Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Sensors (Basel) ; 22(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36298177

ABSTRACT

The stable operation of climbing robots exposed to high winds is of great significance for the health-monitoring of structures. This study proposes an anole lizard-like climbing robot inspired by its superior wind resistance. First, the stability mechanism of the anole lizard body in adhesion and desorption is investigated by developing adhesion and desorption models, respectively. Then, the hypothesis that the anole lizard improves its adhesion and stability performance through abdominal adjustment and trunk swing is tested by developing a simplified body model and kinematic model. After that, the structures of the toe, limb, and multi-stage flexible torso of the anole lizard-like climbing robot are designed. Subsequently, the aerodynamic behavior of the proposed robot under high-speed airflow are investigated using finite element analysis. The results show that when there is no obstacle, the climbing robot generates the normal force to enhance toepad friction and adhesion by tuning the abdomen's shape to create an air pressure difference between the back and abdomen. When there is an obstacle, a component force is obtained through periodic oscillation of the spine and tail to resist the frontal winds resulting from the vortex paths generated by the airflow behind the obstacle. These results confirm that the proposed hypothesis is correct. Finally, the adhesion and wind resistance performance of the anole lizard-like climbing robot is tested through the developed experimental platform. It is found that the adhesion force is equal to 50 N when the pre-pressure is 20 N. Further, it is shown that the normal pressure of the proposed robot can reach 76.6% of its weight in a high wind of 14 m/s.


Subject(s)
Lizards , Animals , Wind , Biomechanical Phenomena , Extremities
2.
Sensors (Basel) ; 21(20)2021 Oct 17.
Article in English | MEDLINE | ID: mdl-34696095

ABSTRACT

Aiming at highly dynamic locomotion and impact mitigation, this paper proposes the design and implementation of a symmetric legged robot. Based on the analysis of the three-leg topology in terms of force sensitivity, force production, and impact mitigation, the symmetric leg was designed and equipped with a high torque density actuator, which was assembled by a custom motor and two-stage planetary. Under the kinematic and dynamic constraints of the robot system, a nonlinear optimization for high jumping and impact mitigation is proposed with consideration of the peak impact force at landing. Finally, experiments revealed that the robot achieved a jump height of 1.8 m with a robust landing, and the height was equal to approximately three times the leg length.


Subject(s)
Robotics , Biomechanical Phenomena , Locomotion
3.
Sensors (Basel) ; 20(2)2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31936032

ABSTRACT

Sports robots have become a popular research topic in recent years. For table-tennis robots, ball tracking and trajectory prediction are the most important technologies. Several methods were developed in previous research efforts, and they can be divided into two categories: physical models and machine learning. The former use algorithms that consider gravity, air resistance, the Magnus effect, and elastic collision. However, estimating these external forces require high sampling frequencies that can only be achieved with high-efficiency imaging equipment. This study thus employed machine learning to learn the flight trajectories of ping-pong balls, which consist of two parabolic trajectories: one beginning at the serving point and ending at the landing point on the table, and the other beginning at the landing point and ending at the striking point of the robot. We established two artificial neural networks to learn these two trajectories. We conducted a simulation experiment using 200 real-world trajectories as training data. The mean errors of the proposed dual-network method and a single-network model were 39.6 mm and 42.9 mm, respectively. The results indicate that the prediction performance of the proposed dual-network method is better than that of the single-network approach. We also used the physical model to generate 330 trajectories for training and the simulation test results show that the trained model achieved a success rate of 97% out of 30 attempts, which was higher than the success rate of 70% obtained by the physical model. A physical experiment presented a mean error and standard deviation of 36.6 mm and 18.8 mm, respectively. The results also show that even without the time stamps, the proposed method maintains its prediction performance with the additional advantages of 15% fewer parameters in the overall network and 54% shorter training time.

4.
Sensors (Basel) ; 20(22)2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33207708

ABSTRACT

Load capacity is an important index to reflect the practicability of legged robots. Existing research into quadruped robots has not analyzed their load performance in terms of their structural design and control method from a systematic point of view. This paper proposes a structural design method and crawling pattern generator for a planar quadruped robot that can realize high-payload locomotion. First, the functions required to evaluate the leg's load capacity are established, and quantitative comparative analyses of the candidates are performed to select the leg structure with the best load capacity. We also propose a highly integrated design method for a driver module to improve the robot's load capacity. Second, in order to realize stable load locomotion, a novel crawling pattern generator based on trunk swaying is proposed which can realize lateral center of mass (CoM) movement by adjusting the leg lengths on both sides to change the CoM projection in the trunk width direction. Finally, loaded crawling simulations and experiments performed with our self-developed quadruped robot show that stable crawling with load ratios exceeding 66% can be realized, thus verifying the effectiveness and superiority of the proposed method.

5.
Sensors (Basel) ; 19(3)2019 Jan 28.
Article in English | MEDLINE | ID: mdl-30696120

ABSTRACT

The muscles of the lower limbs directly influence leg motion, therefore, lower limb muscle exercise is important for persons living with lower limb disabilities. This paper presents a medical assistive robot with leg exoskeletons for locomotion and leg muscle exercises. It also presents a novel pedal-cycling actuation method with a crank-rocker mechanism. The mechanism is driven by a single motor with a mechanical structure that ensures user safety. A control system is designed based on a master-slave control with sensor fusion method. Here, the intended motion of the user is detected by pedal-based force sensors and is then used in combination with joystick movements as control signals for leg-exoskeleton and wheelchair motions. Experimental data is presented and then analyzed to determine robotic motion characteristics as well as the assistance efficiency with attached electromyogram (EMG) sensors. A typical muscle EMG signal analysis shows that the exercise efficiency for EMG activated amplitudes of the gluteus medius muscles approximates a walking at speed of 3 m/s when cycling at different speeds (i.e., from 16 to 80 r/min) in a wheelchair. As such, the present wheelchair robot is a good candidate for enabling effective gluteus medius muscle exercises for persons living with gluteus medius muscle disabilities.


Subject(s)
Biosensing Techniques/methods , Exercise Therapy , Muscle, Skeletal/physiology , Robotics/methods , Adult , Buttocks/physiology , Electromyography/methods , Exoskeleton Device/standards , Feasibility Studies , Foot/physiology , Humans , Male , Muscle Contraction/physiology , Muscle Strength/physiology , Walking/physiology , Wheelchairs
6.
Int J Neural Syst ; 34(6): 2450030, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38616292

ABSTRACT

The optimization of robot controller parameters is a crucial task for enhancing robot performance, yet it often presents challenges due to the complexity of multi-objective, multi-dimensional multi-parameter optimization. This paper introduces a novel approach aimed at efficiently optimizing robot controller parameters to enhance its motion performance. While spiking neural P systems have shown great potential in addressing optimization problems, there has been limited research and validation concerning their application in continuous numerical, multi-objective, and multi-dimensional multi-parameter contexts. To address this research gap, our paper proposes the Entropy-Weighted Numerical Gradient Optimization Spiking Neural P System, which combines the strengths of entropy weighting and spiking neural P systems. First, the introduction of entropy weighting eliminates the subjectivity of weight selection, enhancing the objectivity and reproducibility of the optimization process. Second, our approach employs parallel gradient descent to achieve efficient multi-dimensional multi-parameter optimization searches. In conclusion, validation results on a biped robot simulation model show that our method markedly enhances walking performance compared to traditional approaches and other optimization algorithms. We achieved a velocity mean absolute error at least 35% lower than other methods, with a displacement error two orders of magnitude smaller. This research provides an effective new avenue for performance optimization in the field of robotics.


Subject(s)
Entropy , Neural Networks, Computer , Robotics , Algorithms , Humans , Computer Simulation , Neurons/physiology
7.
Biomimetics (Basel) ; 9(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38786484

ABSTRACT

High vertical jumping motion, which enables a humanoid robot to leap over obstacles, is a direct reflection of its extreme motion capabilities. This article proposes a single sequential kino-dynamic trajectory optimization method to solve the whole-body motion trajectory for high vertical jumping motion. The trajectory optimization process is decomposed into two sequential optimization parts: optimization computation of centroidal dynamics and coherent whole-body kinematics. Both optimization problems converge on the common variables (the center of mass, momentum, and foot position) using cost functions while allowing for some tolerance in the consistency of the foot position. Additionally, complementarity conditions and a pre-defined contact sequence are implemented to constrain the contact force and foot position during the launching and flight phases. The whole-body trajectory, including the launching and flight phases, can be efficiently solved by a single sequential optimization, which is an efficient solution for the vertical jumping motion. Finally, the whole-body trajectory generated by the proposed optimized method is demonstrated on a real humanoid robot platform, and a vertical jumping motion of 0.5 m in height (foot lifting distance) is achieved.

8.
Biomimetics (Basel) ; 9(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38921190

ABSTRACT

Standard alternating leg motions serve as the foundation for simple bipedal gaits, and the effectiveness of the fixed stimulus signal has been proved in recent studies. However, in order to address perturbations and imbalances, robots require more dynamic gaits. In this paper, we introduce dynamic stimulus signals together with a bipedal locomotion policy into reinforcement learning (RL). Through the learned stimulus frequency policy, we induce the bipedal robot to obtain both three-dimensional (3D) locomotion and an adaptive gait under disturbance without relying on an explicit and model-based gait in both the training stage and deployment. In addition, a set of specialized reward functions focusing on reliable frequency reflections is used in our framework to ensure correspondence between locomotion features and the dynamic stimulus. Moreover, we demonstrate efficient sim-to-real transfer, making a bipedal robot called BITeno achieve robust locomotion and disturbance resistance, even in extreme situations of foot sliding in the real world. In detail, under a sudden change in torso velocity of -1.2 m/s in 0.65 s, the recovery time is within 1.5-2.0 s.

9.
Biomimetics (Basel) ; 8(1)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36975344

ABSTRACT

Smooth state switching and accurate speed tracking are important for the stability and reactivity of bipedal robots when running. However, previous studies have rarely been able to synthesize these two capabilities online. In this paper, we present an online running-gait generator for bipedal robots that allows for smooth state switching and accurate speed tracking. Considering a fluctuating height nature and computational expediency, the robot is represented by a simplified variable-height inverted-pendulum (VHIP) model. In order to achieve smooth state switching at the beginning and end of running, a segmented zero moment point (ZMP) trajectory optimization is proposed to automatically provide a feasible and smooth center-of-mass (CoM) trajectory that enables the robot to stably start or stop running at the given speed. To accurately track online the desired speed during running, we propose an iterative algorithm to compute target footholds, which allows for the robot to follow the interactive desired speed after the next two steps. Lastly, a numerical experiment and the simulation of online variable speed running were performed with position-controlled bipedal robot BHR7P, and the results verified the effectiveness of the proposed methods.

10.
Biomimetics (Basel) ; 8(1)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36648817

ABSTRACT

Biped robots swing their legs alternately to achieve highly dynamic walking, which is the basic ability required for them to perform tasks. However, swinging of the swinging leg in the air will disturb the interaction between the supporting leg and the ground and affect the upper body's balance during dynamic walking. To allow the robot to use its own intrinsic motion characteristics to maintain stable movement like a human when its lower limbs are affected by unknown disturbances during dynamic walking, the ability to use its arms to resist disturbances is essential. This article presents a hybrid momentum compensation control method for torque-controlled biped robots to adapt to unknown disturbances during dynamic walking. First, a hybrid angular momentum and linear momentum regulator is designed to compensate for the disturbance caused by the swinging leg. Second, based on real-time dynamic state changes of the legs, a mixed-momentum quadratic programming controller is designed to realize stable dynamic walking. The proposed method allows the force-controlled robot to maintain its balance while walking down an unknown platform, and it maintains good straightness in the forward direction of dynamic motion. The proposed method's effectiveness is verified experimentally on the BHR-B2 force-controlled biped robot platform.

11.
ISA Trans ; 141: 401-413, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37474435

ABSTRACT

The high stiffness actuator (HSA), applied to each joint of an electrical driven humanoid robot, can directly affect the motion performance of the torque-controlled humanoid robots. For high control performance of HSA, a high-precision dynamic torque control (HDTC) is proposed. The HDTC consists of two phases: (1) A novel dynamic current control is used to linearize high stiffness actuator torque control system, which can estimate and compensate the nonlinear coupling parts; (2) An enhanced internal model control is designed to ensure high tracking accuracy in the system containing noisy torque signal and even numerical differentiation signals. Benefitting from dynamic current control and the enhanced internal model control, the proposed HDTC is accurate and adaptable. Finally, the superiority of the HDTC is verified with comparative experiments.

12.
Cyborg Bionic Syst ; 4: 0064, 2023.
Article in English | MEDLINE | ID: mdl-38435676

ABSTRACT

Vehicle driving can substantially enhance the maneuverability of humanoid robots. Agile steering wheel manipulation requires rapid rotation in narrow spaces such as a cab, serving as the foundation for increasing driving speed, especially in an obstacle avoidance scenario. Generally, there are 3 human driving strategies, "Hand-to-Hand," "Hand-over-Hand," and "One-Hand." Based on the human driving motion data, we quantitatively analyze these strategies from 3 aspects, motion range of joint combination, motion region of the shoulder, and velocity of the manipulation. Then, a friction-driven manipulation strategy using one hand is proposed utilizing the similarity between a humanoid robot and a driver (human). It effectively addresses the requirements of both a small range of motion and rapid manipulation. To prevent the deformation of the steering wheel caused by excessive force, we construct an operating force model specifically for the steering wheel. This model accurately describes the relationship between the rotation resistance and the state of the steering wheel. In addition, we propose a quadratic programming (QP)-based control framework to servo the robot to track the end-effector position and target wrench output by this model. Finally, the effectiveness of this paper is evaluated through an obstacle avoidance scenario, achieving a maximum rotation velocity of 3.14 rad/s.

13.
Biomimetics (Basel) ; 7(4)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36546935

ABSTRACT

The foot is an important part of humanoid robot locomotion that can help with shock absorption while making contact with the ground. The mechanism of the foot directly affects walking stability. A novel foot mechanism inspired by the toes of felids is proposed. The foot has four bionic modules with soft pads and sharp claws installed at the four corners of a flat foot. This foot can reduce the impact experienced during foot landing and increase the time that the foot is in contact with the ground, which can improve the adaptability of the robot to different ground surface conditions with different levels of stiffness. The main structure of the bionic module is a four-bar linkage consisting of a slide way and a spring. Furthermore, the length of the four-bar linkage and the posture of the claw during insertion into soft ground are optimized to improve the stability and buffering performance. The validity of the proposed foot mechanism has been proved in simulations.

14.
Micromachines (Basel) ; 13(8)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-36014174

ABSTRACT

To face the challenge of adapting to complex terrains and environments, we develop a novel wheel-legged robot that can switch motion modes to adapt to different environments. The robot can perform efficient and stable upright balanced locomotion on flat roads and flexible crawling in low and narrow passages. For passing through low and narrow passages, we propose a crawling motion control strategy and methods for transitioning between locomotion modes of wheel-legged robots. In practical applications, the smooth transition between the two motion modes is challenging. By optimizing the gravity work of the body, the optimal trajectory of the center of mass (CoM) for the transition from standing to crawling is obtained. By constructing and solving an optimization problem regarding the posture and motion trajectories of the underactuated model, the robot achieves a smooth transition from crawling to standing. In experiments, the wheel-legged robot successfully transitioned between the crawling mode and the upright balanced moving mode and flexibly passed a low and narrow passage. Consequently, the effectiveness of the control strategies and algorithms proposed in this paper are verified by experiments.

15.
Micromachines (Basel) ; 12(10)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34683240

ABSTRACT

The jumping motion of legged robots is an effective way to overcome obstacles in the rugged microgravity planetary exploration environment. At the same time, a quadruped robot with a manipulator can achieve operational tasks during movement, which is more practical. However, the additional manipulator will restrict the jumping ability of the quadruped robot due to the increase in the weight of the system, and more active degrees of freedom will increase the control complexity. To improve the jumping height of a quadruped robot with a manipulator, a bio-inspired take-off maneuver based on the coordination of upper and lower limbs is proposed in this paper. The kinetic energy and potential energy of the system are increased by driving the manipulator-end (ME) to swing upward, and the torso driven by the legs will delay reaching the required peak speed due to the additional load caused by the accelerated ME. When the acceleration of ME is less than zero, it will pull the body upward, which reduces the peak power of the leg joints. Therefore, the jumping ability of the system is improved. To realize continuous and stable jumping, a control framework based on whole-body control was established, in which the quadruped robot with a manipulator was a simplified floating seven-link model, and the hierarchical optimization was used to solve the target joint torques. This method greatly simplifies the dynamic model and is convenient for calculation. Finally, the jumping simulations in different gravity environments and a 15° slope were performed. The jump heights have all been improved after adding the arm swing, which verified the superiority of the bio-inspired take-off maneuver proposed in this paper. Furthermore, the stability of the jumping control method was testified by the continuous and stable jumping.

16.
Gait Posture ; 82: 118-125, 2020 10.
Article in English | MEDLINE | ID: mdl-32947177

ABSTRACT

BACKGROUND: Leg muscle fatigue is the most important factor that affects walking endurance. Considering the legs act as actuators in alternate contact with the ground during walking, the ground reaction force (GRF) of each leg can indirectly reflect the strength of leg muscles. However, it is not clear how the elastically-suspended backpack (ESB) affects GRF of each leg during human level walking. RESEARCH QUESTION: How is ESB related in GRF of each leg during walking, and how do multiple variables (stiffness and damping of ESB, load mass, walking speed) affect GRF? METHODS: An extended bipedal walking model (EBW) with a spring-mass-damping system was proposed to predict the GRF of each leg. In order to evaluate the prediction effect of the model, seven healthy subjects were recruited to attend the experiments using our backpack prototype and the GRFs data was compared. Each subject walked under 12 conditions (load states: locked or unlocked, walking speed: 3.6 km/h, 4.0 km/h, 4.5 km/h, 5.0 km/h, 5.5 km/h, 6.0 km/h). RESULTS: Results showed that the model could quantitatively predict experimental GRFs over the whole gait cycle (R2≥0.9628) and the characteristic forces (two peak forces and one trough force) were close to the experimental data (average predicted accuracy 93.7 %). The model can reflect relationships between variables and GRF. The relationships showed that an apparent tradeoff exists among the three characteristic forces, and the ESB can produce positive or negative effect under different variables. SIGNIFICANCE: This work could help us understand the experimental GRF phenomena, especially the contradictory experimental phenomenon caused by the different parameters. It could also help designers optimize structural parameters of ESB for excellent effects on human. The ESBs with excellent performance can be wildly used in military and tourism.


Subject(s)
Gait/physiology , Muscle, Skeletal/physiology , Biomechanical Phenomena , Female , Humans , Male , Research Design , Weight-Bearing
SELECTION OF CITATIONS
SEARCH DETAIL