Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 184(7): 1804-1820.e16, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33691139

ABSTRACT

SARS-CoV-2 has caused the global COVID-19 pandemic. Although passively delivered neutralizing antibodies against SARS-CoV-2 show promise in clinical trials, their mechanism of action in vivo is incompletely understood. Here, we define correlates of protection of neutralizing human monoclonal antibodies (mAbs) in SARS-CoV-2-infected animals. Whereas Fc effector functions are dispensable when representative neutralizing mAbs are administered as prophylaxis, they are required for optimal protection as therapy. When given after infection, intact mAbs reduce SARS-CoV-2 burden and lung disease in mice and hamsters better than loss-of-function Fc variant mAbs. Fc engagement of neutralizing antibodies mitigates inflammation and improves respiratory mechanics, and transcriptional profiling suggests these phenotypes are associated with diminished innate immune signaling and preserved tissue repair. Immune cell depletions establish that neutralizing mAbs require monocytes and CD8+ T cells for optimal clinical and virological benefit. Thus, potently neutralizing mAbs utilize Fc effector functions during therapy to mitigate lung infection and disease.


Subject(s)
Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , CD8-Positive T-Lymphocytes , COVID-19 , Immunoglobulin Fc Fragments/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , CHO Cells , COVID-19/immunology , COVID-19/therapy , Chlorocebus aethiops , Cricetulus , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred C57BL , SARS-CoV-2/immunology , Vero Cells , Viral Load
2.
Nat Immunol ; 21(11): 1327-1335, 2020 11.
Article in English | MEDLINE | ID: mdl-32839612

ABSTRACT

Although animal models have been evaluated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, none have fully recapitulated the lung disease phenotypes seen in humans who have been hospitalized. Here, we evaluate transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-hACE2) as a model of SARS-CoV-2 infection. Intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice results in high levels of viral infection in lungs, with spread to other organs. A decline in pulmonary function occurs 4 days after peak viral titer and correlates with infiltration of monocytes, neutrophils and activated T cells. SARS-CoV-2-infected lung tissues show a massively upregulated innate immune response with signatures of nuclear factor-κB-dependent, type I and II interferon signaling, and leukocyte activation pathways. Thus, the K18-hACE2 model of SARS-CoV-2 infection shares many features of severe COVID-19 infection and can be used to define the basis of lung disease and test immune and antiviral-based countermeasures.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/pathology , Immunity, Innate/immunology , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/pathology , Pneumonia/pathology , Angiotensin-Converting Enzyme 2 , Animals , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/immunology , Disease Models, Animal , Female , Humans , Interferon Type I/immunology , Interferon-gamma/immunology , Keratin-18/genetics , Leukocytes/immunology , Lymphocyte Activation/immunology , Male , Mice , Mice, Transgenic , Monocytes/immunology , NF-kappa B/immunology , Neutrophil Infiltration/immunology , Neutrophils/immunology , Pandemics , Pneumonia/genetics , Pneumonia/virology , Pneumonia, Viral/immunology , Promoter Regions, Genetic/genetics , SARS-CoV-2 , T-Lymphocytes/immunology , Vero Cells , Virus Replication/immunology
4.
Nat Immunol ; 16(12): 1215-27, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26479788

ABSTRACT

Enhancing the response to interferon could offer an immunological advantage to the host. In support of this concept, we used a modified form of the transcription factor STAT1 to achieve hyper-responsiveness to interferon without toxicity and markedly improve antiviral function in transgenic mice and transduced human cells. We found that the improvement depended on expression of a PARP9-DTX3L complex with distinct domains for interaction with STAT1 and for activity as an E3 ubiquitin ligase that acted on host histone H2BJ to promote interferon-stimulated gene expression and on viral 3C proteases to degrade these proteases via the immunoproteasome. Thus, PARP9-DTX3L acted on host and pathogen to achieve a double layer of immunity within a safe reserve in the interferon signaling pathway.


Subject(s)
Cysteine Endopeptidases/metabolism , Histones/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Ubiquitin-Protein Ligases/metabolism , Viral Proteins/metabolism , 3C Viral Proteases , Animals , Cell Line , Cell Nucleus/metabolism , Encephalomyocarditis virus/physiology , HEK293 Cells , Host-Pathogen Interactions , Humans , Immunoblotting , Interferon-beta/pharmacology , Interferon-gamma/pharmacology , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Confocal , Mutation , Poly(ADP-ribose) Polymerases/genetics , Protein Binding , RNA Interference , RNA-Directed DNA Polymerase , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Signal Transduction , Transcriptome/drug effects , Ubiquitin-Protein Ligases/genetics
5.
Nanotechnology ; 35(22)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38387092

ABSTRACT

Modification and functionalization of porous aromatic framework (PAF) materials have emerged as crucial research directions in various fields. In this study, we employed a hydrothermal method to synthesize a carbon quantum dots (CQDs) solution. By loading different amounts of CQDs onto the surface of PAF-45 material through ultrasonic and hydrothermal treatments, we successfully formed CQDs/PAF-45 composite materials. The introduction of CQDs effectively transformed the hydrophobic nature of PAF-45 into a hydrophilic material, thereby overcoming the challenge of achieving efficient contact between PAF catalysts and reactants in aqueous solutions. In the photocatalytic degradation experiments of Rhodamine B (RhB), tetracycline, CQDs/PAF-45 composite materials surpassed that of the pristine PAF-45 material. Notably, the 1 wt% CQDs/PAF-45 composite material exhibited the highest photocatalytic activity, with degradation efficiencies for Rhodamine B, tetracycline, and phenol approximately 1.4 times, 1.5 times and 1.5 times higher than those of the PAF-45 material, respectively.

6.
Public Health ; 230: 190-197, 2024 May.
Article in English | MEDLINE | ID: mdl-38565065

ABSTRACT

OBJECTIVES: In observational studies, the 25-hydroxyvitamin D (25(OH)D) level in body has been found to be closely related to particulate matter (PM) air pollution. In this study, we used the two-sample mendelian randomisation (MR) method to investigate and discuss the potential causal relationship and mode of influence. STUDY DESIGN: MR study. METHODS: PM data (PM10, PM2.5-10, PM2.5, PM2.5 absorbance) came from the UK Biobank database, and 25(OH)D data came from European Bioinformatics Institute (EBI) database. The analysis was conducted utilising three prominent methods (inverse-variance-weighted [IVW], MR-Egger, weighted median, weighted mode, and simple mode). The primary emphasis was placed on IVW, accompanied by heterogeneity and horizontal pleiotropy tests. Furthermore, sensitivity analysis was undertaken. RESULTS: The MR analysis revealed a significant association between exposure to PM10 and a decrease in levels of 25(OH)D (odds ratio [OR]: 0.878, 95% confidence interval [CI]: 0.789-0.977). However, no significant relationship was observed between PM2.5 exposure and 25(OH)D (OR: 0.943, 95%CI: 0.858-1.037). Further analysis indicated that the main contributor to the decline in 25(OH)D levels is linked to PM2.5-10 exposure (OR: 0.840, 95%CI: 0.751-0.940) and PM2.5 absorbance (OR: 0.875, 95%CI: 0.824-0.929). No heterogeneity and horizontal pleiotropy existed. CONCLUSIONS: The MR results suggest that PM (PM10, PM2.5-10 and PM2.5 absorbance) exposure lowers vitamin D (VD) levels, but PM2.5 was not found to have a significant effect on VD in humans.


Subject(s)
Air Pollution , Particulate Matter , Vitamin D/analogs & derivatives , Humans , Particulate Matter/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Calcifediol , Vitamins , Mendelian Randomization Analysis , Genome-Wide Association Study
7.
Angew Chem Int Ed Engl ; 62(9): e202217724, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36625565

ABSTRACT

We report the first highly enantioselective construction of silicon-stereocenters by asymmetric enamine catalysis. An unprecedented desymmetric intramolecular aldolization of prochiral siladials was thus developed for the facile access of multifunctional silicon-stereogenic silacycles in high to excellent enantioselectivity. With an enal moiety, these adducts could be readily elaborated for the diverse synthesis of silicon-stereogenic compounds, and for late-stage modification.

8.
Nature ; 534(7608): 538-43, 2016 06 23.
Article in English | MEDLINE | ID: mdl-27337340

ABSTRACT

Over 50% of patients who survive neuroinvasive infection with West Nile virus (WNV) exhibit chronic cognitive sequelae. Although thousands of cases of WNV-mediated memory dysfunction accrue annually, the mechanisms responsible for these impairments are unknown. The classical complement cascade, a key component of innate immune pathogen defence, mediates synaptic pruning by microglia during early postnatal development. Here we show that viral infection of adult hippocampal neurons induces complement-mediated elimination of presynaptic terminals in a murine WNV neuroinvasive disease model. Inoculation of WNV-NS5-E218A, a WNV with a mutant NS5(E218A) protein leads to survival rates and cognitive dysfunction that mirror human WNV neuroinvasive disease. WNV-NS5-E218A-recovered mice (recovery defined as survival after acute infection) display impaired spatial learning and persistence of phagocytic microglia without loss of hippocampal neurons or volume. Hippocampi from WNV-NS5-E218A-recovered mice with poor spatial learning show increased expression of genes that drive synaptic remodelling by microglia via complement. C1QA was upregulated and localized to microglia, infected neurons and presynaptic terminals during WNV neuroinvasive disease. Murine and human WNV neuroinvasive disease post-mortem samples exhibit loss of hippocampal CA3 presynaptic terminals, and murine studies revealed microglial engulfment of presynaptic terminals during acute infection and after recovery. Mice with fewer microglia (Il34(-/-) mice with a deficiency in IL-34 production) or deficiency in complement C3 or C3a receptor were protected from WNV-induced synaptic terminal loss. Our study provides a new murine model of WNV-induced spatial memory impairment, and identifies a potential mechanism underlying neurocognitive impairment in patients recovering from WNV neuroinvasive disease.


Subject(s)
Complement System Proteins/immunology , Memory Disorders/pathology , Memory Disorders/virology , Microglia/immunology , Neuronal Plasticity , Presynaptic Terminals/pathology , West Nile virus/pathogenicity , Animals , CA3 Region, Hippocampal/immunology , CA3 Region, Hippocampal/pathology , CA3 Region, Hippocampal/virology , Complement Activation , Complement Pathway, Classical/immunology , Disease Models, Animal , Female , Humans , Male , Memory Disorders/immunology , Memory Disorders/physiopathology , Mice , Neurons/immunology , Neurons/pathology , Neurons/virology , Presynaptic Terminals/immunology , Spatial Memory , West Nile Fever/pathology , West Nile Fever/physiopathology , West Nile Fever/virology , West Nile virus/immunology
9.
Angew Chem Int Ed Engl ; 61(38): e202208861, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-35880539

ABSTRACT

We report the development of bifunctional trifluoromethylsilyl reagents for selective trifluoromethylation. The newly developed reagent, Me2 (CH2 Cl)SiCF3 , allows highly enantioselective trifluoromethylations of ketones with broad scope. Notably, by taking advantage of the chloromethyl group, a tandem synthesis of chiral trifluoromethylated oxasilacyclopentanes is developed, paving way to α-CF3 tertiary alcohols with vicinal tertiary or quaternary stereocenters. Theoretical studies revealed the important role of nonclassical C-H⋅⋅⋅F-C interactions in stabilizing the transition state, and that the presence of the chlorine atom enhances such interactions for better enantiofacial control.

10.
J Org Chem ; 86(11): 7797-7805, 2021 06 04.
Article in English | MEDLINE | ID: mdl-34000179

ABSTRACT

The O-site reactivity of difluoroenoxysilanes is disclosed for the first time, which enabled the direct construction of versatile gem-difluoroalkenes through an unprecedented highly efficient addition reaction with ketenes. A series of valuable gem-difluoroenol esters were achieved in good to excellent yields. The synthetic versatility of this protocol is further demonstrated by the gram-scale synthesis and good functional group tolerance.


Subject(s)
Esters , Ketones , Catalysis , Ethylenes
11.
J Org Chem ; 86(13): 9206-9217, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34126743

ABSTRACT

An unprecedented catalyst-free reaction of benzo[b]thiophene-2,3-diones with difluoroenoxysilanes has been developed using either MeOH or H2O as the solvent, which constitutes a facile and efficient protocol for the solvent-controlled divergent synthesis of five- and seven-membered S-heterocycles featuring a gem-difluoromethylene group. A gram-scale synthesis and the diversification of the product transformations to other difluorinated S-heterocycles further highlight its utility.


Subject(s)
Solvents , Catalysis
12.
J Infect Dis ; 219(7): 1151-1161, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30339221

ABSTRACT

BACKGROUND: Recently there has been a growing interest in the potential for host transcriptomic analysis to augment the diagnosis of infectious diseases. METHODS: We compared nasal and blood samples for evaluation of the host transcriptomic response in children with acute respiratory syncytial virus (RSV) infection, symptomatic non-RSV respiratory virus infection, asymptomatic rhinovirus infection, and virus-negative asymptomatic controls. We used nested leave-one-pair-out cross-validation and supervised principal components analysis to define small sets of genes whose expression patterns accurately classified subjects. We validated gene classification scores using an external data set. RESULTS: Despite lower quality of nasal RNA, the number of genes detected by microarray in each sample type was equivalent. Nasal gene expression signal derived mainly from epithelial cells but also included a variable leukocyte contribution. The number of genes with increased expression in virus-infected children was comparable in nasal and blood samples, while nasal samples also had decreased expression of many genes associated with ciliary function and assembly. Nasal gene expression signatures were as good or better for discriminating between symptomatic, asymptomatic, and uninfected children. CONCLSUSIONS: Our results support the use of nasal samples to augment pathogen-based tests to diagnose viral respiratory infection.


Subject(s)
Nasal Mucosa/virology , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Tract Infections/diagnosis , Transcriptome , Adolescent , Asymptomatic Infections , Case-Control Studies , Child , Child, Preschool , Female , Gene Expression Profiling , Humans , Infant , Male , Nasal Mucosa/pathology , Picornaviridae Infections/blood , Picornaviridae Infections/diagnosis , Picornaviridae Infections/virology , Respiratory Syncytial Virus Infections/blood , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human , Respiratory Tract Infections/blood , Respiratory Tract Infections/virology , Rhinovirus
13.
J Am Chem Soc ; 141(26): 10530-10537, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31188574

ABSTRACT

Electrophilic aminations involve an umpolung of a nitrogen atom, providing an alternate, distinctive synthetic strategy. The recent advent of various designed O-substituted hydroxylamines has significantly advanced this research field. An underappreciated issue is atom economy of the transformations: The necessary activating group on the oxygen atom is left in coproduced waste. Herein, we describe Rh-catalyzed electrophilic amination of substituted isoxazolidin-5-ones for the synthesis of unprotected, cyclic ß-amino acids featuring either benzo-fused or spirocyclic scaffolds. Using the cyclic hydroxylamines allows for retaining both nitrogen and oxygen functionalities in the product. The traceless, redox neutral process proceeds on a gram scale with as little as 0.1 mol % catalyst loading. In contrast to related electrophilic aminations in the literature, a series of mechanistic experiments suggests a unique pathway involving spirocyclization, followed by the skeletal rearrangement. The insights provided herein shed light on a nuanced reactivity of the active species, Rh-nitrenoid generated from the activated hydroxylamine, and extend the knowledge on electrophilic aromatic substitutions.


Subject(s)
Amino Acids, Cyclic/chemical synthesis , Amination , Amino Acids, Cyclic/chemistry , Catalysis , Isoxazoles/chemistry , Molecular Structure , Rhodium/chemistry
14.
Blood ; 129(19): 2680-2692, 2017 05 11.
Article in English | MEDLINE | ID: mdl-28292947

ABSTRACT

A single subcutaneous (SC) injection of plerixafor results in rapid mobilization of hematopoietic progenitors, but fails to mobilize 33% of normal allogeneic sibling donors in 1 apheresis. We hypothesized that changing the route of administration of plerixafor from SC to IV may overcome the low stem cell yields and allow collection in 1 day. A phase 1 trial followed by a phase 2 efficacy trial was conducted in allogeneic sibling donors. The optimal dose of IV plerixafor was determined to be 0.32 mg/kg. The primary outcome of reducing the failure to collect ≥2 × 106 CD34+/kg recipient weight in 1 apheresis collection to ≤10% was not reached. The failure rate was 34%. Studies evaluating the stem cell phenotype and gene expression revealed a novel plasmacytoid dendritic cell precursor preferentially mobilized by plerixafor with high interferon-α producing ability. The observed cytomegalovirus (CMV) viremia rate for patients at risk was low (15%), as were the rates of acute grade 2-4 graft-versus-host disease (GVHD) (21%). Day 100 treatment related mortality was low (3%). In conclusion, plerixafor results in rapid stem cell mobilization regardless of route of administration and resulted in novel cellular composition of the graft and favorable recipient outcomes. These trials were registered at clinicaltrials.gov as #NCT00241358 and #NCT00914849.


Subject(s)
Hematopoietic Stem Cell Mobilization/methods , Hematopoietic Stem Cell Transplantation/methods , Heterocyclic Compounds/pharmacology , Peripheral Blood Stem Cells/drug effects , Administration, Intravenous , Adult , Aged , Antigens, CD34/analysis , Benzylamines , Blood Component Removal , Cyclams , Female , Graft vs Host Disease/etiology , Granulocyte Colony-Stimulating Factor/administration & dosage , Granulocyte Colony-Stimulating Factor/pharmacology , Hematopoietic Stem Cell Transplantation/adverse effects , Heterocyclic Compounds/administration & dosage , Heterocyclic Compounds/pharmacokinetics , Humans , Male , Middle Aged , Peripheral Blood Stem Cells/cytology , Tissue Donors , Transcriptome/drug effects , Transplantation, Homologous/adverse effects , Transplantation, Homologous/methods
15.
Org Biomol Chem ; 17(43): 9430-9434, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31663579

ABSTRACT

A highly efficient metal-free aldol-type reaction of various acetals or ketals with fluorinated silyl enol ethers catalysed by less than 1 mol% HClO4 (70 wt%, aq.) is developed. This provides expedient access to a wide array of valuable fluoroalkyl ethers featuring a ketone carbonyl functionality in good to excellent yields (40 examples). Furthermore, the thus obtained adducts are readily elaborated into other fluorine-containing alkyl ethers with a rich structure.

16.
Proc Natl Acad Sci U S A ; 113(52): 15144-15149, 2016 12 27.
Article in English | MEDLINE | ID: mdl-27965387

ABSTRACT

Phased small-interfering RNAs (phasiRNAs) are a special class of small RNAs, which are generated in 21- or 24-nt intervals from transcripts of precursor RNAs. Although phasiRNAs have been found in a range of organisms, their biological functions in plants have yet to be uncovered. Here we show that phasiRNAs generated by the photopheriod-sensetive genic male sterility 1 (Pms1) locus were associated with photoperiod-sensitive male sterility (PSMS) in rice, a germplasm that started the two-line hybrid rice breeding. The Pms1 locus encodes a long-noncoding RNA PMS1T that was preferentially expressed in young panicles. PMS1T was targeted by miR2118 to produce 21-nt phasiRNAs that preferentially accumulated in the PSMS line under long-day conditions. A single nucleotide polymorphism in PMS1T nearby the miR2118 recognition site was critical for fertility change, likely leading to differential accumulation of the phasiRNAs. This result suggested possible roles of phasiRNAs in reproductive development of rice, demonstrating the potential importance of this RNA class as regulators in biological processes.


Subject(s)
Oryza/genetics , Plant Infertility/genetics , Plant Proteins/genetics , RNA, Long Noncoding/genetics , RNA, Small Interfering/genetics , Chromosome Mapping , Cloning, Molecular , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Genetic Loci , Genetic Markers , Open Reading Frames , Phenotype , Photoperiod , Plant Proteins/physiology , Plants, Genetically Modified , Polymorphism, Single Nucleotide , RNA Interference , RNA, Plant/genetics
17.
J Environ Sci (China) ; 81: 4-16, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30975328

ABSTRACT

Core-shell magnetic seeds with certain adsorption capacity that were prepared by sulfated roasting, served as the core of a magnetic separation technology for purification of starch wastewater. XRD and SEM results indicate that magnetite's surface transformed to be porous α-Fe2O3 structure. Compared with magnetite particles, the specific surface area was significantly improved to be 8.361 from 2.591 m2/g, with little decrease in specific susceptibility. Zeta potential, FT-IR and XPS experiments indicate that both phosphate and starch adsorbed on the surface of the core-shell magnetic seeds by chemical adsorption, which fits well with the Langmuir adsorption model. The porous surface structure of magnetic seeds significantly contributes to the adsorption of phosphate and starch species, which can be efficiently removed to be 1.51 mg/L (phosphate) and 9.51 mg/L (starch) using magnetic separation.


Subject(s)
Phosphorus/analysis , Starch/analysis , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Ferrosoferric Oxide/chemistry , Magnetics , Sulfates/chemistry
18.
Chemistry ; 24(59): 15796-15800, 2018 Oct 22.
Article in English | MEDLINE | ID: mdl-30152580

ABSTRACT

In contrast to the widespread use of α-amino acid-equivalent enolates for the preparation of non-natural amino acids, the utilization of ß-amino-acid counterparts has been limited. This deficit has resulted in a short supply of ß2, 2 -amino acids bearing two substituents at the α-carbon, especially for peptide synthesis. Herein, racemic 4-substituted isoxazolidin-5-ones were used as precursors of ß2 -amino acid enolates in the direct catalytic diastereo- and enantioselective C-C bond-forming reactions, constructing two adjacent stereocenters in a highly stereoselective fashion. The obtained adducts were smoothly coupled with α-amino acid-derived α-ketoacids to afford α/ß2, 2 -hybrid dipeptides suitable for 9-fluorenylmethoxycarbonyl (Fmoc)-based solid-phase peptide synthesis. Moreover, the Mannich adducts obtained from isatin-derived imines were converted to spirocyclic ß-lactams, which have recently received increased attention due to their unique biological activities and conformational preferences.

19.
Angew Chem Int Ed Engl ; 57(3): 818-822, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29168280

ABSTRACT

ß-Amino acid incorporation has emerged as a promising approach to enhance the stability of parent peptides and to improve their biological activity. Owing to the lack of reliable access to ß2,2 -amino acids in a setting suitable for peptide synthesis, most contemporary research efforts focus on the use of ß3 - and certain ß2,3 -amino acids. Herein, we report the catalytic asymmetric synthesis of ß2,2 -amino acids and their incorporation into peptides by Fmoc-based solid-phase peptide synthesis (Fmoc-SPPS). A quaternary carbon center was constructed by the palladium-catalyzed decarboxylative allylation of 4-substituted isoxazolidin-5-ones. The N-O bond in the products not only acts as a traceless protecting group for ß-amino acids but also undergoes amide formation with α-ketoacids derived from Fmoc-protected α-amino acids, thus providing expeditious access to α-ß2,2 -dipeptides ready for Fmoc-SPPS.


Subject(s)
Amino Acids/chemistry , Fluorenes/chemistry , Peptides/chemical synthesis , Solid-Phase Synthesis Techniques/methods , Catalysis , Decarboxylation , Palladium/chemistry , Peptides/chemistry
20.
Angew Chem Int Ed Engl ; 56(9): 2459-2463, 2017 02 20.
Article in English | MEDLINE | ID: mdl-28097773

ABSTRACT

We report a highly stereoselective synthesis of all-carbon or fluorinated tetrasubstituted alkenes from diazo reagents and fluorinated enol silyl ethers, using C-F bond as a synthetic handle. Cationic AuI catalysis plays a key role in this reaction. Remarkable fluorine effects on the reactivity and selectivity was also observed.

SELECTION OF CITATIONS
SEARCH DETAIL