Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 448
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(28): e2403143121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38959041

ABSTRACT

Currently, the nanofluidic synapse can only perform basic neuromorphic pulse patterns. One immediate problem that needs to be addressed to further its capability of brain-like computing is the realization of a nanofluidic spiking device. Here, we report the use of a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate membrane to achieve bionic ionic current-induced spiking. In addition to the simulation of various electrical pulse patterns, our synapse could produce transmembrane ionic current-induced spiking, which is highly analogous to biological action potentials with similar phases and excitability. Moreover, the spiking properties could be modulated by ions and neurochemicals. We expect that this work could contribute to biomimetic spiking computing in solution.


Subject(s)
Action Potentials , Polystyrenes , Synapses , Action Potentials/physiology , Synapses/physiology , Polystyrenes/chemistry , Nanotechnology/methods , Nanotechnology/instrumentation
2.
PLoS Genet ; 19(7): e1010867, 2023 07.
Article in English | MEDLINE | ID: mdl-37523410

ABSTRACT

Many filamentous fungi produce plant-polysaccharide-degrading enzymes (PPDE); however, the regulatory mechanism of this process is poorly understood. A Gal4-like transcription factor, CxrA, is essential for mycelial growth and PPDE production in Penicillium oxalicum. Its N-terminal region, CxrAΔ207-733 is required for the regulatory functions of whole CxrA, and contains a DNA-binding domain (CxrAΔ1-16&Δ59-733) and a methylated arginine (R) 94. Methylation of R94 is mediated by an arginine N-methyltransferase, PRMT2 and appears to induce dimerization of CxrAΔ1-60. Overexpression of prmt2 in P. oxalicum increases PPDE production by 41.4-95.1% during growth on Avicel, compared with the background strain Δku70;hphR+. Another arginine N-methyltransferase, PRMT3, appears to assist entry of CxrA into the nucleus, and interacts with CxrAΔ1-60 in vitro under Avicel induction. Deletion of prmt3 resulted in 67.0-149.7% enhanced PPDE production by P. oxalicum. These findings provide novel insights into the regulatory mechanism of fungal PPDE production.


Subject(s)
Penicillium , Protein-Arginine N-Methyltransferases , Protein-Arginine N-Methyltransferases/genetics , Penicillium/genetics , Cellulose , Arginine
3.
Glia ; 72(5): 872-884, 2024 May.
Article in English | MEDLINE | ID: mdl-38258347

ABSTRACT

RB1 deficiency leads to retinoblastoma (Rb), the most prevalent intraocular malignancy. Tumor-associated macrophages (TAMs) are related to local inflammation disorder, particularly by increasing cytokines and immune escape. Microglia, the unique resident macrophages for retinal homeostasis, are the most important immune cells of Rb. However, whether RB1 deficiency affects microglial function remain unknown. In this study, microglia were successfully differentiated from Rb patient- derived human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs), and then we investigated the function of RB1 in microglia by live imaging phagocytosis assay, immunofluorescence, RNA-seq, qRT-PCR, ELISA and retina organoids/microglia co-culturing. RB1 was abundantly expressed in microglia and predominantly located in the nucleus. We then examined the phagocytosis ability and secretion function of iMGs in vitro. We found that RB1 deficiency did not affect the expression of microglia-specific markers or the phagocytic abilities of these cells by live-imaging. Upon LPS stimulation, RB1-deficient microglia displayed enhanced innate immune responses, as evidenced by activated MAPK signaling pathway and elevated expression of IL-6 and TNF-α at both mRNA and protein levels, compared to wildtype microglia. Furthermore, retinal structure disruption was observed when retinal organoids were co-cultured with RB1-deficient microglia, highlighting the potential contribution of microglia to Rb development and potential therapeutic strategies for retinoblastoma.


Subject(s)
Induced Pluripotent Stem Cells , Retinal Neoplasms , Retinoblastoma , Humans , Retinoblastoma/genetics , Retinoblastoma/metabolism , Retinoblastoma/pathology , Microglia/metabolism , Induced Pluripotent Stem Cells/metabolism , Retina , Retinal Neoplasms/genetics , Retinal Neoplasms/metabolism , Retinal Neoplasms/pathology
4.
Biochem Biophys Res Commun ; 712-713: 149946, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38643717

ABSTRACT

Platelets are small anucleate cells that play a key role in thrombosis and hemostasis. Our group previously identified apolipoprotein A-IV (apoA-IV) as an endogenous inhibitor of thrombosis by competitive blockade of the αIIbß3 integrin on platelets. ApoA-IV inhibition of platelets was dependent on the N-terminal D5/D13 residues, and enhanced with absence of the C-terminus, suggesting it sterically hinders its N-terminal platelet binding site. The C-terminus is also the site of common apoA-IV polymorphisms apoA-IV-1a (T347S) and apoA-IV-2 (Q360H). Interestingly, both are linked with an increased risk of cardiovascular disease, however, the underlying mechanism remains unclear. Here, we generated recombinant apoA-IV and found that the Q360H or T347S polymorphisms dampened its inhibition of platelet aggregation in human platelet-rich plasma and gel-filtered platelets, reduced its inhibition of platelet spreading, and its inhibition of P-selectin on activated platelets. Using an ex vivo thrombosis assay, we found that Q360H and T347S attenuated its inhibition of thrombosis at both high (1800s-1) and low (300s-1) shear rates. We then demonstrate a conserved monomer-dimer distribution among apoA-IV WT, Q360H, and T347S and use protein structure modelling software to show Q360H and T347S enhance C-terminal steric hindrance over the N-terminal platelet-binding site. These data provide critical insight into increased cardiovascular risk for individuals with Q360H or T347S polymorphisms.


Subject(s)
Apolipoproteins A , Blood Platelets , Platelet Aggregation , Thrombosis , Humans , Thrombosis/genetics , Thrombosis/metabolism , Platelet Aggregation/drug effects , Platelet Aggregation/genetics , Blood Platelets/metabolism , Blood Platelets/drug effects , Polymorphism, Genetic , Apoprotein(a)/genetics , Apoprotein(a)/metabolism , Apoprotein(a)/chemistry , P-Selectin/genetics , P-Selectin/metabolism
5.
Small ; 20(13): e2307067, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37972263

ABSTRACT

This work proposes the concept of single-cell microRNA (miR) therapy and proof-of-concept by engineering a nanopipette for high-precision miR-21-targeted therapy in a single HeLa cell with sensitive photoelectrochemical (PEC) feedback. Targeting the representative oncogenic miR-21, the as-functionalized nanopipette permits direct intracellular drug administration with precisely controllable dosages, and the corresponding therapeutic effects can be sensitively transduced by a PEC sensing interface that selectively responds to the indicator level of cytosolic caspase-3. The experimental results reveal that injection of ca. 4.4 × 10-20 mol miR-21 inhibitor, i.e., 26488 copies, can cause the obvious therapeutic action in the targeted cell. This work features a solution to obtain the accurate knowledge of how a certain miR-drug with specific dosages treats the cells and thus provides an insight into futuristic high-precision clinical miR therapy using personalized medicine, provided that the prerequisite single-cell experiments are courses of personalized customization.


Subject(s)
MicroRNAs , Humans , HeLa Cells , Feedback , Precision Medicine
6.
Chembiochem ; : e202400269, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923255

ABSTRACT

The human malaria parasite Plasmodium falciparum (P. falciparum) continues to pose a significant public health challenge, leading to millions of fatalities globally. Halofuginone (HF) has shown a significant anti-P. falciparum effect, suggesting its potential as a therapeutic agent for malaria treatment. In this study, we synthesized a photoaffinity labeling probe of HF to identify its direct target in P. falciparum. Our results reveal that ubiquitin carboxyl-terminal hydrolase 3 (PfUCHL3) acts as a crucial target protein of HF, which modulates parasite growth in the intraerythrocytic cycle. In particular, we discovered that HF potentially forms hydrogen bonds with the Leu10, Glu11, and Arg217 sites of PfUCHL3, thereby inducing an allosteric effect by promoting the embedding of the helix 6' region on the protein surface. Furthermore, HF disrupts the expression of multiple functional proteins mediated by PfUCHL3, specifically those that play crucial roles in amino acid biosynthesis and metabolism in P. falciparum. Taken together, this study highlights PfUCHL3 as a previously undisclosed druggable target of HF, which contributes to the development of novel anti-malarial agents in the future.

7.
Nat Methods ; 18(10): 1223-1232, 2021 10.
Article in English | MEDLINE | ID: mdl-34608315

ABSTRACT

Spatial metabolomics can reveal intercellular heterogeneity and tissue organization. Here we report on the spatial single nuclear metabolomics (SEAM) method, a flexible platform combining high-spatial-resolution imaging mass spectrometry and a set of computational algorithms that can display multiscale and multicolor tissue tomography together with identification and clustering of single nuclei by their in situ metabolic fingerprints. We first applied SEAM to a range of wild-type mouse tissues, then delineated a consistent pattern of metabolic zonation in mouse liver. We further studied the spatial metabolic profile in the human fibrotic liver. We discovered subpopulations of hepatocytes with special metabolic features associated with their proximity to the fibrotic niche, and validated this finding by spatial transcriptomics with Geo-seq. These demonstrations highlighted SEAM's ability to explore the spatial metabolic profile and tissue histology at the single-cell level, leading to a deeper understanding of tissue metabolic organization.


Subject(s)
Cellular Microenvironment , Computational Biology/methods , Liver Cirrhosis/metabolism , Liver/cytology , Algorithms , Animals , Hepatocytes/physiology , Humans , Liver/physiology , Metabolomics/methods , Mice , Reproducibility of Results , Single Molecule Imaging , Transcriptome
8.
Appl Environ Microbiol ; 90(1): e0130023, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38112424

ABSTRACT

Streptomyces bingchenggensis is an industrial producer of milbemycins, which are important anthelmintic and insecticidal agents. Two-component systems (TCSs), which are typically situated in the same operon and are composed of a histidine kinase and a response regulator, are the predominant signal transduction pathways involved in the regulation of secondary metabolism in Streptomyces. Here, an atypical TCS, AtcR/AtcK, in which the encoding genes (sbi_06838/sbi_06839) are organized in a head-to-head pair, was demonstrated to be indispensable for the biosynthesis of multiple secondary metabolites in S. bingchenggensis. With the null TCS mutants, the production of milbemycin and yellow compound was abolished but nanchangmycin was overproduced. Transcriptional analysis and electrophoretic mobility shift assays showed that AtcR regulated the biosynthesis of these three secondary metabolites by a MilR3-mediated cascade. First, AtcR was activated by phosphorylation from signal-triggered AtcK. Second, the activated AtcR promoted the transcription of milR3. Third, MilR3 specifically activated the transcription of downstream genes from milbemycin and yellow compound biosynthetic gene clusters (BGCs) and nanR4 from the nanchangmycin BGC. Finally, because NanR4 is a specific repressor in the nanchangmycin BGC, activation of MilR3 downstream genes led to the production of yellow compound and milbemycin but inhibited nanchangmycin production. By rewiring the regulatory cascade, two strains were obtained, the yield of nanchangmycin was improved by 45-fold to 6.08 g/L and the production of milbemycin was increased twofold to 1.34 g/L. This work has broadened our knowledge on atypical TCSs and provided practical strategies to engineer strains for the production of secondary metabolites in Streptomyces.IMPORTANCEStreptomyces bingchenggensis is an important industrial strain that produces milbemycins. Two-component systems (TCSs), which consist of a histidine kinase and a response regulator, are the predominant signal transduction pathways involved in the regulation of secondary metabolism in Streptomyces. Coupled encoding genes of TCSs are typically situated in the same operon. Here, TCSs with encoding genes situated in separate head-to-head neighbor operons were labeled atypical TCSs. It was found that the atypical TCS AtcR/AtcK played an indispensable role in the biosynthesis of milbemycin, yellow compound, and nanchangmycin in S. bingchenggensis. This atypical TCS regulated the biosynthesis of specialized metabolites in a cascade mediated via a cluster-situated regulator, MilR3. Through rewiring the regulatory pathways, strains were successfully engineered to overproduce milbemycin and nanchangmycin. To the best of our knowledge, this is the first report on atypical TCS, in which the encoding genes of RR and HK were situated in separate head-to-head neighbor operons, involved in secondary metabolism. In addition, data mining showed that atypical TCSs were widely distributed in actinobacteria.


Subject(s)
Ethers , Macrolides , Spiro Compounds , Streptomyces , Histidine Kinase/metabolism , Streptomyces/genetics , Bacterial Proteins/genetics
9.
Exp Eye Res ; 243: 109910, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663720

ABSTRACT

Fluorescent proteins (FPs) have been widely used to investigate cellular and molecular interactions and trace biological events in many applications. Some of the FPs have been demonstrated to cause undesirable cellular damage by light-induced ROS production in vivo or in vitro. However, it remains unknown if one of the most popular FPs, tdTomato, has similar effects in neuronal cells. In this study, we discovered that tdTomato expression led to unexpected retinal dysfunction and ultrastructural defects in the transgenic mouse retina. The retinal dysfunction mainly manifested in the reduced photopic electroretinogram (ERG) responses and decreased contrast sensitivity in visual acuity, caused by mitochondrial damages characterized with cellular redistribution, morphological modifications and molecular profiling alterations. Taken together, our findings for the first time demonstrated the retinal dysfunction and ultrastructural defects in the retinas of tdTomato-transgenic mice, calling for a more careful design and interpretation of experiments involved in FPs.


Subject(s)
Electroretinography , Mice, Transgenic , Retina , Animals , Mice , Retina/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice, Inbred C57BL , Visual Acuity/physiology , Mitochondria/metabolism , Red Fluorescent Protein
10.
Eur Radiol ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760508

ABSTRACT

OBJECTIVES: To investigate the value of extracellular volume (ECV) fraction and fat fraction (FF) derived from dual- energy CT (DECT) for predicting postpancreatectomy acute pancreatitis (PPAP) after pancreatoduodenectomy (PD). METHODS: This retrospective study included patients who underwent DECT and PD between April 2022 and September 2022. PPAP was determined according to the International Study Group for Pancreatic Surgery (ISGPS) definition. Iodine concentration (IC) and FF of the pancreatic parenchyma were measured on preoperative DECT. The ECV fraction was calculated from iodine map images of the equilibrium phase. The independent predictors for PPAP were assessed by univariate and multivariable logistic regression analysis and receiver operating characteristic (ROC) curve analysis. RESULTS: Sixty-nine patients were retrospectively enrolled (median age, 60 years; interquartile range, 55-70 years; 47 men). Of these, nine patients (13.0%) developed PPAP. These patients had lower portal venous phase IC, equilibrium phase IC, FF, and ECV fraction, and higher pancreatic parenchymal-to-portal venous phase IC ratio and pancreatic parenchymal-to-equilibrium phase IC ratio, compared with patients without PPAP. After multivariable analysis, ECV fraction was independently associated with PPAP (odd ratio [OR], 0.87; 95% confidence interval [CI]: 0.79, 0.96; p < 0.001), with an area under the curve (AUC) of 0.839 (sensitivity 100.0%, specificity 58.3%). CONCLUSIONS: A lower ECV fraction is independently associated with the occurrence of PPAP after PD. ECV fraction may serve as a potential predictor for PPAP after PD. CLINICAL RELEVANCE STATEMENT: DECT-derived ECV fraction of pancreatic parenchyma is a promising biomarker for surgeons to preoperatively identify patients with higher risk for postpancreatectomy acute pancreatitis after PD and offer selective perioperative management. KEY POINTS: PPAP is a complication of pancreatic surgery, early identification of higher-risk patients allows for risk mitigation. Lower DECT-derived ECV fraction was independently associated with the occurrence of PPAP after PD. DECT aids in preoperative PAPP risk stratification, allowing for appropriate treatment to minimize complications.

11.
Cerebrovasc Dis ; 53(1): 14-27, 2024.
Article in English | MEDLINE | ID: mdl-37423205

ABSTRACT

INTRODUCTION: Poststroke sleep disturbances are common and can affect stroke outcomes, but the clinical studies mainly focus on breathing-related sleep disorders, while the bidirectional impact of circadian rhythm dysfunction in ischemic stroke remains unknown. This study observed the characteristics of melatonin secretion in acute ischemic stroke patients and evaluated whether melatonin rhythm impacts the prognosis after stroke by assessing the neurological function, cognition, emotion, and quality of life 3 months after stroke. METHODS: Acute ischemic stroke patients were selected from the Department of Neurology Inpatients of the Second Hospital affiliated with Soochow University from October 2019 to July 2021. Healthy control subjects were recruited at the same time. Demographic and clinical data were collected, and relevant scale scores (including neurological function, cognition, emotion, and sleep) were assessed within 2 weeks of onset and followed up 3 months later. All participants collected salivary melatonin samples on the 4th day of hospitalization and dim light melatonin onset (DLMO) was calculated according to melatonin concentration. Stroke patients were then divided into three groups based on their DLMO values. RESULTS: A total of 74 stroke patients and 33 control subjects were included in this analysis. Compared with healthy controls, stroke patients exhibited a delayed melatonin rhythm during the acute phase of stroke (21:36 vs. 20:38, p = 0.004). Stroke patients were then divided into three groups, namely normal (n = 36), delayed (n = 28), or advanced DLMO (n = 10), based on their DLMO values. A χ2 test showed that there were significant differences in the rate of poor prognosis (p = 0.011) and depression tendency (p = 0.028) among the three groups. A further pairwise comparison revealed that stroke patients with delayed DLMO were more likely to experience poor short-term outcomes than normal DLMO group (p = 0.003). The average melatonin concentration of stroke patients at 5 time points was significantly lower than that of the control group (3.145 vs. 7.065 pg/mL, p < 0.001). Accordingly, we split stroke patients into three groups, namely low melatonin level (n = 14), normal melatonin level (n = 54), or high melatonin level (n = 6). Unfortunately, there were no great differences in the clinical characteristics, cognition, emotion, sleep quality, and short-term outcome among groups. CONCLUSIONS: This is a preliminary study, and our results indicate that changes in melatonin secretion phase of stroke patients may have effect on their short-term prognosis.


Subject(s)
Ischemic Stroke , Melatonin , Stroke , Humans , Melatonin/analysis , Quality of Life , Circadian Rhythm , Sleep , Stroke/complications , Stroke/diagnosis , Prognosis
12.
Cell Biol Int ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741282

ABSTRACT

Polycystic ovary syndrome (PCOS) is the primary cause of female infertility with a lack of universal therapeutic regimen. Although osthole exhibits numerous pharmacological activities in treating various diseases, its therapeutic effect on PCOS is undiscovered. The present study found that application of osthole improved the symptoms of PCOS mice through preventing ovarian granulosa cells (GCs) production of more estrogen and alleviating the liberation of pro-inflammatory cytokine interleukin (IL)-1ß, IL-6, and tumor necrosis factor alpha. Meanwhile, osthole enhanced ovarian antioxidant capacity and alleviated intracellular reactive oxygen species (ROS) accumulation with a concurrent attenuation for oxidative stress, while intervention of antioxidant enzymic activity and glutathione (GSH) synthesis neutralized the salvation of osthole on GCs secretory disorder and chronic inflammation. Further analysis revealed that osthole restored the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and forkhead box O 1 (Foxo1) whose repression antagonized the amelioration of osthole on the insufficiency of antioxidant capacity and accumulation of ROS. Moreover, Nrf2 served as an intermedium to mediate the regulation of osthole on Foxo1. Additionally, osthole restricted the phosphorylation of IκBα and nuclear factor kappa B (NF-κB) subunit p65 by DHEA and weakened the transcriptional activity of NF-κB, but this effectiveness was abrogated by the obstruction of Nrf2 and Foxo1, whereas adjunction of GSH renewed the redemptive effect of osthole on NF-κB whose activation caused an invalidation of osthole in rescuing the aberration of GCs secretory function and inflammation response. Collectively, osthole might relieve the symptoms of PCOS mice via Nrf2-Foxo1-GSH-NF-κB pathway.

13.
Acta Pharmacol Sin ; 45(5): 1044-1059, 2024 May.
Article in English | MEDLINE | ID: mdl-38326625

ABSTRACT

The development of targeted chemotherapeutic agents against colorectal cancer (CRC), one of the most common cancers with a high mortality rate, is in a constant need. Nannocystins are a family of myxobacterial secondary metabolites featuring a 21-membered depsipeptide ring. The in vitro anti-CRC activity of natural and synthetic nannocystins was well documented, but little is known about their in vivo efficacy and if positive, the underlying mechanism of action. In this study we synthesized a nitroaromatic nannocystin through improved preparation of a key fragment, and characterized its in vitro activity and in vivo efficacy against CRC. We first described the total synthesis of compounds 2-4 featuring Heck macrocyclization to forge their 21-membered macrocycle. In a panel of 7 cancer cell lines from different tissues, compound 4 inhibited the cell viability with IC values of 1-6 nM. In particular, compound 4 (1, 2, 4 nM) inhibited the proliferation of CRC cell lines (HCT8, HCT116 and LoVo) in both concentration and time dependent manners. Furthermore, compound 4 concentration-dependently inhibited the colony formation and migration of CRC cell lines. Moreover, compound 4 induced cell cycle arrest at sub-G1 phase, apoptosis and cellular senescence in CRC cell lines. In three patient-derived CRC organoids, compound 4 inhibited the PDO with IC values of 3.68, 28.93 and 11.81 nM, respectively. In a patient-derived xenograft mouse model, injection of compound 4 (4, 8 mg/kg, i.p.) every other day for 12 times dose-dependently inhibited the tumor growth without significant change in body weight. We conducted RNA-sequencing, molecular docking and cellular thermal shift assay to elucidate the anti-CRC mechanisms of compound 4, and revealed that it exerted its anti-CRC effect at least in part by targeting AKT1.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Colorectal Neoplasms , Depsipeptides , Macrocyclic Compounds , Proto-Oncogene Proteins c-akt , Animals , Humans , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Depsipeptides/pharmacology , Depsipeptides/therapeutic use , Depsipeptides/chemistry , Depsipeptides/chemical synthesis , Drug Discovery , Drug Screening Assays, Antitumor , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Structure-Activity Relationship , Xenograft Model Antitumor Assays
14.
Mol Ther ; 31(4): 1159-1166, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36793209

ABSTRACT

The rapid development of CRISPR genome editing technology has provided the potential to treat genetic diseases effectively and precisely. However, efficient and safe delivery of genome editors to affected tissues remains a challenge. Here, we developed luminescent ABE (LumA), a luciferase reporter mouse model containing the R387X mutation (c.A1159T) in the luciferase gene located in the Rosa26 locus of the mouse genome. This mutation eliminates luciferase activity but can be restored upon A-to-G correction by SpCas9 adenine base editors (ABEs). The LumA mouse model was validated through intravenous injection of two FDA-approved lipid nanoparticle (LNP) formulations consisting of either MC3 or ALC-0315 ionizable cationic lipids, encapsulated with ABE mRNA and LucR387X-specific guide RNA (gRNA). Whole-body bioluminescence live imaging showed consistent restoration of luminescence lasting up to 4 months in treated mice. Compared with mice carrying the wild-type luciferase gene, the ALC-0315 and MC3 LNP groups showed 83.5% ± 17.5% and 8.4% ± 4.3% restoration of luciferase activity in the liver, respectively, as measured by tissue luciferase assays. These results demonstrated successful development of a luciferase reporter mouse model that can be used to evaluate the efficacy and safety of different genome editors, LNP formulations, and tissue-specific delivery systems for optimizing genome editing therapeutics.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Mice , Animals , Gene Editing/methods , Adenine , Disease Models, Animal , Luciferases/genetics
15.
Transfus Med ; 34(2): 124-135, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38151821

ABSTRACT

INTRODUCTION: During the COVID-19 pandemic, there was a sharp decline in blood donation which posed a serious threat to the clinical blood supply worldwide. The aim of this study was to evaluate the influence of the COVID-19 pandemic on blood donation and supply in China on a nationwide level. METHODS: A comprehensive review of the published literature was performed using eight databases including PubMed, Web of Science, Cochrane Library, Ovid, Embase, CNKI, WANFANG, and VIP by searching relevant words combinations. RESULTS: Twenty-seven studies were determined to be eligible and included. Among them, 21 studies reported the situation of blood donation during the COVID-19 pandemic in China. The donation of both whole blood and platelet concentrates declined (with a decline of 5%-86% for whole blood and 3%-34% for platelet concentrates), with this especially evident in February 2020. The COVID-19 pandemic changed the pattern of blood donation and the composition of blood donors accordingly. Fifteen articles reported the supply of various blood components during the COVID-19 pandemic. The supply and usage of both packed red blood cell (PRBC) and fresh-frozen plasma (FFP) decreased (with a decrease of 4%-40% for PRBC and 9%-58% for FFP). The proportion of blood transfusions in different departments changed too. Compared to 2019, there was a decrease in surgical blood transfusions, and an increase in that used in treatments performed in emergency and internal medicine departments. CONCLUSION: The COVID-19 pandemic has led to an overall reduction of blood transfusion activities in most cities in China, in particular blood donations and blood demands.


Subject(s)
Blood Donation , COVID-19 , Humans , COVID-19/epidemiology , Pandemics , Blood Component Transfusion , Blood Transfusion , Blood Donors
16.
BMC Public Health ; 24(1): 1760, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956571

ABSTRACT

OBJECTIVE: Adverse childhood experiences (ACEs) have been associated with a range of adverse health outcomes, with pain being potentially one of them. This population-based cross-sectional study aimed to investigate the associations between Adverse Childhood Experiences (ACEs) and pain in Chinese adults and evaluate whether physical activity and demographic and socioeconomic characteristics modify this associations. METHODS: Cross-sectional data from the China Health and Retirement Longitudinal Study (CHARLS), were utilized in this study. A total of 9923 respondents with information on 12 ACE indicators and 15 self-reported body pains were included. Logistic regression models were used to assess associations of the ACEs and pain. Modification of the associations by physical activity, demographic and socioeconomic characteristics was assessed by stratified analyses and tests for interaction. RESULTS: Among the 9923 individuals included in the primary analyses, 5098 (51.4%) males and the mean (SD) age was 61.18 (10·.44) years. Compared with individuals with 0 ACEs, those who with ≥ 5 ACEs had increased risk of single pains and multiple pain. A dose-response association was found between the number of ACEs and the risk of pain (e.g. neck pain for ≥ 5 ACEs vs. none: OR, 1.107; 95% CI, 0.903-1.356; p < 0.001 for trend). In the associations of each body pain with each ACE indicator, most ACE indicators were associated with an increased risk of pain. In addition, physical activity, sociodemographic and socioeconomic characteristics, such as age, sex, educational level, area of residence, childhood economic hardship, did not demonstrate a significant modify on the associations between ACEs and pain. CONCLUSIONS: These findings indicate that cumulative ACE exposure is associated with increased odds of self-reported pain in Chinese adults, regardless of adult physical activity, sociodemographic and socioeconomic characteristics.


Subject(s)
Adverse Childhood Experiences , Pain , Humans , Male , Female , China/epidemiology , Longitudinal Studies , Adverse Childhood Experiences/statistics & numerical data , Middle Aged , Cross-Sectional Studies , Aged , Pain/epidemiology , Exercise , Socioeconomic Factors , Risk Factors
17.
BMC Med Educ ; 24(1): 32, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38183036

ABSTRACT

BACKGROUND: Virtual simulation and face-to-face simulation are effective for clinical judgment training. Rare studies have tried to improve clinical judgment ability by applying virtual simulation and face-to-face simulation together. This study aimed to evaluate the effect of an integrated non-immersive virtual simulation and high-fidelity face-to-face simulation program on enhancing nursing students' clinical judgment ability and understanding of nursing students' experiences of the combined simulation. METHODS: A sequential exploratory mixed-methods study was conducted in a nursing simulation center of a university in Central China. Third-year nursing students (n = 122) taking clinical training in ICUs were subsequentially assigned to the integrated non-immersive virtual simulation and high-fidelity face-to-face simulation program arm (n = 61) or the face-to-face simulation-only arm (n = 61) according to the order in which they entered in ICU training. Clinical judgment ability was measured by the Lasater Clinical Judgment Rubric (LCJR). Focus group interviews were conducted to gather qualitative data. RESULTS: Students in both arms demonstrated significant improvement in clinical judgment ability scores after simulation, and students in the integrated arm reported more improvement than students in the face-to-face simulation-only arm. The qualitative quotes provided a context for the quantitative improvement measured by the LJCR in the integrated arm. Most of the quantitative findings were confirmed by qualitative findings, including the domains and items in the LJCR. The findings verified and favored the effect of the combination of non-immersive virtual simulation and high-fidelity face-to-face simulation integrated program on enhancing nursing students' clinical judgment ability. CONCLUSIONS: The integrated virtual simulation and face-to-face simulation program was feasible and enhanced nursing students' self-reported clinical judgment ability. This integrated non-immersive virtual simulation and high-fidelity face-to-face simulation program may benefit nursing students and newly graduated nurses in the ICU more than face-to-face simulation only.


Subject(s)
Education, Nursing, Baccalaureate , Students, Nursing , Humans , Judgment , China , Clinical Reasoning
18.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731398

ABSTRACT

(1) Background: Alzheimer's disease (AD) is characterized by ß-amyloid (Aß) peptide accumulation and mitochondrial dysfunction during the early stage of disease. PINK1 regulates the balance between mitochondrial homeostasis and bioenergy supply and demand via the PINK1/Parkin pathway, Na+/Ca2+ exchange, and other pathways. (2) Methods: In this study, we synthesized positively charged carbon dots (CA-PEI CDs) using citric acid (CA) and polyethyleneimine (PEI) and used them as vectors to express PINK1 genes in the APP/PS1-N2a cell line to determine mitochondrial function, electron transport chain (ETC) activity, and ATP-related metabolomics. (3) Results: Our findings showed that the CA-PEI CDs exhibit the characteristics of photoluminescence, low toxicity, and concentrated DNA. They are ideal biological carriers for gene delivery. PINK1 overexpression significantly increased the mitochondrial membrane potential in APP/PS1-N2a cells and reduced reactive-oxygen-species generation and Aß1-40 and Aß1-42 levels. An increase in the activity of NADH ubiquinone oxidoreductase (complex I, CI) and cytochrome C oxidase (complex IV, CIV) induces the oxidative phosphorylation of mitochondria, increasing ATP generation. (4) Conclusions: These findings indicate that the PINK gene can alleviate AD by increasing bioenergetic metabolism, reducing Aß1-40 and Aß1-42, and increasing ATP production.


Subject(s)
Adenosine Triphosphate , Carbon , Citric Acid , Polyethyleneimine , Protein Kinases , Quantum Dots , Animals , Humans , Mice , Adenosine Triphosphate/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Carbon/chemistry , Cell Line , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Polyethyleneimine/chemistry , Protein Kinases/metabolism , Protein Kinases/genetics , Quantum Dots/chemistry , Reactive Oxygen Species/metabolism
19.
Anal Chem ; 95(8): 4243-4250, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36799075

ABSTRACT

Conjugated acetylenic polymers (CAPs) have emerged as a unique class of metal-free semiconductors with tunable electrical and optical properties yet their full potential remains largely unexplored. Organic bioelectronics is envisioned to create more opportunities for innovative biomedical applications. Herein, we report a poly(1,4-diethynylbenzene) (pDEB)/NiO gated enhancement-mode poly(ethylene dioxythiophene)-poly(styrene sulfonate) organic photoelectrochemical transistor (OPECT) and its structural evolution toward bioelectronic detection. pDEB was synthesized via copper-mediated Glaser polycondensation of DEB monomers on the NiO/FTO substrate, and the as-synthesized pDEB/NiO/FTO can efficiently modulate the enhancement-mode device with a high current gain. Linking with a sandwich immunoassay, the labeled alkaline phosphatase can catalyze sodium thiophosphate to generate H2S, which will react with the diacetylene group in pDEB through the Michael addition reaction, resulting in an altered molecular structure and thus the transistor response. Exemplified by HIgG as the model target, the developed biosensor achieves highly sensitive detection with a linear range of 70 fg mL-1-10 ng mL-1 and a low detection limit of 28.5 fg mL-1. This work features the dual functional CAP-gated OPECT, providing not only a novel gating module but also a structurally new rationale for bioelectronic detection.


Subject(s)
Acetylene , Biosensing Techniques , Alkynes , Polymers/chemistry , Biosensing Techniques/methods , Semiconductors
20.
Anal Chem ; 95(28): 10588-10594, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37402148

ABSTRACT

N6-Methyladenosine (m6A) is one of the most abundant and prevalent natural modifications occurring in diverse RNA species. m6A plays a wide range of roles in physiological and pathological processes. Revealing the functions of m6A relies on the faithful detection of individual m6A sites in RNA. However, developing a simple method for the single-base resolution detection of m6A is still a challenging task. Herein, we report an adenosine deamination sequencing (AD-seq) technique for the facile detection of m6A in RNA at single-base resolution. The AD-seq approach capitalizes on the selective deamination of adenosine, but not m6A, by the evolved tRNA adenosine deaminase (TadA) variant of TadA8e or the dimer protein of TadA-TadA8e. In AD-seq, adenosine is deaminated by TadA8e or TadA-TadA8e to form inosine, which pairs with cytidine and is read as guanosine in sequencing. m6A resists deamination due to the interference of the methyl group at the N6 position of adenosine. Thus, the m6A base pairs with thymine and is still read as adenosine in sequencing. The differential readouts from A and m6A in sequencing can achieve the single-base resolution detection of m6A in RNA. Application of the proposed AD-seq successfully identified individual m6A sites in Escherichia coli 23S rRNA. Taken together, the proposed AD-seq allows simple and cost-effective detection of m6A at single-base resolution in RNA, which provides a valuable tool to decipher the functions of m6A in RNA.


Subject(s)
RNA, Transfer , RNA , RNA/metabolism , Deamination , RNA, Transfer/metabolism , Adenosine/metabolism , Adenosine Deaminase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL