Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Langmuir ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946296

ABSTRACT

Atmospheric water harvesting (AWH) technology is a new strategy for alleviating freshwater scarcity. Adsorbent materials with high hygroscopicity and high photothermal conversion efficiency are the key to AWH technology. Hence, in this study, a simple and large-scale preparation for a hygroscopic compound of polyurethane (PU) sponge-grafted calcium alginate (CA) with carbon ink (SCAC) was developed. The PU sponge in the SCAC aerogel acts as a substrate, CA as a moisture adsorber, and carbon ink as a light adsorber. The SCAC aerogel exhibits excellent water absorption of 0.555-1.40 g·g-1 within a wide range of relative humidity (40-80%) at 25 °C. The SCAC aerogel could release adsorbed water driven by solar energy, and more than 92.17% of the adsorbed water could be rapidly released over a wide solar intensity range of 1.0-2.0 sun. In an outdoor experiment, 57.517 g of SCAC was able to collect 32.8 g of clean water in 6 h, and the water quality meets the drinking water standards set by the World Health Organization. This study suggests a new approach to design promising AWH materials and infers the potential practical application of SCAC aerogel-based adsorbents.

2.
Environ Sci Technol ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38885124

ABSTRACT

Nanoscale zerovalent iron synthesized using borohydride (B-NZVI) has been widely applied in environmental remediation in recent decades. However, the contribution of boron in enhancing the inherent reactivity of B-NZVI and its effectiveness in removing hexavalent chromium [Cr(VI)] have not been well recognized and quantified. To the best of our knowledge, herein, a core-shell structure of B-NZVI featuring an Fe-B alloy shell beneath the iron oxide shell is demonstrated for the first time. Alloyed boron can reduce H+, contributing to more than 35.6% of H2 generation during acid digestion of B-NZVIs. In addition, alloyed B provides electrons for Fe3+ reduction during Cr(VI) removal, preventing in situ passivation of the reactive particle surface. Meanwhile, the amorphous oxide shell of B-NZVI exhibits an increased defect density, promoting the release of Fe2+ outside the shell to reduce Cr(VI), forming layer-structured precipitates and intense Fe-O bonds. Consequently, the surface-area-normalized capacity and surface reaction rate of B-NZVI are 6.5 and 6.9 times higher than those of crystalline NZVI, respectively. This study reveals the importance of alloyed B in Cr(VI) removal using B-NZVI and presents a comprehensive approach for investigating electron pathways and mechanisms involved in B-NZVIs for contaminant removal.

3.
Environ Sci Technol ; 57(47): 18420-18432, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-36260114

ABSTRACT

The activation of peroxydisulfate (PDS) by organic compounds has attracted increasing attention. However, some inherent drawbacks including quick activator decomposition and poor anti-interference capacity limited the application of organic compound-activated PDS. It was interestingly found that 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonate) (ABTS) could act as both activator and electron shuttle for PDS activation to enhance diclofenac (DCF) degradation over a pH range of 2.0-11.0. Multiple reactive species of ABTS•+, •OH, and SO4•- were generated in the PDS/ABTS system, while only ABTS•+ and •OH directly contributed to DCF degradation. ABTS•+, generated via the reactions of ABTS with PDS, SO4•-, and •OH, was the dominant reactive species of DCF degradation. No significant decomposition of ABTS was observed in the PDS/ABTS system, and ABTS acted as both activator and electron shuttle. Four possible degradation pathways of DCF were proposed, and the toxicity of DCF decreased after treatment with the PDS/ABTS system. The PDS/ABTS system had good anti-interference capacity to common natural water constituents. Additionally, ABTS was encapsulated into cellulose to obtain ABTS@Ce beads, and the PDS/ABTS@Ce system possessed excellent performance on DCF degradation. This study proposes a new perspective to reconsider the mechanism of activating PDS with organic compounds and highlights the considerable contribution of organic radicals on contaminant removal.


Subject(s)
Diclofenac , Water Pollutants, Chemical , Oxidation-Reduction , Electrons , Water Pollutants, Chemical/analysis , Organic Chemicals
4.
Environ Res ; 216(Pt 3): 114449, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36270531

ABSTRACT

Acid red 73 (AR73) is a representative dye pollutant that poses a threat to the environment and human health. Effectively removing this type of pollutant by conventional processes is difficult. However, this study found that compared with UV/PDS, UV/O3, and PDS/O3, UV/O3/PDS composite system had the highest degradation effect on AR73. The degradation efficiency in the composite system reached 97.61% within 30 min, and the synergistic coefficients in the composite system were all greater than 1. In the UV/O3/PDS system, ·OH was the main free radical that mainly degrades AR73. The increase of PDS dosage promoted the degradation of AR73, but the increase of O3 dosage was difficult to greatly improve the degradation of AR73 effect. The kinetic model of the apparent reaction rate was determined. The UV/O3/PDS system can efficiently degrade AR73 in a wide range of substrate concentrations and pH levels, and at the same time showed good adaptability to various concentrations of anions (Cl-, CO32-, SO32-, and C2O42-). Under raw water quality, the degradation effect of AR73 was still as high as approximately 90%. The theoretical attack site was obtained by DFT calculation, and the possible degradation pathway of AR73 was proposed based on the GC-MS spectrum and UV-Vis absorption spectrum. The attack of -NN- by ·OH, SO4-, and O3 was proposed to be the main possible degradation pathway for AR73. Therefore, this study further improves the understanding of the UV/O3/PDS system and shows the potential applicability of this system in the treatment of dye wastewater.


Subject(s)
Water Pollutants, Chemical , Water Purification , Humans , Kinetics , Water Pollutants, Chemical/analysis , Hydrogen Peroxide , Ultraviolet Rays , Oxidation-Reduction
5.
J Environ Manage ; 348: 119246, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37820430

ABSTRACT

Photocatalytic water decontamination has emerged as a highly promising technology for efficient and rapid water treatment, harnessing sustainable solar energy as its driving force. In this study, we prepared visible-light active Bi2S3/CoS2 composites for the degradation of naproxen (NPX) and the inactivation of Escherichia coli (E. coli). The homogeneous dispersion of CoS2 was stably integrated with Bi2S3, resulting in a significant enhancement of the specific surface area, efficient utilization of visible light, and effective separation of photogenerated charge carriers. Consequently, this synergistic photocatalytic system greatly facilitated the successful degradation of NPX and the inactivation of E. coli under visible-light irradiation. Compared to the pure Bi2S3 and CoS2 catalysts, the Bi2S3/CoS2 (1:2) composites displayed significantly enhanced photodegradation activity, achieving 96.46% (k = 0.2847 min-1) degradation of NPX within 90 min and maintaining good recyclability with no significant decline after six successive cycles. Additionally, the photocatalytic inactivation of E. coli results indicated that Bi2S3/CoS2 composites exhibited excellent performance, leading to the inactivation of 7 log10 cfu mL-1 of bacterial cells after 150 min of visible-light exposure. Scanning Electron Microscopy (SEM) and K+ ions leakage tests demonstrated that the destruction of the E. coli cell membrane structure resulted in cell death. The outcomes of this work suggest that Bi2S3/CoS2 composites hold significant potential for treating water contaminated with antibiotic and microbial pollutants.


Subject(s)
Escherichia coli , Naproxen , Naproxen/pharmacology , Naproxen/metabolism , Light , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Microscopy, Electron, Scanning , Catalysis
6.
Molecules ; 28(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38067463

ABSTRACT

Sodium percarbonate (SPC) concentration can be determined spectrophotometrically by using N, N-diethyl-p-phenylenediamine (DPD) as an indicator for the first time. The ultraviolet-visible spectrophotometry absorbance of DPD•+ measured at 551 nm was used to indicate SPC concentration. The method had good linearity (R2 = 0.9995) under the optimized experimental conditions (pH value = 3.50, DPD = 4 mM, Fe2+ = 0.5 mM, and t = 4 min) when the concentration of SPC was in the range of 0-50 µM. The blank spiked recovery of SPC was 95-105%. The detection limit and quantitative limit were 0.7-1.0 µM and 2.5-3.3 µM, respectively. The absorbance values of DPD•+ remained stable within 4-20 min. The method was tolerant to natural water matrix and low concentration of hydroxylamine (<0.8 mM). The reaction stoichiometric efficiency of SPC-based advanced oxidation processes in the degradation of ibuprofen was assessed by the utilization rate of SPC. The DPD and the wastewater from the reaction were non-toxic to Escherichia coli. Therefore, the novel Fe2+/SPC-DPD spectrophotometry proposed in this work can be used for accurate and safe measurement of SPC in water.


Subject(s)
Ibuprofen , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Carbonates/chemistry , Oxidation-Reduction , Water , Spectrophotometry/methods
7.
Water Sci Technol ; 85(11): 3315-3330, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35704413

ABSTRACT

Activated alumina (Al2O3) has been widely used to remove aqueous anionic pollutants such as phosphate for preventing the eutrophication phenomenon. While Al2O3, as a fine powder material, cannot be stably packed into continuous flow treatment, which limits its practical applications. Herein, we proposed a new strategy in which Al2O3 was encapsulated by calcium alginate (CA) to fabricate Al2O3/CA composite, which has relatively large particle size and can be suitable for application in columns. The BET surface area of Al2O3/CA increased to 51.73 m2/g compared with 37.31 m2/g of Al2O3. The maximum adsorption capacity of phosphate on Al2O3/CA was estimated at 1.92-fold compared with that of pure Al2O3 by Langmuir fitting. The main mechanism of phosphate adsorption was the formation of aluminum phosphate precipitation. Moreover, the column studies showed that the adsorption of phosphate on Al2O3/CA was affected by the amount of outer calcium alginate, bed height, influent flow rates and phosphate concentration. This study demonstrated that Al2O3/CA composite has better adsorption capacity and can be used in the dynamic adsorption system as a promising approach for phosphate removal from water.


Subject(s)
Alginates , Water Pollutants, Chemical , Adsorption , Kinetics , Phosphates , Water
8.
Angew Chem Int Ed Engl ; 61(28): e202204568, 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35506510

ABSTRACT

Photoresponsive arylsilanes have been fascinating molecules for decades because of their unique photophysical characteristics and surface chemistry. Here we report the synthesis and fabrication of a crystalline two-dimensional trisilyl metal-organic framework (TSiMOF) orderly installed with the classical photoresponsive hexamethyltrisilane groups on the surface. Irradiated by UV light under air in minutes the fluorescence of the TSiMOF is turned on simultaneously with an intriguing surface transformation from superhydrophobic to hydrophilic. Thus, multifarious luminescent and hydrophilic patterns including logos, characters and Quick Response codes, etc. with good resolution are readily generated on the facilely fabricated TSiMOF film. The mechanism of this transformation is revealed by control experiments that the superficial trimethylsilyl groups suffering photochemical oxidation have been converted to hydroxyl groups.

9.
Angew Chem Int Ed Engl ; 61(37): e202208587, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-35791044

ABSTRACT

Interfacial photo-vapor conversion has been suggested as a cost-effective and sustainable technology for seawater desalination. However, the conversion performance was still limited by some drawbacks, like salt accumulation and poor mechanical stability. Herein, a scalable MoS2 -based porous hydrogel (SMoS2 -PH) with good mechanical stability and salt resistance was successfully constructed through a crosslinking foaming polymerization method. With the high porosity (92.63 %), the SMoS2 -PH performed an impressive evaporation rate of 3.297 kg m-2 h-1 and photothermal conversion efficiency of 93.4 % under 1-sun illumination. Most importantly, the SMoS2 -PH could maintain high and stable photothermal properties for 15 days on the surface of seawater. We believe that the excellent salt resistance, the high photothermal conversion efficiency, the ease of scale preparation method and the available commercial MoS2 make the SMoS2 -PH a promising device for full-scale seawater desalination.

10.
Chemistry ; 27(37): 9674-9685, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-33971051

ABSTRACT

Two highly efficient metal-organic framework catalysts TJU-68-NHPI and TJU-68-NDHPI have been successfully synthesized through solvothermal reactions of which the frameworks are merged with N-hydroxyphthalimide (NHPI) units, resulting in the decoration of pore surfaces with highly active nitroxyl catalytic sites. When t-butyl nitrite (TBN) is used as co-catalyst, the as-synthesized MOFs are demonstrated to be highly efficient and recyclable catalysts for a novel three-phase heterogeneous oxidation of activated C-H bond of primary and secondary alcohols, and benzyl compounds under mild conditions. Based on the high efficiency and selectivity, an environmentally benign system with good sustainability, mild conditions, simple work-up procedure has been established for practical oxidation of a wide range of substrates.

11.
Appl Microbiol Biotechnol ; 100(5): 2439-47, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26563551

ABSTRACT

Sulfonamide antibiotics are commonly detected in the environment. Microbial degradation can play an important role in the dissipation of sulfonamide antibiotics. However, many aspects regarding the influential factor and biodegradation pathway remain essentially unclear. Moreover, phylogenetic information on the sulfonamide-degrading microbial community is still very limited. The present study investigated the biodegradation of sulfonamide antibiotic sulfanilamide by acclimated mixed culture and its influential factors, and the sulfanilamide-degrading microbial community. At the initial sulfanilamide concentration of 100 µg/L, nearly half of the antibiotic could be removed by acclimated microbial populations after 1 week of incubation, and an average removal rate of 78.3 % could be achieved in 4 weeks. p-Phenylenediamine, benzene sulfonamide, and hydroxylamine benzene sulfonamide were identified as the potential intermediates. Sulfanilamide biodegradation could be enhanced by a temperature rise and the presence of external carbon or nitrogen sources. The richness, diversity, and structure of the bacterial community showed a remarkable change with sulfanilamide biodegradation. Firmicutes and Bacteroidetes (mainly represented by classes Bacilli and Flavobacteriia) dominated the sulfanilamide-degrading bacterial community.


Subject(s)
Anti-Infective Agents/metabolism , Bacteria/metabolism , Biodiversity , Environmental Pollutants/metabolism , Sulfanilamides/metabolism , Bacteria/classification , Bacteria/growth & development , Bacteria/isolation & purification , Biotransformation , Sulfanilamide
12.
J Environ Sci (China) ; 42: 119-125, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27090702

ABSTRACT

Bioreactive thin-layer capping (BTC) with biozeolite provides a potential remediation design that can sustainably treat N contamination from sediment and overlying water in eutrophic water bodies. Nitrogen (N) reduction using BTC with biozeolite was examined in a field incubation experiment in a eutrophic river in Yangzhou, Jiangsu Province, China. The biozeolite was zeolite with attached bacteria, including two isolated heterotrophic nitrifiers (Bacillus spp.) and two isolated aerobic denitrifiers (Acinetobacter spp.). The results showed that the total nitrogen (TN) reduction efficiency of the overlying water by BTC with biozeolite (with thickness of about 2mm) reached a maximum (56.69%) at day 34, and simultaneous heterotrophic nitrification and aerobic denitrification occurred in the BTC system until day 34. There was a significant difference in the TN concentrations of the overlying water between biozeolite capping and control (t-test; p<0.05). The biozeolite had very strong in situ bioregeneration ability. Carbon was the main source of nitrifier growth. However, both dissolved oxygen (DO) and carbon concentrations affected denitrifier growth. In particular, DO concentrations greater than 3mg/L inhibited denitrifier growth. Therefore, BTC with biozeolite was found to be a feasible technique to reduce N in a eutrophic river. However, it is necessary to further strengthen the adaptability of aerobic denitrifiers through changing domestication methods or conditions.


Subject(s)
Environmental Restoration and Remediation/methods , Nitrogen/chemistry , Rivers/chemistry , Water Pollutants, Chemical/chemistry , Zeolites/chemistry , Bacteria , Carbon , China , Denitrification , Eutrophication , Heterotrophic Processes , Nitrification , Nitrogen/analysis , Rivers/microbiology , Water Pollutants, Chemical/analysis
13.
Geochem Trans ; 16: 10, 2015.
Article in English | MEDLINE | ID: mdl-26213493

ABSTRACT

BACKGROUND: Organic dye pollution in water has become a major source of environmental pollution. Mn(III/IV) oxides have attracted a great deal of attention to remove organic dye pollutants due to their unique structures and physicochemical properties. Numerous studies have reported the removal of dye by various Mn(III/IV) oxides through catalytic degradation and adsorption. The crystalline structures of manganese oxides and solution pH may exert substantial impact on the removal of dyes. However, few studies have focused on the oxidative degradation of RhB dye using Mn(III/IV) oxides with different crystal structures during a spontaneous reaction. In the present study, three manganese oxides with different crystal type (α-MnO2, ß-MnO2, and δ-MnO2) were prepared by refluxing process to decolorize RhB dye in various pH solutions. RESULTS: The results showed that the decolorization efficiencies of RhB for the three manganese oxides all increase with decrease solution pH. α-MnO2 exhibited highest activity and could efficiently degrade RhB at pH 2-6. The degradation of RhB by ß-MnO2 and δ-MnO2 could be observed at pH 2-3, and only little adsorption RhB on manganese oxides could be found at pH 4-6. The UPLC/MS analysis suggests that the decolorization of RhB by manganese oxides consists of three main stages: (1) cleavage of the ethyl groups from RhB molecular to form Rh; (2) further destruction of -COOH and -CNH2 from Rh to form the small molecular substances; (3) mineralization of the small molecular substances into CO2, H2O, NO3 (-) and NH4 (+). CONCLUSIONS: Overall, these results indicate that α-MnO2 may be envisaged as efficient oxidants for the treatment of organic dye-containing wastewater under acid conditions.

14.
Environ Technol ; 36(9-12): 1510-8, 2015.
Article in English | MEDLINE | ID: mdl-25441536

ABSTRACT

Nanocomposites with core-shell structure usually exhibit excellent catalytic properties due to unique interfaces and synergistic effect among composites. In this study, Au-Pd bimetallic nanoparticles (NPs) with core-shell structure (Au-Pd cs) by using Au NPs as core and Pd as shell were successfully fabricated and, for the first time, were used to investigate the dechlorination of diclofenac (DCF) at H2 atmosphere in water at room temperature. The degradation products were studied as well by using HPLC/Q-ToF MS/MS. The operational factors such as pH and composition of the Au-Pd cs were also studied. The results showed that nearly 100% of DCF (30 mg L(-1), 50 mL, pH=7) was dechlorinated in 4.5 h by 10 mL of 56 mg L(-1) of Au-Pd cs. Ninety per cent of DCF was degraded in 6.5 h by the mixture of Au and Pd NPs. However, the individual Au NPs had no obvious effect in degrading DCF and the monometallic Pd NPs with comparable concentration only degraded less than 20% of DCF. Furthermore, the reaction mechanism of this catalytic process was studied in detail. It was found that the degradation was a second-order exponential reaction. The two main degradation products were obtained by cleaving the carbon-halogen bond of DCF and this made the degradation products more environmentally friendly.


Subject(s)
Diclofenac/chemistry , Gold/chemistry , Lead/chemistry , Nanocomposites/chemistry , Water Pollutants, Chemical/chemistry , Kinetics , Models, Chemical
15.
Sci Total Environ ; 913: 169759, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38171462

ABSTRACT

Microplastics have emerged as a concerning contaminant in drinking water sources, potentially interacting with pathogenic microorganisms and affecting the disinfection processes. In this study, MS2 was selected as an alternative for the human enteric virus. The influence of microplastics polyvinylchloride (MPs-PVC) on ultraviolet light emitting diode (UV-LED) inactivation of MS2 was investigated under various water chemistry conditions, such as MPs-PVC concentration, pH, salinity, and humic acid concentration. The results revealed that higher concentrations of MPs-PVC led to the reduced inactivation of MS2 by decreased UV transmittance, hindering the disinfection process. Additionally, the inactivation efficiency of MS2 in the presence of MPs-PVC was influenced by pH, and acidic solution (pH at 4, 5, and 6) exhibited higher efficiency compared to alkaline solution (pH at 8 and 9) and neutral solution (pH at 7). The low Na+ concentrations (0-50 mM) had a noticeable effect on MS2 inaction efficiency in the presence of MPs-PVC, while the addition of Ca2+ posed an insignificant effect due to the preferential interaction with MPs-PVC. Furthermore, the inactivation rate of MS2 initially increased and then decreased with increasing the concentration of humic acid, which was significantly different without MPs-PVC. These findings shed light on the complex interactions between MPs-PVC and MS2 in the UV-LED disinfection process under various water-quality parameters, contributing to drinking water safety and treatment.


Subject(s)
Drinking Water , Microplastics , Humans , Plastics , Levivirus , Ultraviolet Rays , Humic Substances , Polyvinyl Chloride
16.
J Environ Sci (China) ; 25(5): 971-7, 2013 May 01.
Article in English | MEDLINE | ID: mdl-24218827

ABSTRACT

A laboratory-scale study with a sand column was designed to simulate trichloroethylene (TCE) pollution in the aquifer environment with three-section controlled-release potassium permanganate (CRP) barriers. The main objective of this study was to evaluate the feasibility of CRP barriers in remediation of TCE in aquifers in a long-term and controlled manner. CRP particles with a 1:3 molar ratio of KMnO4 to stearic acid showed the best controlled-release properties in pure water, and the theoretical release time was 138.5 days. The results of TCE removal in the test column indicated that complete removal efficiency of TCE in a sand column by three-section CRP barriers could be reached within 15 days. The molar ratio of KMnO4 to TCE in the three-section CRP barriers was 16:1, which was much lower than 82:1 as required when KMnO4 solution is used directly to achieve complete destruction of TCE. This result revealed that the efficiency of CRP for remediation of TCE was highly improved after encapsulation.


Subject(s)
Environmental Restoration and Remediation/methods , Potassium Permanganate/chemistry , Stearic Acids/chemistry , Trichloroethylene/chemistry , Water Pollutants, Chemical/chemistry , Groundwater/chemistry , Manganese Compounds/chemistry , Oxides/chemistry
17.
Environ Sci Pollut Res Int ; 30(51): 110901-110912, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37796353

ABSTRACT

Excessive phosphorus in water would cause eutrophication and deterioration of the ecological environment. Herein, the La-MOFs/Al2O3 composite was successfully prepared by the in situ hydrothermal synthesis method for granulation, which was conducive to exerting the phosphate adsorption capacity and facilitating practical application. The materials were characterized by SEM, EDX, XRD, BET, FTIR, and Zeta. In addition, the adsorption performance of La-MOFs/Al2O3 was evaluated through adsorption kinetics and isotherms, showing that the Langmuir adsorption capacity was 16.34 mgP·g-1 (25 °C) and increased with the water temperature. Moreover, the batch influence experiments of intimal pH, adsorbent dosage, coexisting ions, and stability tests were performed to analyze the potential for practical applications and verified through the natural micro-polluted water samples from Houxi River and Bailu Lake (China). The results indicated that the La-MOFs/Al2O3 was suited to a wide pH range of 4 to 10 and the phosphate removal efficiency remained above 70% after continuous use for four times, exhibiting excellent stability. It also had excellent selectivity in the presence of SO42-, Cl-, NO3-, and HCO3-, only decreased to 70.24% at high HCO3- ion concentration of 60 mg/L, respectively. And the La-MOFs/Al2O3 had excellent adsorption of total phosphorus, phosphate, and organic phosphorus in the actual river and lake water and completely removed dissolved phosphorus. Finally, a phosphate adsorption mechanism model involved in electrostatic interaction and ligand exchange was proposed. Therefore, La-MOFs/Al2O3 could be considered to be an excellent phosphorus adsorbent for application in the actual water environmental remediation.


Subject(s)
Phosphates , Water Pollutants, Chemical , Water/chemistry , Lanthanum/chemistry , Phosphorus , Ions , Adsorption , Kinetics , Hydrogen-Ion Concentration
18.
ACS Appl Mater Interfaces ; 15(42): 49181-49194, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37816194

ABSTRACT

Metal-organic frameworks (MOFs) are emerging as advanced nanoporous materials to remove phenylarsenic acid, p-arsanilic acid (p-ASA), and roxarsone (ROX) in the aqueous solution, while MOFs are often present as powder state and encounter difficulties in recovery after adsorption, which greatly limit their practical application in the aqueous environments. Herein, MIL-101 (Fe), a typical MOF, was mixed with sodium alginate and gelatin to prepare MIL-101@CAGE by three-dimensional (3D) printing technology, which was then used as a separatable adsorbent to remove phenylarsenic acid in the aqueous solution. The structure of 3D-printed MIL-101@CAGE was first characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and thermogravimetry and differential thermogravimetry (TG-DTG). The octahedral morphology of MIL-101 (Fe) was found unchanged during the 3D printing process. Then, the adsorption process of MIL-101@CAGE on phenylarsenic acids was systematically investigated by adsorption kinetics, adsorption isotherms, adsorption thermodynamics, condition experiments, and cyclic regeneration experiments. Finally, the adsorption mechanism between MIL-101@CAGE and phenylarsenic acid was further investigated. The results showed that the Langmuir, Freundlich, and Temkin isotherms were well fit, and according to the Langmuir fitting results, the maximum adsorption amounts of MIL-101@CAGE on p-ASA and ROX at 25 °C were 106.98 and 120.28 mg/g, respectively. The removal of p-ASA and ROX by MIL-101@CAGE remained stable over a wide pH range and in the presence of various coexisting ions. The regeneration experiments showed that the 3D-printed MIL-101@CAGE could still maintain a more than 90% removal rate after five cycles. The adsorption mechanism of this system might include π-π stacking interactions between the benzene ring on the phenylarsenic acids and the organic ligands in MIL-101@CAGE, hydrogen-bonding, and ligand-bonding interactions (Fe-O-As). This study provides a new idea for the scale preparation of a separatable and recyclable adsorbent based on MOF material for the efficient removal of phenylarsenic acid in the aqueous solution.

19.
RSC Adv ; 13(7): 4361-4375, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36760283

ABSTRACT

Ciprofloxacin (CIP) is a third-generation quinolone antimicrobial with broad-spectrum antimicrobial activity, and is not fully metabolized in the human body, resulting in more than 70% of CIP being excreted into water as a prodrug. In this study, g-C3N4/BiOCl heterojunction structure composites were prepared to study the degradation effect of ciprofloxacin (CIP) under photocatalytic conditions. The results showed that CIP at 10 mg L-1 was best degraded after 90 min at 0.3 g L-1 g-C3N4/BiOCl-2, pH of 5.8 and PS dosing of 1 mM. The quenching experiments and electron spin resonance spectroscopy (ESR) confirmed that ˙OH, ˙SO4 - and h+ played a major role. After the photocatalytic degradation of this reaction system, the biological toxicity of CIP was effectively controlled. This material is stable and the CIP removal rate remained above 80% after four cycles of experiments.

20.
ChemSusChem ; 16(24): e202300845, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37525963

ABSTRACT

Solar-driven interfacial evaporation technology is regarded as an attracting sustainable strategy for obtaining portable water from seawater and wastewater, and the recycle of waste materials to fabricate efficient photothermal materials as evaporator to efficiently utilize solar energy is very critical, but still difficult. To this purpose, graphite recovered from spent lithium-ion batteries (SLIBs) was realized using a simple acid leaching method, and a reconstructed graphite-based porous hydrogel (RG-PH) was subsequently fabricated by crosslinking foaming method. The incorporation of reconstructed graphite (RG) improves the mechanical characteristics of hydrogels and the light absorption performance significantly. The evaporation rate of optimized RG-PH can constantly reach 3.4278 kg m-2 h-1 for desalination under a one solar irradiation, and it also showed the excellent salt resistance in various salty water. Moreover, RG-PH has a strong elimination of a variety of organic contaminants in wastewater, including the typical volatile organic compound of phenol. This research shows the potential application of flexible and durable solar evaporators made from waste materials in purifying seawater and wastewater, not only contributing to carbon neutrality by recycling graphite from SLIBs, but also ensuring the cost-effectiveness harvest of solar energy for constantly obtaining clean water.

SELECTION OF CITATIONS
SEARCH DETAIL