Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Proc Natl Acad Sci U S A ; 120(13): e2210791120, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36947519

ABSTRACT

Adaptive changes in crops contribute to the diversity of agronomic traits, which directly or indirectly affect yield. The change of pubescence form from appressed to erect is a notable feature during soybean domestication. However, the biological significance and regulatory mechanism underlying this transformation remain largely unknown. Here, we identified a major-effect locus, PUBESCENCE FORM 1 (PF1), the upstream region of Mao1, that regulates pubescence form in soybean. The insertion of a Ty3/Gypsy retrotransposon in PF1 can recruit the transcription factor GAGA-binding protein to a GA-rich region, which up-regulates Mao1 expression, underpinning soybean pubescence evolution. Interestingly, the proportion of improved cultivars with erect pubescence increases gradually with increasing latitude, and erect-pubescence cultivars have a higher yield possibly through a higher photosynthetic rate and photosynthetic stability. These findings open an avenue for molecular breeding through either natural introgression or genome editing toward yield improvement and productivity.


Subject(s)
Glycine max , Retroelements , Retroelements/genetics , Glycine max/genetics , Phenotype , Promoter Regions, Genetic/genetics
2.
J Exp Bot ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38932564

ABSTRACT

In the realm of agricultural sustainability, the utilization of plant genetic resources (PGRs) for enhanced disease resistance is paramount. Preservation efforts in genebanks are justified by their potential contributions to future crop improvement. To capitalize on the potential of PGRs, we focused on a barley core collection from the German ex situ genebank, and contrasted it with a European elite collection. The phenotypic assessment included 812 PGRs and 298 elites with a particular emphasis on four disease traits (Puccinia hordei, Blumeria graminis hordei, Ramularia collo-cygni, and Rhynchosporium commune). An integrated genome-wide association study, employing both Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) and a linear mixed model, was performed to unravel the genetic underpinnings of disease resistance. A total of 932 marker-trait associations were identified and assigned to 49 quantitative trait loci. The accumulation of novel and rare resistance alleles significantly bolstered the overall resistance level in PGRs. Three PGR donors with high counts of novel/rare alleles and exhibited exceptional resistance to leaf rust and powdery mildew were identified, offering promise for targeted pre-breeding goals and enhanced resilience in forthcoming varieties. Our findings underscore the critical contribution of PGRs to strengthening crop resilience and advancing sustainable agricultural practices.

3.
Nephrology (Carlton) ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689467

ABSTRACT

AIM: Kidney transplant recipients are at high risk of fracture due to many factors such as nutritional status, hyperparathyroidism, acidosis and steroid administration. The current meta-analysis aimed to comprehensively analyse the incidence and risk factors of fracture in kidney transplant recipients. METHODS: A systematic search on Embase, Web of Science, PubMed and Cochrane Library until November 2023 was performed. RStudio software was used to analyse data. RESULTS: Twenty-eight eligible studies containing 310 530 kidney transplant recipients were included in the analysis. The pooled incidence of fracture was 10% (95% confidence interval [CI]: 7%-13%) generally. When divided by regions, it was further observed that the pooled incidence of fracture was 13% (95% CI: 9%-17%) in Europe, 11% (95% CI: 6%-16%) in North America, 7% (95% CI: 3%-11%) in Asia. Regarding the risk factors, pooled analysis revealed that age of recipient (hazard ratio [HR] = 1.50, 95% CI: 1.17-1.91), female sex (HR = 1.45, 95% CI: 1.36-1.53), pretransplantation diabetes (HR = 1.76, 95% CI: 1.58-1.97), pretransplantation fracture history (HR = 2.28, 95% CI: 1.86-2.78), dialysis duration (HR = 1.09, 95% CI: 1.01-1.17) and deceased donor (HR = 1.21, 95% CI: 1.05-1.39) related to higher risk of fracture. The general quality of included studies was acceptable, and no publication bias existed except for the analysis between age of recipient and fracture incidence; further trim and fill method indicated age of recipient showed a correlation trend with the fracture incidence without the statistical significance. CONCLUSION: The pooled incidence of fracture reaches 10% in kidney transplant recipients, which relates to age of recipient, female sex, pretransplantation diabetes or fracture history, dialysis duration and decease donor.

4.
Molecules ; 29(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38792239

ABSTRACT

The amorphous form of poorly soluble drugs is physically unstable and prone to crystallization, resulting in decreased solubility and bioavailability. However, the conventional accelerated stability test for amorphous drugs is time-consuming and inaccurate. Therefore, there is an urgent need to develop rapid and accurate stability assessment technology. This study used the antitumor drug nilotinib free base as a model drug. The degree of disorder and physical stability in the amorphous form was assessed by applying the pair distribution function (PDF) and principal component analysis (PCA) methods based on powder X-ray diffraction (PXRD) data. Specifically, the assessment conditions, such as the PDF interatomic distance range, PXRD detector type, and PXRD diffraction angle range were also optimized. The results showed that more reliable PCA data could be obtained when the PDF interatomic distance range was 0-15 Å. When the PXRD detector was a semiconductor-type detector, the PDF data obtained were more accurate than other detectors. When the PXRD diffraction angle range was 5-40°, the intermolecular arrangement of the amorphous drugs could be accurately predicted. Finally, the accelerated stability test also showed that under the above-optimized conditions, this method could accurately and rapidly assess the degree of disorder and physical stability in the amorphous form of drugs, which has obvious advantages compared with the accelerated stability test.

5.
Mol Breed ; 43(6): 43, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37313220

ABSTRACT

Seed oil content is one of the most important quantitative traits in soybean (Glycine max) breeding. Here, we constructed a high-density single nucleotide polymorphism linkage map using two genetically similar parents, Heinong 84 and Kenfeng 17, that differ dramatically in their seed oil contents, and performed quantitative trait loci (QTL) mapping of seed oil content in a recombinant inbred line (RIL) population derived from their cross. We detected five QTL related to seed oil content distributed on five chromosomes. The QTL for seed oil content explained over 10% of the phenotypic variation over two years. This QTL was mapped to an interval containing 20 candidate genes, including a previously reported gene, soybean RING Finger 1a (RNF1a) encoding an E3 ubiquitin ligase. Notably, two short sequences were inserted in the GmRNF1a coding region of KF 17 compared to that of HN 84, resulting in a longer protein variant in KF 17. Our results thus provide information for uncovering the genetic mechanisms determining seed oil content in soybean, as well as identifying an additional QTL and highlighting GmRNF1a as candidate gene for modulating seed oil content in soybean. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01384-2.

6.
Plant Biotechnol J ; 20(6): 1110-1121, 2022 06.
Article in English | MEDLINE | ID: mdl-35178867

ABSTRACT

Seed morphology and quality of cultivated soybean (Glycine max) have changed dramatically during domestication from their wild relatives, but their relationship to selection is poorly understood. Here, we describe a semi-dominant locus, ST1 (Seed Thickness 1), affecting seed thickness and encoding a UDP-D-glucuronate 4-epimerase, which catalyses UDP-galacturonic acid production and promotes pectin biosynthesis. Interestingly, this morphological change concurrently boosted seed oil content, which, along with up-regulation of glycolysis biosynthesis modulated by ST1, enabled soybean to become a staple oil crop. Strikingly, ST1 and an inversion controlling seed coat colour formed part of a single selective sweep. Structural variation analysis of the region surrounding ST1 shows that the critical mutation in ST1 existed in earlier wild relatives of soybean and the region containing ST1 subsequently underwent an inversion, which was followed by successive selection for both traits through hitchhiking during selection for seed coat colour. Together, these results provide direct evidence that simultaneously variation for seed morphology and quality occurred earlier than variation for seed coat colour during soybean domestication. The identification of ST1 thus sheds light on a crucial phase of human empirical selection in soybeans and provides evidence that our ancestors improved soybean based on taste.


Subject(s)
Domestication , Glycine max , Phenotype , Seeds/chemistry , Seeds/genetics , Soybean Oil , Glycine max/genetics
7.
J Integr Plant Biol ; 64(5): 1076-1086, 2022 May.
Article in English | MEDLINE | ID: mdl-35249256

ABSTRACT

Male-sterile plants are used in hybrid breeding to improve yield in soybean (Glycine max (L.) Merr.). Developing the capability to alter fertility under different environmental conditions could broaden germplasm resources and simplify hybrid production. However, molecular mechanisms potentially underlying such a system in soybean were unclear. Here, using positional cloning, we identified a gene, MALE STERILITY 3 (MS3), which encodes a nuclear-localized protein containing a plant homeodomain (PHD)-finger domain. A spontaneous mutation in ms3 causing premature termination of MS3 translation and partial loss of the PHD-finger. Transgenetic analysis indicated that MS3 knockout resulted in nonfunctional pollen and no self-pollinated pods, and RNA-seq analysis revealed that MS3 affects the expression of genes associated with carbohydrate metabolism. Strikingly, the fertility of mutant ms3 can restore under long-d conditions. The mutant could thus be used to create a new, more stable photoperiod-sensitive genic male sterility line for two-line hybrid seed production, with significant impact on hybrid breeding and production.


Subject(s)
Glycine max , Plant Infertility , Fertility/genetics , Homeodomain Proteins , Plant Breeding , Plant Infertility/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Glycine max/genetics , Glycine max/metabolism
8.
Molecules ; 26(24)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34946544

ABSTRACT

The purpose of this work was to evaluate the possibility of adding tea saponin (TS) to reduce the synthetic surfactant concentration, and maintain or improve the shelf stability of nanoemulsions. The Zanthoxylum bungeanum essential oil (2.5 wt%) loaded oil-in-water nanoemulsions were co-stabilized by Tween 40 (0.5-2.5 wt%) and TS (0.1-5 wt%). A combination of several analytical techniques, such as dynamic laser scattering, interfacial tension, zeta potential, and transmission electron microscope, were used for the characterization of nanoemulsions. Low levels of TS (0.1-0.5 wt%) with Tween 40 had significant effects on the emulsification, and a nanoemulsion with the smallest droplet diameter of 89.63 ± 0.67 nm was obtained. However, in the presence of high TS concentration (0.5-5 wt%), micelles generated by the non-adsorbed surfactants in the aqueous lead to droplets growth. In addition, the combinations of Tween 40 and TS at the high level (>3.5 wt%) exerted a synergistic effect on stabilizing the nanoemulsions and preventing both Ostwald ripening and coalescence. The negative charged TS endowed the droplets with electrostatic repulsion and steric hinderance appeared to prevent flocculation and coalescence. These results would provide a potential application of natural TS in the preparation and stabilization of nanoemulsions containing essential oil.


Subject(s)
Nanoparticles/chemistry , Oils, Volatile/chemistry , Polysorbates/chemistry , Saponins/chemistry , Surface-Active Agents/chemistry , Zanthoxylum/chemistry , Emulsions
9.
PLoS Pathog ; 13(4): e1006304, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28369120

ABSTRACT

As well as their importance to nutrition, fatty acids (FA) represent a unique group of quorum sensing chemicals that modulate the behavior of bacterial population in virulence. However, the way in which full-length, membrane-bound receptors biochemically detect FA remains unclear. Here, we provide genetic, enzymological and biophysical evidences to demonstrate that in the phytopathogenic bacterium Xanthomonas campestris pv. campestris, a medium-chain FA diffusible signal factor (DSF) binds directly to the N-terminal, 22 amino acid-length sensor region of a receptor histidine kinase (HK), RpfC. The binding event remarkably activates RpfC autokinase activity by causing an allosteric change associated with the dimerization and histidine phosphotransfer (DHp) and catalytic ATP-binding (CA) domains. Six residues were found essential for sensing DSF, especially those located in the region adjoining to the inner membrane of cells. Disrupting direct DSF-RpfC interaction caused deficiency in bacterial virulence and biofilm development. In addition, two amino acids within the juxtamembrane domain of RpfC, Leu172 and Ala178, are involved in the autoinhibition of the RpfC kinase activity. Replacements of them caused constitutive activation of RpfC-mediated signaling regardless of DSF stimulation. Therefore, our results revealed a biochemical mechanism whereby FA activates bacterial HK in an allosteric manner, which will assist in future studies on the specificity of FA-HK recognition during bacterial virulence regulation and cell-cell communication.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/growth & development , Fatty Acids/metabolism , Plant Diseases/microbiology , Quorum Sensing , Xanthomonas campestris/enzymology , Allosteric Regulation , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Genes, Reporter , Models, Molecular , Mutation , Phenotype , Phosphorylation , Protein Kinases/genetics , Protein Kinases/metabolism , Signal Transduction , Virulence , Xanthomonas campestris/genetics , Xanthomonas campestris/pathogenicity , Xanthomonas campestris/physiology
10.
Sensors (Basel) ; 19(14)2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31336806

ABSTRACT

Building deformation models consistent with reality is a crucial step for time-series deformation monitoring. Most deformation models are empirical mathematical models, lacking consideration of the physical mechanisms of observed objects. In this study, we propose an improved time-series deformation model considering rheological parameters (viscosity and elasticity) based on the Kelvin model. The functional relationships between the rheological parameters and deformation along the Synthetic Aperture Radar ( SAR) line of sight are constructed, and a method for rheological parameter estimation is provided. To assess the feasibility and accuracy of the presented model, both simulated and real deformation data over a stretch of the Lungui highway (built on soft clay subgrade in Guangdong province, China) are investigated with TerraSAR-X satellite imagery. With the proposed deformation model, the unknown rheological parameters over all the high coherence points are obtained and the deformation time-series are generated. The high-pass (HP) deformation component and external leveling ground measurements are utilized to assess the modeling accuracy. The results show that the root mean square of the residual deformation is ±1.6 mm, whereas that of the ground leveling measurements is ±5.0 mm, indicating an improvement in the proposed model by 53%, and 34% compared to the pure linear velocity model. The results indicate the reliability of the presented model for the application of deformation monitoring of soft clay highways. The estimated rheological parameters can be provided as a reference index for the interpretation of long-term highway deformation and the stability control of subgrade construction engineering.

11.
Sensors (Basel) ; 19(23)2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31816992

ABSTRACT

Phase difference measurement of sinusoidal signals can be used for phase error calibration of the spaceborne single-pass interferometric synthetic aperture radar (InSAR) system. However, there are currently very few papers devoted to the discussion of phase difference measurement of high-frequency internal calibration signals of the InSAR system, especially the discussion of sampling frequency selection and the corresponding measuring method when the high-frequency signals are sampled under the under-sampling condition. To solve this problem, a phase difference measurement method for high-frequency sinusoidal signals is proposed, and the corresponding sampling frequency selection criteria under the under-sampling condition is determined. First, according to the selection criteria, the appropriate under-sampling frequency was chosen to sample the two sinusoidal signals with the same frequency. Then, the sampled signals were filtered by limited recursive average filtering (LRAF) and coherently accumulated in the cycle of the baseband signal. Third, the filtered and accumulated signals were used to calculate the phase difference of the two sinusoidal signals using the discrete Fourier transform (DFT), digital correlation (DC), and Hilbert transform (HT)-based methods. Lastly, the measurement accuracy of the three methods were compared respectively by different simulation experiments. Theoretical analysis and experiments verified the effectiveness of the proposed method for the phase error calibration of the InSAR system.

12.
Sensors (Basel) ; 19(16)2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31426396

ABSTRACT

The water and shadow areas in SAR images contain rich information for various applications, which cannot be extracted automatically and precisely at present. To handle this problem, a new framework called Multi-Resolution Dense Encoder and Decoder (MRDED) network is proposed, which integrates Convolutional Neural Network (CNN), Residual Network (ResNet), Dense Convolutional Network (DenseNet), Global Convolutional Network (GCN), and Convolutional Long Short-Term Memory (ConvLSTM). MRDED contains three parts: the Gray Level Gradient Co-occurrence Matrix (GLGCM), the Encoder network, and the Decoder network. GLGCM is used to extract low-level features, which are further processed by the Encoder. The Encoder network employs ResNet to extract features at different resolutions. There are two components of the Decoder network, namely, the Multi-level Features Extraction and Fusion (MFEF) and Score maps Fusion (SF). We implement two versions of MFEF, named MFEF1 and MFEF2, which generate separate score maps. The difference between them lies in that the Chained Residual Pooling (CRP) module is utilized in MFEF2, while ConvLSTM is adopted in MFEF1 to form the Improved Chained Residual Pooling (ICRP) module as the replacement. The two separate score maps generated by MFEF1 and MFEF2 are fused with different weights to produce the fused score map, which is further handled by the Softmax function to generate the final extraction results for water and shadow areas. To evaluate the proposed framework, MRDED is trained and tested with large SAR images. To further assess the classification performance, a total of eight different classification frameworks are compared with our proposed framework. MRDED outperformed by reaching 80.12% in Pixel Accuracy (PA) and 73.88% in Intersection of Union (IoU) for water, 88% in PA and 77.11% in IoU for shadow, and 95.16% in PA and 90.49% in IoU for background classification, respectively.

13.
Sensors (Basel) ; 19(24)2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31847164

ABSTRACT

Compared to traditional coal mines, the mining-induced dynamic deformation of drilling solution mining activities may result in even more serious damage to surface buildings and infrastructures due to the different exploitation mode. Therefore, long-term dynamic monitoring and analysis of rock salt mines is extremely important for preventing potential geological damages. In this work, the small baseline subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technique with Sentinel-1A imagery is utilized to monitor the ground surface deformation of a rock salt mining area. The time-series analysis is carried out to obtain the spatial-temporal characteristics of land subsidence caused by drilling solution mining activities. A typical rock salt mine in Changde, China is selected as the test site. Twenty-four scenes of Sentinel-1A image data acquired from June 2015 to January 2017 are used to obtain the time-series subsidence of the test mine. The temporal-spatial evolution of the derived settlement funnels is revealed. The time-series deformation on typical feature points has been analyzed. Experimental results show that the obtained drilling solution mining-induced subsidence has a spatial characteristic of multiplied peaks along the transversal direction. Temporally, the large-scale surface settlement for the rock salt mine area begins to appear in September 2016, with a time lag of 8 months, and shows an obvious seasonal fluctuation. The maximum cumulative subsidence is detected up to 199 mm. These subsiding characteristics are consistent with the connected groove mining method used in drilling water solution mines. To evaluate the reliability of the results, the SBAS-derived results are compared with the field-leveling measurements. The estimated root mean square error (RMSE) of ±11 mm indicates a high consistency.

14.
Sensors (Basel) ; 19(11)2019 May 30.
Article in English | MEDLINE | ID: mdl-31151259

ABSTRACT

Synthetic Aperture Radar (SAR) scene classification is challenging but widely applied, in which deep learning can play a pivotal role because of its hierarchical feature learning ability. In the paper, we propose a new scene classification framework, named Feature Recalibration Network with Multi-scale Spatial Features (FRN-MSF), to achieve high accuracy in SAR-based scene classification. First, a Multi-Scale Omnidirectional Gaussian Derivative Filter (MSOGDF) is constructed. Then, Multi-scale Spatial Features (MSF) of SAR scenes are generated by weighting MSOGDF, a Gray Level Gradient Co-occurrence Matrix (GLGCM) and Gabor transformation. These features were processed by the Feature Recalibration Network (FRN) to learn high-level features. In the network, the Depthwise Separable Convolution (DSC), Squeeze-and-Excitation (SE) Block and Convolution Neural Network (CNN) are integrated. Finally, these learned features will be classified by the Softmax function. Eleven types of SAR scenes obtained from four systems combining different bands and resolutions were trained and tested, and a mean accuracy of 98.18% was obtained. To validate the generality of FRN-MSF, five types of SAR scenes sampled from two additional large-scale Gaofen-3 and TerraSAR-X images were evaluated for classification. The mean accuracy of the five types reached 94.56%; while the mean accuracy for the same five types of the former tested 11 types of scene was 96%. The high accuracy indicates that the FRN-MSF is promising for SAR scene classification without losing generality.

15.
PLoS Pathog ; 12(12): e1006133, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28036380

ABSTRACT

Both iron starvation and excess are detrimental to cellular life, especially for animal and plant pathogens since they always live in iron-limited environments produced by host immune responses. However, how organisms sense and respond to iron is incompletely understood. Herein, we reveal that in the phytopathogenic bacterium Xanthomonas campestris pv. campestris, VgrS (also named ColS) is a membrane-bound receptor histidine kinase that senses extracytoplasmic iron limitation in the periplasm, while its cognate response regulator, VgrR (ColR), detects intracellular iron excess. Under iron-depleted conditions, dissociation of Fe3+ from the periplasmic sensor region of VgrS activates the VgrS autophosphorylation and subsequent phosphotransfer to VgrR, an OmpR-family transcription factor that regulates bacterial responses to take up iron. VgrR-VgrS regulon and the consensus DNA binding motif of the transcription factor VgrR were dissected by comparative proteomic and ChIP-seq analyses, which revealed that in reacting to iron-depleted environments, VgrR directly or indirectly controls the expressions of hundreds of genes that are involved in various physiological cascades, especially those associated with iron-uptake. Among them, we demonstrated that the phosphorylated VgrR tightly represses the transcription of a special TonB-dependent receptor gene, tdvA. This regulation is a critical prerequisite for efficient iron uptake and bacterial virulence since activation of tdvA transcription is detrimental to these processes. When the intracellular iron accumulates, the VgrR-Fe2+ interaction dissociates not only the binding between VgrR and the tdvA promoter, but also the interaction between VgrR and VgrS. This relieves the repression in tdvA transcription to impede continuous iron uptake and avoids possible toxic effects of excessive iron accumulation. Our results revealed a signaling system that directly senses both extracytoplasmic and intracellular iron to modulate bacterial iron homeostasis.


Subject(s)
Adaptation, Physiological/physiology , Bacterial Proteins/metabolism , Histidine Kinase/metabolism , Iron/metabolism , Stress, Physiological/physiology , Xanthomonas campestris/metabolism , Chromatin Immunoprecipitation , Electrophoresis, Gel, Two-Dimensional , Electrophoretic Mobility Shift Assay , Gene Expression Regulation, Bacterial/physiology , Polymerase Chain Reaction , Signal Transduction/physiology , Xanthomonas campestris/pathogenicity
16.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(10): 3280-6, 2016 Oct.
Article in Zh | MEDLINE | ID: mdl-30246964

ABSTRACT

For the case that the value of the maximum light use efficiency (MLUE) is not optimized for different steppes, we simulated the MLUE for meadow steppe, typical steppe and desert steppe in Inner Mongolia based on the field observed NPP and CASA ecosystem model, and analyzed the spatial and temporal pattern of the LUE and net primary productivity (NPP) in Inner Mongolia. The result indicate that the MLUE is optimized to be 0.654,0.553 and 0.511 gC·MJ-1 for meadow steppe, typical steppe and desert steppe in Inner Mongolia, respectively, with an average of 0.573 gC·MJ-1. Compared to the result that used same value of 0.541 gC·MJ-1 for MLUE, the correlation coefficient and relative mean square error was improved 0.024 and 2.62 gC·(m2·month-1)-1, respectively after optimization. Affected by the hydrothermal condition and distribution of grassland types, the LUE and NPP in Inner Mongolia decreased from northeast to southwest, and showed one crest shape. However, the maximum value of LUE and NPP was appeared in August and July. This difference could be attributed to the difference in the maximum value between absorbed photosynthetically active radiation and LUE. The LUE and NPP decreased by meadow steppe, typical steppe and desert steppe.

17.
Zhong Yao Cai ; 39(8): 1789-92, 2016 Aug.
Article in Zh | MEDLINE | ID: mdl-30204386

ABSTRACT

Objective: To study the chemical constitutes from the roots of Lindera glauca and the alkaloids influence on proliferation of HT-29,SGC-7901,SMMC-7721 and A549 cell lines. Methods: The constituents were isolated by column chromatography such as RP-18,Sephadex LH-20 and silica gel,and their structures were elucidated by spectroscopic data analysis and compared with literature data. The antitumor activity was determined by MTT assay. Results: Ten compounds had been isolated and identified as(-)-magnocurarine( 1),N-methyl-laurotetanine( 2),laurotetanine( 3),( +)-boldine( 4),(-)-norisoboldine( 5),( +)-norisocorydine( 6),pmethane-3,8-trans-diol( 7),p-methane-3,8-cis-diol( 8),eudesm-4( 15)-ene-7,11-diol( 9) and 4ß,6ß-dihydroxy-1α,5ß( H)-guai-9-ene( 10). Compounds 2 ~ 4 showed significant inhibitory activities against HT-29,SGC-7901,SMMC-7721 and A549 cells. Conclusion: Compound 1,9 and 10 are isolated from this plant for the first time. The IC50 value of compound 2 against HT-29 and SGC-7901 cell lines is even lower than VP-16.

18.
Food Chem ; 457: 140119, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38936125

ABSTRACT

High-mountain green tea, where the first new leaf hasn't yet unfurled, is prized for perceived superior quality, but this hasn't yet been verified by experimentation. Electronic sensors, whole metabolomics and sensory evaluation were employed to assess the quality of yymj (tea buds with a newly unfurled leaf) and qymj (tea buds without new leaves). The qymj proved to have significant advantages in aroma, color and shape, but still had some shortcomings in umami, bitterness and sourness. Differences in the content of volatile organic compounds (including alcohols, hydrocarbons and lipids) and nonvolatile organic compounds (flavonoids, amino acids, sugars, and phenolic acids) quality of high-mountain green teas with different maturity levels and provides well explained these quality differences. This study establishes a systematic approach to study the quality of high-mountain green tea at different maturity levels, and provides important reference information for consumers, governments and tea farmers.

19.
Front Pharmacol ; 14: 1022579, 2023.
Article in English | MEDLINE | ID: mdl-37007009

ABSTRACT

Background: A systematic review and meta-analysis was performed to investigate the efficacy and safety of isoniazid (INH) prophylaxis to prevent tuberculosis (TB) infection in kidney transplant recipients (KTRs). Methods: Web of Science, SCOPUS, and PubMed were searched to identify relevant studies that compared the effects among patients who received INH prophylaxis after transplantation. Results: A total of 13 studies (involving 6,547 KTRs) were included in our analysis. We found that the risk of active TB infection (RR: 0.35, 95%CI 0.27-0.45, p < 0.01) for KTRs was lower in the INH treatment group than in those without prophylaxis. However, there was no significant difference between the two groups in mortality (RR: 0.93, 95%CI 0.67-1.28, p = 0.64), acute rejection (RR: 0.82, 95%CI 0.44-1.51, p = 0.52), and hepatotoxicity (RR: 1.25, 95%CI 0.94-1.65, p = 0.12). Conclusion: Isoniazid prophylaxis is a safe and effective for KTRs on reactivation of latent TB infection.

20.
J Hazard Mater ; 452: 131358, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37027916

ABSTRACT

Human activities have led to elevated levels of selenium (Se) in the environment, which poses a threat to ecosystems and human health. Stenotrophomonas sp. EGS12 (EGS12) has been identified as a potential candidate for the bioremediation of repair selenium-contaminated environment because of its ability to efficiently reduce Se(IV) to form selenium nanospheres (SeNPs). To better understand the molecular mechanism of EGS12 in response to Se(IV) stress, a combination of transmission electron microscopy (TEM), genome sequencing techniques, metabolomics and transcriptomics were employed. The results indicated that under 2 mM Se(IV) stress, 132 differential metabolites (DEMs) were identified, and they were significantly enriched in metabolic pathways such as glutathione metabolism and amino acid metabolism. Under the Se(IV) stress of 2 mM, 662 differential genes (DEGs) involved in heavy metal transport, stress response, and toxin synthesis were identified in EGS12. These findings suggest that EGS12 may respond to Se(IV) stress by engaging various mechanisms such as forming biofilms, repairing damaged cell walls/cell membranes, reducing Se(IV) translocation into cells, increasing Se(IV) efflux, multiplying Se(IV) reduction pathways and expelling SeNPs through cell lysis and vesicular transport. The study also discusses the potential of EGS12 to repair Se contamination alone and co-repair with Se-tolerant plants (e.g. Cardamine enshiensis). Our work provides new insights into microbial tolerance to heavy metals and offers valuable information for bio-remediation techniques on Se(IV) contamination.


Subject(s)
Environmental Restoration and Remediation , Metals, Heavy , Selenium , Humans , Selenium/metabolism , Stenotrophomonas/genetics , Stenotrophomonas/metabolism , Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL