Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Plant Biotechnol J ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943653

ABSTRACT

Grain chalkiness is an undesirable trait that negatively regulates grain yield and quality in rice. However, the regulatory mechanism underlying chalkiness is complex and remains unclear. We identified a positive regulator of white-belly rate (WBR). The WBR7 gene encodes sucrose synthase 3 (SUS3). A weak functional allele of WBR7 is beneficial in increasing grain yield and quality. During the domestication of indica rice, a functional G/A variation in the coding region of WBR7 resulted in an E541K amino acid substitution in the GT-4 glycosyltransferase domain, leading to a significant decrease in decomposition activity of WBR7A (allele in cultivar Jin23B) compared with WBR7G (allele in cultivar Beilu130). The NIL(J23B) and knockout line NIL(BL130)KO exhibited lower WBR7 decomposition activity than that of NIL(BL130) and NIL(J23B)COM, resulting in less sucrose decomposition and metabolism in the conducting organs. This caused more sucrose transportation to the endosperm, enhancing the synthesis of storage components in the endosperm and leading to decreased WBR. More sucrose was also transported to the anthers, providing sufficient substrate and energy supply for pollen maturation and germination, ultimately leading to an increase rate of seed setting and increased grain yield. Our findings elucidate a mechanism for enhancing rice yield and quality by modulating sucrose metabolism and allocation, and provides a valuable allele for improved rice quality.

2.
New Phytol ; 237(6): 2422-2434, 2023 03.
Article in English | MEDLINE | ID: mdl-36495065

ABSTRACT

The endonuclease methyl methanesulfonate and UV-sensitive protein 81 (MUS81) has been reported to participate in DNA repair during mitosis and meiosis. However, the exact meiotic function of MUS81 in rice remains unclear. Here, we use a combination of physiological, cytological, and genetic approaches to provide evidence that MUS81 functions in atypical recombination intermediate resolution rather than crossover designation in rice. Cytological and genetic analysis revealed that the total chiasma numbers in mus81 mutants were indistinguishable from wild-type. The numbers of HEI10 foci (the sites of interference-sensitive crossovers) in mus81 were also similar to that of wild-type. Moreover, disruption of MUS81 in msh5 or msh4 msh5 background did not further decrease chiasmata frequency, suggesting that rice MUS81 did not function in crossover designation. Mutation of FANCM and ZEP1 could enhance recombination frequency. Unexpectedly, chromosome fragments and bridges were frequently observed in mus81 zep1 and mus81 fancm, illustrating that MUS81 may resolve atypical recombination intermediates. Taken together, our data suggest that MUS81 contributes little to crossover designation but plays a crucial role in the resolution of atypical meiotic intermediates by working together with other anti-crossover factors.


Subject(s)
Crossing Over, Genetic , Oryza , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Oryza/genetics , Oryza/metabolism , Meiosis/genetics , Endonucleases/genetics , Endonucleases/metabolism
3.
Int J Mol Sci ; 24(14)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37511319

ABSTRACT

Secondary metabolism plays an important role in the adaptation of plants to their environments, particularly by mediating bio-interactions and protecting plants from herbivores, insects, and pathogens. Terpenoids form the largest group of plant secondary metabolites, and their biosynthesis and regulation are extremely complicated. Terpenoids are key players in the interactions and defense reactions between plants, microorganisms, and animals. Terpene compounds are of great significance both to plants themselves and the ecological environment. On the one hand, while protecting plants themselves, they can also have an impact on the environment, thereby affecting the evolution of plant communities and even ecosystems. On the other hand, their economic value is gradually becoming clear in various aspects of human life; their potential is enormous, and they have broad application prospects. Therefore, research on terpenoids is crucial for plants, especially crops. This review paper is mainly focused on the following six aspects: plant terpenes (especially terpene volatiles and plant defense); their ecological functions; their biosynthesis and transport; related synthesis genes and their regulation; terpene homologues; and research and application prospects. We will provide readers with a systematic introduction to terpenoids covering the above aspects.


Subject(s)
Ecosystem , Terpenes , Animals , Humans , Terpenes/metabolism , Plants/genetics , Plants/metabolism , Herbivory
4.
Int J Mol Sci ; 24(11)2023 May 28.
Article in English | MEDLINE | ID: mdl-37298358

ABSTRACT

Short-term heat stress can affect the growth of rice (Oryza sativa L.) seedlings, subsequently decreasing yields. Determining the dynamic response of rice seedlings to short-term heat stress is highly important for accelerating research on rice heat tolerance. Here, we observed the seedling characteristics of two contrasting cultivars (T11: heat-tolerant and T15: heat-sensitive) after different durations of 42 °C heat stress. The dynamic transcriptomic changes of the two cultivars were monitored after 0 min, 10 min, 30 min, 1 h, 4 h, and 10 h of stress. The results indicate that several pathways were rapidly responding to heat stress, such as protein processing in the endoplasmic reticulum, glycerophospholipid metabolism, and plant hormone signal transduction. Functional annotation and cluster analysis of differentially expressed genes at different stress times indicate that the tolerant cultivar responded more rapidly and intensively to heat stress compared to the sensitive cultivar. The MAPK signaling pathway was found to be the specific early-response pathway of the tolerant cultivar. Moreover, by combining data from a GWAS and RNA-seq analysis, we identified 27 candidate genes. The reliability of the transcriptome data was verified using RT-qPCR on 10 candidate genes and 20 genes with different expression patterns. This study provides valuable information for short-term thermotolerance response mechanisms active at the rice seedling stage and lays a foundation for breeding thermotolerant varieties via molecular breeding.


Subject(s)
Oryza , Transcriptome , Oryza/metabolism , Reproducibility of Results , Plant Breeding , Heat-Shock Response/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Seedlings/genetics
5.
Int J Mol Sci ; 24(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38069282

ABSTRACT

Rice (Oryza sativa L.) is the staple food of more than half of Earth's population. Brown planthopper (Nilaparvata lugens Stål, BPH) is a host-specific pest of rice responsible for inducing major losses in rice production. Utilizing host resistance to control N. lugens is considered to be the most cost-effective method. Therefore, the exploration of resistance genes and resistance mechanisms has become the focus of breeders' attention. During the long-term co-evolution process, rice has evolved multiple mechanisms to defend against BPH infection, and BPHs have evolved various mechanisms to overcome the defenses of rice plants. More than 49 BPH-resistance genes/QTLs have been reported to date, and the responses of rice to BPH feeding activity involve various processes, including MAPK activation, plant hormone production, Ca2+ flux, etc. Several secretory proteins of BPHs have been identified and are involved in activating or suppressing a series of defense responses in rice. Here, we review some recent advances in our understanding of rice-BPH interactions. We also discuss research progress in controlling methods of brown planthoppers, including cultural management, trap cropping, and biological control. These studies contribute to the establishment of green integrated management systems for brown planthoppers.


Subject(s)
Hemiptera , Oryza , Animals , Oryza/metabolism , Quantitative Trait Loci , Plant Growth Regulators/metabolism , Hemiptera/genetics
6.
Int J Mol Sci ; 24(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36768236

ABSTRACT

Cold damage is one of the most important environmental factors influencing crop growth, development, and production. In this study, we generated a pair of near-isogenic lines (NILs), Towada and ZL31, and Towada showed more cold sensitivity than ZL31 in the rice seedling stage. To explore the transcriptional regulation mechanism and the reason for phenotypic divergence of the two lines in response to cold stress, an in-depth comparative transcriptome study under cold stress was carried out. Our analysis uncovered that rapid and high-amplitude transcriptional reprogramming occurred in the early stage of cold treatment. GO enrichment and KEGG pathway analysis indicated that genes of the response to stress, environmental adaptation, signal transduction, metabolism, photosynthesis, and the MAPK signaling pathway might form the main part of the engine for transcriptional reprogramming in response to cold stress. Furthermore, we identified four core genes, OsWRKY24, OsCAT2, OsJAZ9, and OsRR6, that were potential candidates affecting the cold sensitivity of Towada and ZL31. Genome re-sequencing analysis between the two lines revealed that only OsWRKY24 contained sequence variations which may change its transcript abundance. Our study not only provides novel insights into the cold-related transcriptional reprogramming process, but also highlights the potential candidates involved in cold stress.


Subject(s)
Cold-Shock Response , Oryza , Cold-Shock Response/genetics , Seedlings/genetics , Oryza/metabolism , Gene Expression Profiling , Transcriptome , Cold Temperature , Gene Expression Regulation, Plant
7.
Proc Natl Acad Sci U S A ; 116(32): 15967-15972, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31341087

ABSTRACT

The organization of microtubules into a bipolar spindle is essential for chromosome segregation. Both centrosome and chromatin-dependent spindle assembly mechanisms are well studied in mouse, Drosophila melanogaster, and Xenopus oocytes; however, the mechanism of bipolar spindle assembly in plant meiosis remains elusive. According to our observations of microtubule assembly in Oryza sativa, Zea mays, Arabidopsis thaliana, and Solanum lycopersicum, we propose that a key step of plant bipolar spindle assembly is the correction of the multipolar spindle into a bipolar spindle at metaphase I. The multipolar spindles failed to transition into bipolar ones in OsmtopVIB with the defect in double-strand break (DSB) formation. However, bipolar spindles were normally assembled in several other mutants lacking DSB formation, such as Osspo11-1, pair2, and crc1, indicating that bipolar spindle assembly is independent of DSB formation. We further revealed that the mono-orientation of sister kinetochores was prevalent in OsmtopVIB, whereas biorientation of sister kinetochores was frequently observed in Osspo11-1, pair2, and crc1 In addition, mutations of the cohesion subunit OsREC8 resulted in biorientation of sister kinetochores as well as bipolar spindles even in the background of OsmtopVIB Therefore, we propose that biorientation of the kinetochore is required for bipolar spindle assembly in the absence of homologous recombination.


Subject(s)
Meiosis , Oryza/cytology , Oryza/metabolism , Plant Proteins/metabolism , Spindle Apparatus/metabolism , DNA Breaks, Double-Stranded , Haploidy , Kinetochores/metabolism , Models, Biological , Mutation/genetics
8.
Int J Mol Sci ; 23(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36430643

ABSTRACT

Type-B response regulator proteins in rice contain a conserved receiver domain, followed by a GARP DNA binding domain and a longer C-terminus. Some type-B response regulators such as RR21, RR22 and RR23 are involved in the development of rice leaf, root, flower and trichome. In this study, to evaluate the application potential of type-B response regulators in rice genetic improvement, thirteen type-B response regulator genes in rice were respectively knocked out by using CRISPR/Cas9 genome editing technology. Two guide RNAs (gRNAs) were simultaneously expressed on a knockout vector to mutate one gene. T0 transformed plants were used to screen the plants with deletion of large DNA fragments through PCR with specific primers. The mutants of CRISPR/Cas9 gene editing were detected by Cas9 specific primer in the T1 generation, and homozygous mutants without Cas9 were screened, whose target regions were confirmed by sequencing. Mutant materials of 12 OsRRs were obtained, except for RR24. Preliminary phenotypic observation revealed variations of various important traits in different mutant materials, including plant height, tiller number, tillering angle, heading date, panicle length and yield. The osrr30 mutant in the T2 generation was then further examined. As a result, the heading date of the osrr30 mutant was delayed by about 18 d, while the yield was increased by about 30%, and the chalkiness was significantly reduced compared with those of the wild-type under field high temperature stress. These results indicated that osrr30 has great application value in rice breeding. Our findings suggest that it is feasible to perform genetic improvement of rice by editing the type-B response regulators.


Subject(s)
Oryza , Oryza/genetics , Oryza/metabolism , CRISPR-Cas Systems/genetics , Plant Breeding , Gene Editing/methods , Phenotype , Plants/genetics
9.
Plant Physiol ; 184(3): 1424-1437, 2020 11.
Article in English | MEDLINE | ID: mdl-32913047

ABSTRACT

Tiller angle largely determines plant architecture, which in turn substantially influences crop production by affecting planting density. A recent study revealed that HEAT STRESS TRANSCRIPTION FACTOR2D (HSFA2D) acts upstream of LAZY1 (LA1) to regulate tiller angle establishment in rice (Oryza sativa). However, the mechanisms underlying transcriptional regulation of HSFA2D remain unknown. In this study, two class II homeodomain-Leu zipper genes, OsHOX1 and OsHOX28, were identified as positive regulators of tiller angle by affecting shoot gravitropism. OsHOX1 and OsHOX28 showed strong transcriptional suppressive activity in rice protoplasts and formed intricate self- and mutual-transcriptional negative feedback loops. Moreover, OsHOX1 and OsHOX28 bound to the pseudopalindromic sequence CAAT(C/G)ATTG within the promoter of HSFA2D, thus suppressing its expression. In contrast to HSFA2D and LA1, OsHOX1 and OsHOX28 attenuated lateral auxin transport, thus repressing the expression of WUSCHEL-RELATED HOMEOBOX 6 (WOX6) and WOX11 in the lower side of the shoot base of plants subjected to gravistimulation. Genetic analysis further confirmed that OsHOX1 and OsHOX28 act upstream of HSFA2D Additionally, both OsHOX1 and OsHOX28 inhibit the expression of multiple OsYUCCA genes and decrease auxin biosynthesis. Taken together, these results demonstrated that OsHOX1 and OsHOX28 regulate the local distribution of auxin, and thus tiller angle establishment, through suppression of the HSFA2D-LA1 pathway and reduction of endogenous auxin content. Our finding increases the knowledge concerning fine tuning of tiller angles to optimize plant architecture in rice.


Subject(s)
Gravitropism/genetics , Heat Shock Transcription Factors/metabolism , Indoleacetic Acids/metabolism , Oryza/anatomy & histology , Oryza/growth & development , Oryza/genetics , Plant Shoots/growth & development , China , Crops, Agricultural/anatomy & histology , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Gene Expression Regulation, Plant , Genes, Plant , Heat Shock Transcription Factors/genetics , Plant Shoots/anatomy & histology , Plant Shoots/genetics
10.
New Phytol ; 227(5): 1417-1433, 2020 09.
Article in English | MEDLINE | ID: mdl-32433775

ABSTRACT

Plants maintain a dynamic balance between plant growth and stress tolerance to optimise their fitness and ensure survival. Here, we investigated the roles of a clade A type 2C protein phosphatase (PP2C)-encoding gene, OsPP2C09, in regulating the trade-off between plant growth and drought tolerance in rice (Oryza sativa L.). The OsPP2C09 protein interacted with the core components of abscisic acid (ABA) signalling and showed PP2C phosphatase activity in vitro. OsPP2C09 positively affected plant growth but acted as a negative regulator of drought tolerance through ABA signalling. Transcript and protein levels of OsPP2C09 were rapidly induced by exogenous ABA treatments, which suppressed excessive ABA signalling and plant growth arrest. OsPP2C09 transcript levels in roots were much higher than those in shoots under normal conditions. After ABA, polyethylene glycol and dehydration treatments, the accumulation rate of OsPP2C09 transcripts in roots was more rapid and greater than that in shoots. This differential expression between the roots and shoots may increase the plant's root-to-shoot ratio under drought-stress conditions. This study sheds new light on the roles of OsPP2C09 in coordinating plant growth and drought tolerance. In particular, we propose that OsPP2C09-mediated ABA desensitisation contributes to root elongation under drought-stress conditions in rice.


Subject(s)
Oryza , Abscisic Acid , Droughts , Gene Expression Regulation, Plant , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics
11.
Plant Physiol ; 180(2): 952-965, 2019 06.
Article in English | MEDLINE | ID: mdl-30926655

ABSTRACT

Stigma and ovule initiation is essential for sexual reproduction in flowering plants. However, the mechanism underlying the initiation of stigma and ovule primordia remains elusive. We identified a stigma-less mutant of rice (Oryza sativa) and revealed that it was caused by the mutation in the PINOID (OsPID) gene. Unlike the pid mutant that shows typical pin-like inflorescences in maize (Zea mays) and Arabidopsis (Arabidopsis thaliana), the ospid mutant does not display any defects in inflorescence development and flower initiation, and fails to develop normal ovules in most spikelets. The auxin activity in the young pistil of ospid was lower than that in the wild-type pistil. Furthermore, the expression of most auxin response factor genes was down-regulated, and OsETTIN1, OsETTIN2, and OsMONOPTEROS lost their rearrangements of expression patterns during pistil and stamen primordia development in ospid Moreover, the transcription of the floral meristem marker gene, OSH1, was down-regulated and FLORAL ORGAN NUMBER4, the putative ortholog of Arabidopsis CLAVATA3, was up-regulated in the pistil primordium of ospid These results suggested that the meristem proliferation in the pistil primordium might be arrested prematurely in ospid Based on these results, we propose that the OsPID-mediated auxin signaling pathway plays a crucial role in the regulation of rice stigma and ovule initiation by maintaining the floral meristem.


Subject(s)
Indoleacetic Acids/metabolism , Meristem/growth & development , Oryza/growth & development , Oryza/metabolism , Ovule/growth & development , Plant Proteins/metabolism , Signal Transduction , Arabidopsis/growth & development , Body Patterning , Cell Nucleus/metabolism , Down-Regulation/genetics , Flowers/growth & development , Flowers/metabolism , Gene Expression Regulation, Plant , Meristem/metabolism , Meristem/ultrastructure , Models, Biological , Mutation/genetics , Oryza/embryology , Oryza/genetics , Ovule/metabolism , Ovule/ultrastructure , Plant Proteins/genetics , Plant Vascular Bundle/metabolism , Seeds/embryology
12.
Int J Mol Sci ; 21(3)2020 Feb 10.
Article in English | MEDLINE | ID: mdl-32050518

ABSTRACT

High temperature at anthesis is one of the most serious stress factors for rice (Oryza sativa L.) production, causing irreversible yield losses and reduces grain quality. Illustration of thermotolerance mechanism is of great importance to accelerate rice breeding aimed at thermotolerance improvement. Here, we identified a new thermotolerant germplasm, SDWG005. Microscopical analysis found that stable anther structure of SDWG005 under stress may contribute to its thermotolerance. Dynamic transcriptomic analysis totally identified 3559 differentially expressed genes (DEGs) in SDWG005 anthers at anthesis under heat treatments, including 477, 869, 2335, and 2210 for 1, 2, 6, and 12 h, respectively; however, only 131 were regulated across all four-time-points. The DEGs were divided into nine clusters according to their expressions in these heat treatments. Further analysis indicated that some main gene categories involved in heat-response of SDWG005 anthers, such as transcription factors, nucleic acid and protein metabolisms related genes, etc. Comparison with previous studies indicates that a core gene-set may exist for thermotolerance mechanism. Expression and polymorphic analysis of agmatine-coumarin-acyltransferase gene OsACT in different accessions suggested that it may involve in SDWG005 thermotolerance. This study improves our understanding of thermotolerance mechanisms in rice anthers during anthesis, and also lays foundation for breeding thermotolerant varieties via molecular breeding.


Subject(s)
Oryza/genetics , Thermotolerance , Transcriptome , Acetyltransferases/genetics , Acetyltransferases/metabolism , Flowers/genetics , Flowers/growth & development , Oryza/growth & development , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
14.
Breed Sci ; 63(3): 347-52, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24273431

ABSTRACT

Brown planthopper (BPH) is the most damaging rice pest globally. Resistant varieties are the most effective and environmental strategy for protecting the rice crop from BPH. Functional markers (FMs) designed from polymorphic sites within gene sequences affecting phenotypic variation are highly efficient when used for marker assisted selection (MAS). Bph14 is the first and only cloned insect resistance gene so far in rice. Compared to the sequences of its non-effective alleles there are a number SNP differences. In this study, the method of allele-specific amplification (ASA) was adopted to design a simple, co-dominant, functional marker Bph14P/N for Bph14. Bph14P/N was combined with two specific dominant markers: one, named Bph14P, targets the promoter region of Bph14 and amplifies 566 bp fragments; and the other, Bph14N, targets the LRR region of bph14 and amplifies 345 bp fragments. Specificity and applicability of the functional marker system were verified in two breeding populations and a Chinese mini core collection of Oryza sativa. We recommend the use of this simple, low-cost marker system in routine genotyping for Bph14 in breeding populations.

15.
Front Plant Sci ; 14: 1250590, 2023.
Article in English | MEDLINE | ID: mdl-37615020

ABSTRACT

Although rice has many pests, brown planthopper (BPH) in particular is known to cause substantial damage. The pyramiding application of BPH-resistance genes BPH14 and BPH15 has proven effective in enhancing rice defense against BPH. However, the molecular mechanisms underlying BPH14/BPH15-conferred resistance remain unexplained. In this investigation, we analyzed the transcriptomes of near isogenic lines (NILs) containing either BPH14 (B14), BPH15 (B15), or BPH14/BPH15 (B1415), as well as their recurrent parent (RP) 'Wushansimiao'. In total, we detected 14,492 differentially expressed genes (DEGs) across 12 mRNA profiles of resistant NILs and RP at different feeding stages. In the transcriptomic analysis, 531 DEGs appeared to be common among the resistant NILs compared to RP before and after BPH feeding. These common DEGs were enriched in defense response, phosphorylation, and salt stress response. In addition, 258 DEGs shared only in resistant NILs were obtained among the different feeding stages, which were enriched in oxidative stress response, karrikin response, and chloroplast organization. Considering the expression patterns and relevant research reports associated with these DEGs, 21 were chosen as BPH resistance candidates. In rice protoplasts, the candidate DEG OsPOX8.1 was confirmed to increase reactive oxygen species (ROS) accumulation by chemiluminescence measurement. Our results provide valuable information to further explore the defense mechanism of insect-resistant gene pyramiding lines and develop robust strategies for insect control.

16.
Genes (Basel) ; 14(12)2023 12 12.
Article in English | MEDLINE | ID: mdl-38137023

ABSTRACT

The identification of superior haplotypes and haplotype combinations is essential for haplotype-based breeding (HBB), which provides selection targets for genomics-assisted breeding. In this study, genotypes of 42 functional genes in rice were analyzed by targeted capture sequencing in a panel of 180 Indica rice accessions. In total, 69 SNPs/Indels in seven genes were detected to be associated with grain length (GL), grain width (GW), ratio of grain length-width (L/W) and thousand-grain weight (TGW) using candidate gene-based association analysis, including BG1 and GS3 for GL, GW5 for GW, BG1 and GW5 for L/W, and AET1, SNAC1, qTGW3, DHD1 and GW5 for TGW. Furthermore, two haplotypes were identified for each of the seven genes according to these associated SNPs/Indels, and the amount of genetic variation explained by different haplotypes ranged from 3.24% to 27.66%. Additionally, three, three and eight haplotype combinations for GL, L/W and TGW explained 25.38%, 5.5% and 22.49% of the total genetic variation for each trait, respectively. Further analysis showed that Minghui63 had the superior haplotype combination Haplotype Combination 4 (HC4) for TGW. The most interesting finding was that some widely used restorer lines derived from Minghui63 also have the superior haplotype combination HC4, and our breeding varieties and lines using the haplotype-specific marker panel also confirmed that the TGW of the lines was much higher than that of their sister lines without HC4, suggesting that TGW-HC4 is the superior haplotype combination for TGW and can be utilized in rice breeding.


Subject(s)
Oryza , Oryza/genetics , Haplotypes , Alleles , Plant Breeding , Edible Grain/genetics
17.
Front Plant Sci ; 14: 1242089, 2023.
Article in English | MEDLINE | ID: mdl-37636117

ABSTRACT

Brown planthopper (Nilaparvata lugens Stål, BPH) is one of the most destructive pests of rice. Non-coding RNA plays an important regulatory role in various biological processes. However, comprehensive identification and characterization of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in BPH-infested rice have not been performed. Here, we performed a genome-wide analysis of lncRNAs and circRNAs in BPH6-transgenic (resistant, BPH6G) and Nipponbare (susceptible, NIP) rice plants before and after BPH feeding (early and late stage) via deep RNA-sequencing. A total of 310 lncRNAs and 129 circRNAs were found to be differentially expressed. To reveal the different responses of resistant and susceptible rice to BPH herbivory, the potential functions of these lncRNAs and circRNAs as competitive endogenous RNAs (ceRNAs) were predicted and investigated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Dual-luciferase reporter assays revealed that miR1846c and miR530 were targeted by the lncRNAs XLOC_042442 and XLOC_028297, respectively. In responsive to BPH infestation, 39 lncRNAs and 21 circRNAs were predicted to combine with 133 common miRNAs and compete for miRNA binding sites with 834 mRNAs. These mRNAs predictably participated in cell wall organization or biogenesis, developmental growth, single-organism cellular process, and the response to stress. This study comprehensively identified and characterized lncRNAs and circRNAs, and integrated their potential ceRNA functions, to reveal the rice BPH-resistance network. These results lay a foundation for further study on the functions of lncRNAs and circRNAs in the rice-BPH interaction, and enriched our understanding of the BPH-resistance response in rice.

18.
Front Plant Sci ; 14: 1213257, 2023.
Article in English | MEDLINE | ID: mdl-37426975

ABSTRACT

Introduction: The brown planthopper (Nilaparvata lugens Stål, BPH) is one of the most economically significant pests of rice. The Bph30 gene has been successfully cloned and conferred rice with broad-spectrum resistance to BPH. However, the molecular mechanisms by which Bph30 enhances resistance to BPH remain poorly understood. Methods: Here, we conducted a transcriptomic and metabolomic analysis of Bph30-transgenic (BPH30T) and BPH-susceptible Nipponbare plants to elucidate the response of Bph30 to BPH infestation. Results: Transcriptomic analyses revealed that the pathway of plant hormone signal transduction enriched exclusively in Nipponbare, and the greatest number of differentially expressed genes (DEGs) were involved in indole 3-acetic acid (IAA) signal transduction. Analysis of differentially accumulated metabolites (DAMs) revealed that DAMs involved in the amino acids and derivatives category were down-regulated in BPH30T plants following BPH feeding, and the great majority of DAMs in flavonoids category displayed the trend of increasing in BPH30T plants; the opposite pattern was observed in Nipponbare plants. Combined transcriptomics and metabolomics analysis revealed that the pathways of amino acids biosynthesis, plant hormone signal transduction, phenylpropanoid biosynthesis and flavonoid biosynthesis were enriched. The content of IAA significantly decreased in BPH30T plants following BPH feeding, and the content of IAA remained unchanged in Nipponbare. The exogenous application of IAA weakened the BPH resistance conferred by Bph30. Discussion: Our results indicated that Bph30 might coordinate the movement of primary and secondary metabolites and hormones in plants via the shikimate pathway to enhance the resistance of rice to BPH. Our results have important reference significance for the resistance mechanisms analysis and the efficient utilization of major BPH-resistance genes.

19.
Front Plant Sci ; 14: 1200014, 2023.
Article in English | MEDLINE | ID: mdl-37404541

ABSTRACT

The brown planthopper (BPH) (Nilaparvata lugens) sucks rice sap causing leaves to turn yellow and wither, often leading to reduced or zero yields. Rice co-evolved to resist damage by BPH. However, the molecular mechanisms, including the cells and tissues, involved in the resistance are still rarely reported. Single-cell sequencing technology allows us to analyze different cell types involved in BPH resistance. Here, using single-cell sequencing technology, we compared the response offered by the leaf sheaths of the susceptible (TN1) and resistant (YHY15) rice varieties to BPH (48 hours after infestation). We found that the 14,699 and 16,237 cells (identified via transcriptomics) in TN1 and YHY15 could be annotated using cell-specific marker genes into nine cell-type clusters. The two rice varieties showed significant differences in cell types (such as mestome sheath cells, guard cells, mesophyll cells, xylem cells, bulliform cells, and phloem cells) in the rice resistance mechanism to BPH. Further analysis revealed that although mesophyll, xylem, and phloem cells are involved in the BPH resistance response, the molecular mechanism used by each cell type is different. Mesophyll cell may regulate the expression of genes related to vanillin, capsaicin, and ROS production, phloem cell may regulate the cell wall extension related genes, and xylem cell may be involved in BPH resistance response by controlling the expression of chitin and pectin related genes. Thus, rice resistance to BPH is a complicated process involving multiple insect resistance factors. The results presented here will significantly promote the investigation of the molecular mechanisms underlying the resistance of rice to insects and accelerate the breeding of insect-resistant rice varieties.

20.
Breed Sci ; 62(2): 196-201, 2012 Jun.
Article in English | MEDLINE | ID: mdl-23136531

ABSTRACT

To exploit the genetic mechanism of cold tolerance in rice, cold tolerant near-isogenic lines (NILs) were developed by backcrossing Kunmingxiaobaigu (KMXBG), reported to be the most cold-tolerant variety at the booting stage, as donor, with the cold sensitive Japanese commercial japonica variety, Towada. Comparisons of cold tolerance-related traits between five BC(6)F(5) NILs and recurrent parent Towada under cold treatment and normal temperatures at the booting stage showed that the differences between the NILs and Towada were significant only for spikelet fertility-related traits. Analyses of cold tolerance in the NILs at the budding (germination), seedling and booting stages indicated both correlated effects and differences. Lines 1913-4 and 1916-1 showed strong and stable tolerance at all three stages. Whole genome marker screening showed that the proportion of genetic background recovery was more than 98%. Seventeen markers from KMXBG were introgressed in two or more NILs, and cold tolerance genes were possibly present in these marker regions. The NILs should be excellent materials for both rice improvement and map-based cloning of cold tolerance QTLs.

SELECTION OF CITATIONS
SEARCH DETAIL