Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Polymers (Basel) ; 11(5)2019 May 01.
Article in English | MEDLINE | ID: mdl-31052390

ABSTRACT

It is challenging to prepare polyurethane bioplastics from renewable resources in a sustainable world. In this work, polyurethane nanocomposite bioplastics are fabricated by blending up to 80 wt % of soy-based polyol and petrochemical polyol with hydroxyl-functionalized multiwalled carbon nanotubes (MWCNTs-OH). The scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform infrared spectroscopy (FTIR) analyses reveal homogeneous dispersion of the MWCNTs-OH in the matrix, as well as interaction or reaction of MWCNTs-OH with the matrix or polymeric methylene diphenyl diisocyanate (pMDI) in forming the organic-inorganic hybrid bioplastic with a three-dimensional (3D) macromolecule network structure. Mechanical properties and electrical conductivity are remarkably enhanced with the increase of the multiwalled carbon nanotube (MWCNTs) loading. Dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) results show that the bioplastics with MWCNTs-OH have a better thermal stability compared with the bioplastics without MWCNTs-OH. The composition of the nanocomposites, which defines the characteristics of the material and its thermal and electrical conductivity properties, can be precisely controlled by simply varying the concentration of MWCNTs-OH in the polyol mixture solution.

2.
Environ Sci Pollut Res Int ; 26(27): 27677-27686, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31338764

ABSTRACT

Increasing degradation of amoxicillin in water by low-cost advanced functional activated carbon-based materials derived from bagasse is an effective and economic way to remove the antibiotic residue pollutant and for high-valued utilization and transformation of plant wastes. In this work, bagasse was pyrolyzed and Zn2+ was activated for designing a high-efficiency bagasse-based activated carbon, which was characterized by FTIR, XRD, XPS, SEM, EDS, and ζ potential analyses. These analyses illustrated the mechanism of amoxicillin degradation, and microscale zero-valent zinc in bagasse-based activated carbon has a key role in amoxicillin degradation. Amoxicillin was broken down by reductive degraded radicals, which were produced by microscale zero-valent zinc corrosion in water. After the amoxicillin degradation, the byproduct of zinc hydroxide being adsorbed onto the used bagasse-based activated carbon can provide possibility of sustainable regeneration. Mass spectra analysis illustrated the main degradation products of amoxicillin. The kinetic experiments were adopted to observe the process of amoxicillin degradation, followed by the pseudo-first-order kinetic model. The isotherm experiments demonstrated that the maximum amoxicillin degradation capacity of bagasse-based activated carbon was about 46 mg g-1. The bagasse wastes were used as carbon source to design potential advanced activated carbon materials for increasing degradation of amoxicillin in water.


Subject(s)
Amoxicillin/analysis , Charcoal/chemistry , Hydroxides/chemistry , Water Pollutants, Chemical/analysis , Zinc Compounds/chemistry , Zinc/chemistry , Adsorption , Amoxicillin/chemistry , Cellulose , Kinetics , Water , Water Pollutants, Chemical/chemistry , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL