo) ; 69(4): 284-291, 2023.
Article in English | MEDLINE | ID: mdl-37648515

ABSTRACT

Skeletal muscle mass is maintained by a balance between the synthesis and degradation of muscle proteins, the collapse of which causes muscle wasting. The prevention of muscle wasting improves the quality of life and extends a healthy life. The methyl xanthine theophylline showed strong preventive activity against dexamethasone-induced muscle atrophy, as determined using the expression level of myosin heavy chain in C2C12 myotubes. Mechanistically, theophylline inhibited the expression of ubiquitin ligases MuRF1 and Cbl-b, but not that of atrogin-1. Furthermore, theophylline inhibits glucocorticoid receptor translocation to the nucleus. A pull-down assay using a theophylline probe revealed that theophylline and dexamethasone competitively interacted with the glucocorticoid receptor, suggesting an antagonistic activity of theophylline on glucocorticoid receptors. Additionally, theophylline inhibited the dexamethasone-induced phosphorylation of p38 and FoxO3a in C2C12 myotubes. These findings suggest that theophylline is an effective food ingredient in the prevention of glucocorticoid-induced skeletal muscle atrophy.


Subject(s)
Quality of Life , Theophylline , Humans , Theophylline/pharmacology , Receptors, Glucocorticoid , Muscular Atrophy/chemically induced , Muscular Atrophy/prevention & control , Muscle Fibers, Skeletal , Dexamethasone/adverse effects
19.
Food Funct ; 14(11): 5375-5390, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37218309

ABSTRACT

Mung beans are among the important edible legumes cultivated in Asia, Southern Europe, and Northern America. Mung beans contain 20-30% proteins with high digestibility and possess biological activities, but detailed health beneficial functions are not fully understood yet. In this study, we report the isolation and identification of active peptides from mung beans which promote glucose uptake and elucidate their mechanism in L6 myotubes. HTL, FLSSTEAQQSY, and TLVNPDGRDSY were isolated and identified as active peptides. These peptides promoted the translocation of glucose transporter 4 (GLUT4) to the plasma membrane. The tripeptide HTL promoted glucose uptake through the activation of adenosine monophosphate-activated protein kinase, while the oligopeptides FLSSTEAQQSY and TLVNPDGRDSY through the activation of the PI3K/Akt pathway. Furthermore, these peptides promoted the phosphorylation of Jak2 via interaction with the leptin receptor. Thus, mung bean is a promising functional food for the prevention of hyperglycemia and type 2 diabetes through promoting glucose uptake accompanied by JAK2 activation in the muscle cells.


Subject(s)
Diabetes Mellitus, Type 2 , Vigna , Glucose/metabolism , Muscle, Skeletal/metabolism , Diabetes Mellitus, Type 2/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Muscle Fibers, Skeletal/metabolism , Phosphorylation , Peptides/pharmacology , Peptides/metabolism , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Insulin/metabolism
20.
J Agric Food Chem ; 71(10): 4292-4297, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36753603

ABSTRACT

Diosgenin is an aglycone of dioscin, a major bioactive steroidal saponin found in plants, including Himalayan Paris (Paris polyphylla), fenugreek (Trigonella foenum-graecum), and yam (Dioscorea spp.). We have previously demonstrated that a species of natural yam, Dioscorea japonica, contains a promising bioactive compound diosgenin, which induces anti-carcinogenic and anti-hypertriacylglycerolemic activities. Here, we found for the first time that Japanese yam (D. japonica) bulbils are richer in diosgenin than the edible tubers (rhizomes) and leaves. LC-MS and imaging-MS analyses revealed that diosgenin accumulated in the peripheral region of D. japonica bulbils. Additionally, we performed RNA-seq analysis of D. japonica, and multiple sequence alignment identified D. japonica CYP90 (DjCYP90), the orthologous gene of CYP90G4 in P. polyphylla, CYP90B50 in T. foenum-graecum, CYP90G6 in Dioscorea zingiberensis, and CYP90G in Dioscorea villosa, which encodes a diosgenin biosynthetic rate-limiting enzyme. The expression levels of DjCYP90 were significantly upregulated in D. japonica bulbils than in its rhizomes and leaves. Since diosgenin is one of the most promising functional food factors executing several favorable bioactivities, D. japonica bulbils rich in diosgenin would be a beneficial natural resource.


Subject(s)
Dioscorea , Diosgenin , Dioscorea/genetics , Dioscorea/metabolism , Tissue Distribution , Mass Spectrometry , Gene Expression
SELECTION OF CITATIONS
SEARCH DETAIL