ABSTRACT
Physapubenolide (PB), a withanolide-type compound extracted from the traditional herb Physalis minima L., has been demonstrated to exert remarkable cytotoxicity against cancer cells; however, its molecular mechanisms are still unclear. In this study, we demonstrated that PB inhibited cell proliferation and migration in melanoma cells by inducing cell apoptosis. The anticancer activity of PB was further verified in a melanoma xenograft model. To explore the mechanism underlying the anticancer effects of PB, we carried out an in silico target prediction study, which combined three approaches (chemical similarity searching, quantitative structure-activity relationship (QSAR), and molecular docking) to identify the targets of PB, and found that PB likely targets 3-hydroxy-methylglutaryl CoA reductase (HMGCR), the rate-limiting enzyme of the mevalonate pathway, which promotes cancer cell proliferation, migration, and metastasis. We further demonstrated that PB interacted with HMGCR, decreased its protein expression and inhibited the HMGCR/YAP pathway in melanoma cells. In addition, we found that PB could restore vemurafenib sensitivity in vemurafenib-resistant A-375 cells, which was correlated with the downregulation of HMGCR. In conclusion, we demonstrate that PB elicits anticancer action and enhances sensitivity to vemurafenib by targeting HMGCR.
Subject(s)
Melanoma , Withanolides , Humans , Hydroxymethylglutaryl CoA Reductases/metabolism , Melanoma/drug therapy , Molecular Docking Simulation , Vemurafenib , Withanolides/pharmacologyABSTRACT
Eukaryotic elongation factor-2 kinase (eEF-2K), a negative regulator of protein synthesis, has been shown to play an important role in modulating autophagy and apoptosis in tumor cells under various stresses. In this study, we investigated the regulatory role of eEF-2K in pyroptosis (a new form of programmed necrosis) in doxorubicin-treated human melanoma cells. We found that doxorubicin (0.5-5 µmol/L) induced pyroptosis in melanoma cell lines SK-MEL-5, SK-MEL-28, and A-375 with high expression of DFNA5, but not in human breast cancer cell line MCF-7 with little expression of DFNA5. On the other hand, doxorubicin treatment activated autophagy in the melanoma cells; inhibition of autophagy by transfecting the cells with siRNA targeting Beclin1 or by pretreatment with chloroquine (20 µmol/L) significantly augmented pyroptosis, thus sensitizing the melanoma cells to doxorubicin. We further demonstrated that doxorubicin treatment activated eEF-2K in the melanoma cells, and silencing of eEF-2K blunted autophagic responses, but promoted doxorubicin-induced pyroptotic cell death. Taken together, the above results demonstrate that eEF-2K dictates the cross-talk between pyroptosis and autophagy in doxorubicin-treated human melanoma cells; suppression of eEF-2K results in inhibiting autophagy and augmenting pyroptosis, thus modulating the sensitivity of melanoma cells to doxorubicin, suggesting that targeting eEF-2K may reinforce the antitumor efficacy of doxorubicin, offering a new insight into tumor chemotherapy.
Subject(s)
Antineoplastic Agents/pharmacology , Autophagy/physiology , Doxorubicin/pharmacology , Elongation Factor 2 Kinase/metabolism , Melanoma/metabolism , Pyroptosis/physiology , Autophagy/drug effects , Caspase 3/metabolism , Cell Line, Tumor , Humans , Melanoma/drug therapy , Microtubule-Associated Proteins/metabolism , Pyroptosis/drug effects , Receptors, Estrogen/metabolismABSTRACT
Recent evidence shows that raddeanin A (RA), an oleanane-type triterpenoid saponin extracted from Anemone raddeana Regel, exerts remarkable cytotoxicity against cancer cells in vitro and in vivo. In addition, RA has also been found to activate autophagy in human gastric cancer cells. In this study, we investigated the molecular mechanisms underlying RA-induced autophagy as well as the relationship between RA-induced autophagy and its cytotoxicity in human breast cancer cells in vitro. Treatment with RA (2-8 µmol/L) dose-dependently enhanced autophagy, as evidenced by increased LC3 levels in breast cancer cell lines T47D, MCF-7 and MDA-MB-231. Furthermore, the Akt-mTOR-eEF-2K signaling pathway was demonstrated to be involved in RA-induced activation of autophagy in the 3 breast cancer cell lines. Treatment with RA (2-10 µmol/L) dose-dependently induced apoptosis in the 3 breast cancer cell lines. Pretreatment with the autophagy inhibitor chloroquine (CQ, 20 µmol/L) significantly enhanced RA-caused cytotoxicity via promoting apoptosis. In conclusion, our results suggest that modulating autophagy can reinforce the cytotoxicity of RA against human breast cancer cells.
Subject(s)
Antineoplastic Agents/pharmacology , Autophagy/drug effects , Breast Neoplasms/drug therapy , Elongation Factor 2 Kinase/metabolism , Saponins/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Chloroquine/pharmacology , Down-Regulation , Female , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolismABSTRACT
AIMS: Chronic spontaneous urticaria (CSU) is a common and debilitating skin disease that is difficult to control with existing treatments, and the pathogenesis of CSU has not been fully revealed. The aim of this study was to explore the underlying mechanisms of CSU and identify potential treatments. MATERIALS AND METHODS: Microarray datasets of CSU were obtained from Gene Expression Omnibus database. Differentially expressed genes between skin lesions of CSU and normal controls (LNS-DEGs) were identified, and the enrichment analyses of LNS-DEGs were performed. Hub genes of LNS-DEGs were selected by protein-protein interaction analysis. The co-expression and transcriptional regulatory networks of hub genes were conducted using GeneMANIA and TRRUST database, respectively. CIBERSORT was utilized for immune cell infiltration analysis. Experimental validation was performed by ß-hexosaminidase release examination and passive cutaneous anaphylaxis (PCA) mouse model. KEY FINDINGS: A total of 247 LNS-DEGs were identified, which were enriched in cell migration, cell chemotaxis, and inflammatory pathways such as TNF and interleukin (IL) -17 signaling pathway. Among LNS-DEGs, seven upregulated (PTGS2, CCL2, IL1B, CXCL1, IL6, VCAM1, ICAM1) and one downregulated hub gene (PECAM1) were selected. Immune infiltration analysis identified eight different immune cells, such as activated/resting mast cells and neutrophils. Furthermore, PTGS2, encoding cyclooxygenase 2 (COX2), was selected for further validation. COX2 inhibitor, celecoxib, significantly inhibited mast cell degranulation, and reduced vascular permeability and inflammatory cytokine expression in PCA mouse model. SIGNIFICANCE: PTGS2 may be a potential regulator of immunity and inflammation in CSU. Targeting PTGS2 is a new perspective for CSU treatment.
Subject(s)
Chronic Urticaria , Cyclooxygenase 2 , Animals , Mice , Chronic Urticaria/drug therapy , Chronic Urticaria/metabolism , Chronic Urticaria/pathology , Computational Biology , Cyclooxygenase 2/metabolism , Cytokines , Gene Regulatory Networks , Microarray AnalysisABSTRACT
Psoriasis is a chronic inflammatory skin disease featuring rapid proliferation of epidermal cells. Although elevated glycolysis flux has been reported in psoriasis, the molecular mechanisms underlying its pathogenesis remain unclear. We investigated the role of the integral membrane protein CD147 in psoriasis pathogenesis, observing its high expression in psoriatic skin lesions of humans and imiquimod (IMQ)-induced mouse models. In mouse models, genomic deletion of epidermal CD147 markedly attenuated IMQ-induced psoriatic inflammation. We found that CD147 interacted with glucose transporter 1 (Glut1). Depletion of CD147 in the epidermis blocked glucose uptake and glycolysis in vitro and in vivo. In CD147-knockout mice and keratinocytes, oxidative phosphorylation was increased in the epidermis, indicating CD147's pivotal role in glycolysis reprogramming during pathogenesis of psoriasis. Using non-targeted and targeted metabolic techniques, we found that epidermal deletion of CD147 significantly increased the production of carnitine and α-ketoglutaric acid (α-KG). Depletion of CD147 also increased transcriptional expression and activity of γ-butyrobetaine hydroxylase (γ-BBD/BBOX1), a crucial molecule for carnitine metabolism, by inhibiting histone trimethylations of H3K9. Our findings demonstrate that CD147 is critical in metabolic reprogramming through the α-KG-H3K9me3-BBOX1 axis in the pathogenesis of psoriasis, indicating that epidermal CD147 is a promising target for psoriasis treatment.
ABSTRACT
OBJECTIVE: Pancreatic cancer is one of the most malignant tumors, with rapid metastasis, high mortality rate, and difficult early screening. Currently, gemcitabine is a first-line drug for pancreatic cancer patients, but its clinical effect is limited due to drug resistance. It is particularly important to further identify biomarkers associated with gemcitabine resistance to improve the sensitivity of gemcitabine treatment. METHODS: Drug sensitivity data and the corresponding transcript data derived from the Genomics of Drug Sensitivity in Cancer (GDSC) database for correlation analysis was adopted to obtain genes related to gemcitabine sensitivity. Moreover, the survival model of pancreatic cancer patients treated with gemcitabine in The Cancer Genome Atlas (TCGA) database was utilized to obtain key genes. Multiple in vitro assays were performed to verify the function of the key biomarker. RESULTS: Endoplasmic Reticulum Aminopeptidase 2 (ERAP2) was identified as a biomarker promoting gemcitabine resistance, and its high expression resulted in a worse prognosis. Besides, gemcitabine significantly increased the mRNA and protein levels of ERAP2 in pancreatic cancer cells. Additionally, ERAP2 knockdown suppressed tumorigenesis and potentiated gemcitabine-induced growth, migration and invasion inhibition in human pancreatic cancer cells. CONCLUSIONS: ERAP2 may be a novel key biomarker for gemcitabine sensitivity and diagnosis, thus providing an effective therapeutic strategy for pancreatic cancer treatment.
Subject(s)
Drug Resistance, Neoplasm , Pancreatic Neoplasms , Humans , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , RNA, Messenger , Biomarkers , Aminopeptidases/pharmacology , Aminopeptidases/therapeutic use , Gemcitabine , Pancreatic NeoplasmsABSTRACT
Malignant melanoma (MM) is a highly life-threatening tumor causing the majority of the cutaneous cancer-related deaths. Previously, ribosomal protein S6 kinase 2 (RSK2), the downstream effector of the MAPK pathway, represents a therapeutic target in melanoma. AE007 is discovered as a targeted RSK2 inhibitor, and subsequent results showed that AE007 inhibits RSK2 by directly binding to its protein kinase domain. AE007 causes cell cycle arrest and cellular apoptosis, thereby dramatically inhibiting proliferation, migration, and invasion of melanoma cells. Nevertheless, melanocytes and keratinocytes are not affected by this compound. In addition, suppression of RSK2 abrogates the inhibitory effect of AE007 on melanoma cell proliferation. AE007 treatment significantly inhibits the expression of Cyclin D1, Cyclin B1, CDK2, and Bcl-2, while raises the cleavage of PARP. Moreover, RNA sequencing results show that AE007 treatment can affect the genes expression profile, including the expression of cell cycle and DNA replication genes. In conclusion, AE007 is a promising melanoma therapeutic agent by targeting RSK2.
Subject(s)
Apoptosis , Cell Cycle Checkpoints , Melanoma , Ribosomal Protein S6 Kinases, 90-kDa , Humans , Cell Cycle , Cell Line, Tumor , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors , Melanoma, Cutaneous MalignantABSTRACT
BACKGROUND: C-Jun, a critical component of AP-1, exerts essential functions in various tumors, including melanoma, and is believed to be a druggable target for cancer therapy. Unfortunately, no effective c-Jun inhibitors are currently approved for clinical use. The advent of immune checkpoint inhibitor (ICI) has brought a paradigm shift in melanoma therapy, but more than half of patients fail to exhibit clinical responses. The exploration of new combination therapies has become the current pursuit of melanoma treatment strategy. This study aims to screen out Chinese herbal monomers that can target c-Jun, explore the combined effect of c-Jun inhibitor and ICI, and further clarify the related molecular mechanism. METHODS: We adopted a combinatorial screening strategy, including molecular docking, ligand-based online approaches and consensus quantitative structure-activity relationship (QSAR) model, to filter out c-Jun inhibitors from a traditional Chinese medicine (TCM) library. A mouse melanoma model was used to evaluate the therapeutic efficacy of monotherapy and combination therapy. Multicolor flow cytometry was employed to assess the tumor microenvironment (TME). Multiple in vitro assays were performed to verify down-streaming signaling pathway. CD4 + T-cell differentiation assay was applied to investigate Treg differentiation in vitro. RESULTS: Ailanthone (AIL) was screened out as a c-Jun inhibitor, and inhibited melanoma cell growth by directly targeting c-Jun and promoting its degradation. Surprisingly, AIL also facilitated the therapeutic efficacy of anti-programmed death ligand-1 (PD-L1) in melanoma cells by reducing the infiltration of Tregs in TME. Additionally, AIL treatment inhibited c-Jun-induced PD-L1 expression and secretion. As a consequence, Treg differentiation was attenuated after treatment with AIL through the c-Jun/PD-L1 axis. CONCLUSION: Our findings identified AIL as a novel c-Jun inhibitor, and revealed its previously unrecognized anti-melanoma effects and the vital role in regulating TME by Treg suppression, which provides a novel combination therapeutic strategy of c-Jun inhibition by AIL with ICI. AIL down-regulates c-Jun by reducing its stability, and inhibits the function of Tregs via AIL-c-Jun-PD-L1 pathway, ultimately suppressing melanoma progression and enhancing the efficacy of anti-PD-L1.
Subject(s)
Melanoma , Animals , Humans , Mice , B7-H1 Antigen/metabolism , Cell Line, Tumor , Melanoma/pathology , Molecular Docking Simulation , Tumor MicroenvironmentABSTRACT
Currently, pyroptosis has received more and more attention because of its association with innate immunity and disease. The research scope of pyroptosis has expanded with the discovery of the gasdermin family. A great deal of evidence shows that pyroptosis can affect the development of tumors. The relationship between pyroptosis and tumors is diverse in different tissues and genetic backgrounds. In this review, we provide basic knowledge of pyroptosis, explain the relationship between pyroptosis and tumors, and focus on the significance of pyroptosis in tumor treatment. In addition, we further summarize the possibility of pyroptosis as a potential tumor treatment strategy and describe the side effects of radiotherapy and chemotherapy caused by pyroptosis. In brief, pyroptosis is a double-edged sword for tumors. The rational use of this dual effect will help us further explore the formation and development of tumors, and provide ideas for patients to develop new drugs based on pyroptosis.
Subject(s)
Immunity, Innate/genetics , Neoplasm Proteins/genetics , Neoplasms/genetics , Pyroptosis/genetics , Drug-Related Side Effects and Adverse Reactions , Humans , Neoplasm Proteins/antagonists & inhibitors , Neoplasms/complications , Neoplasms/drug therapy , Neoplasms/radiotherapy , Pore Forming Cytotoxic Proteins/genetics , Radiotherapy/adverse effectsABSTRACT
The M2 isoform of pyruvate kinase (PKM2), as a key glycolytic enzyme, plays important roles in tumorigenesis and chemotherapeutic drug resistance. However, the intricate mechanism of PKM2 as a protein kinase regulating breast cancer progression and tamoxifen resistance needs to be further clarified. Here, we reported that PKM2 controls the expression of survivin by phosphorylating c-Myc at Ser-62. Functionally, PKM2 knockdown suppressed breast cancer cell proliferation and migration, which could be rescued by overexpression of survivin. Interestingly, we found that the level of PKM2 expression was upregulated in the tamoxifen resistant breast cancer cells MCF-7/TAMR, and knockdown of PKM2 sensitized the cells to 4-hydroxytamoxifen (4OH-T). In addition, the elevated level of PKM2 correlates with poor relapse-free survival in breast cancer patients treated with tamoxifen. Overall, our findings demonstrated that PKM2-c-Myc-survivin cascade regulated the proliferation, migration and tamoxifen resistance of breast cancer cells, suggesting that PKM2 represents a novel prognostic marker and an attractive target for breast cancer therapeutics, and that PKM2 inhibitor combined with tamoxifen may be a promising strategy to reverse tamoxifen resistance in breast cancer patients.
ABSTRACT
Purpose: To determine the role of UCH-L1 in regulating ERα expression, and to evaluate whether therapeutic targeting of UCH-L1 can enhance the efficacy of anti-estrogen therapy against breast cancer with loss or reduction of ERα. Methods: Expressions of UCH-L1 and ERα were examined in breast cancer cells and patient specimens. The associations between UCH-L1 and ERα, therapeutic response and prognosis in breast cancer patients were analyzed using multiple databases. The molecular pathways by which UCH-L1 regulates ERα were analyzed using immunoblotting, qRT-PCR, immunoprecipitation, ubiquitination, luciferase and ChIP assays. The effects of UCH-L1 inhibition on the efficacy of tamoxifen in ERα (-) breast cancer cells were tested both in vivo and in vitro. Results: UCH-L1 expression was conversely correlated with ERα status in breast cancer, and the negative regulatory effect of UCH-L1 on ERα was mediated by the deubiquitinase-mediated stability of EGFR, which suppresses ERα transcription. High expression of UCH-L1 was associated with poor therapeutic response and prognosis in patients with breast cancer. Up-regulation of ERα caused by UCH-L1 inhibition could significantly enhance the efficacy of tamoxifen and fulvestrant in ERα (-) breast cancer both in vivo and in vitro. Conclusions: Our results reveal an important role of UCH-L1 in modulating ERα status and demonstrate the involvement of UCH-L1-EGFR signaling pathway, suggesting that UCH-L1 may serve as a novel adjuvant target for treatment of hormone therapy-insensitive breast cancers. Targeting UCH-L1 to sensitize ER negative breast cancer to anti-estrogen therapy might represent a new therapeutic strategy that warrants further exploration.