Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Am J Med Genet A ; 191(7): 1911-1916, 2023 07.
Article in English | MEDLINE | ID: mdl-36987712

ABSTRACT

Recurrent de novo missense variants in H4 histone genes have recently been associated with a novel neurodevelopmental syndrome that is characterized by intellectual disability and developmental delay as well as more variable findings that include short stature, microcephaly, and facial dysmorphisms. A 4-year-old male with autism, developmental delay, microcephaly, and a happy demeanor underwent evaluation through the Undiagnosed Disease Network. He was clinically suspected to have Angelman syndrome; however, molecular testing was negative. Genome sequencing identified the H4 histone gene variant H4C5 NM_003545.4: c.295T>C, p.Tyr99His, which parental testing confirmed to be de novo. The variant met criteria for a likely pathogenic classification and is one of the seven known disease-causing missense variants in H4C5. A comparison of our proband's findings to the initial description of the H4-associated neurodevelopmental syndrome demonstrates that his phenotype closely matches the spectrum of those reported among the 29 affected individuals. As such, this report corroborates the delineation of neurodevelopmental syndrome caused by de novo missense H4 gene variants. Moreover, it suggests that cases of clinically suspected Angelman syndrome without molecular confirmation should undergo exome or genome sequencing, as novel neurodevelopmental syndromes with phenotypes overlapping with Angelman continue to be discovered.


Subject(s)
Angelman Syndrome , Intellectual Disability , Microcephaly , Neurodevelopmental Disorders , Male , Humans , Angelman Syndrome/diagnosis , Angelman Syndrome/genetics , Microcephaly/genetics , Histones/genetics , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Phenotype , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Mutation, Missense/genetics
2.
Am J Med Genet A ; 188(9): 2750-2759, 2022 09.
Article in English | MEDLINE | ID: mdl-35543142

ABSTRACT

The pre-mRNA-processing factor 8, encoded by PRPF8, is a scaffolding component of a spliceosome complex involved in the removal of introns from mRNA precursors. Previously, heterozygous pathogenic variants in PRPF8 have been associated with autosomal dominant retinitis pigmentosa. More recently, PRPF8 was suggested as a candidate gene for autism spectrum disorder due to the enrichment of sequence variants in this gene in individuals with neurodevelopmental disorders. We report 14 individuals with various forms of neurodevelopmental conditions, found to have heterozygous, predominantly de novo, missense, and loss-of-function variants in PRPF8. These individuals have clinical features that may represent a new neurodevelopmental syndrome.


Subject(s)
Autism Spectrum Disorder , Neurodevelopmental Disorders , Retinitis Pigmentosa , Autism Spectrum Disorder/genetics , Heterozygote , Humans , Neurodevelopmental Disorders/genetics , RNA-Binding Proteins/genetics , Retinitis Pigmentosa/genetics
3.
Genet Med ; 22(5): 878-888, 2020 05.
Article in English | MEDLINE | ID: mdl-31949314

ABSTRACT

PURPOSE: Determination of genotypic/phenotypic features of GATAD2B-associated neurodevelopmental disorder (GAND). METHODS: Fifty GAND subjects were evaluated to determine consistent genotypic/phenotypic features. Immunoprecipitation assays utilizing in vitro transcription-translation products were used to evaluate GATAD2B missense variants' ability to interact with binding partners within the nucleosome remodeling and deacetylase (NuRD) complex. RESULTS: Subjects had clinical findings that included macrocephaly, hypotonia, intellectual disability, neonatal feeding issues, polyhydramnios, apraxia of speech, epilepsy, and bicuspid aortic valves. Forty-one novelGATAD2B variants were identified with multiple variant types (nonsense, truncating frameshift, splice-site variants, deletions, and missense). Seven subjects were identified with missense variants that localized within two conserved region domains (CR1 or CR2) of the GATAD2B protein. Immunoprecipitation assays revealed several of these missense variants disrupted GATAD2B interactions with its NuRD complex binding partners. CONCLUSIONS: A consistent GAND phenotype was caused by a range of genetic variants in GATAD2B that include loss-of-function and missense subtypes. Missense variants were present in conserved region domains that disrupted assembly of NuRD complex proteins. GAND's clinical phenotype had substantial clinical overlap with other disorders associated with the NuRD complex that involve CHD3 and CHD4, with clinical features of hypotonia, intellectual disability, cardiac defects, childhood apraxia of speech, and macrocephaly.


Subject(s)
Intellectual Disability , Megalencephaly , Neurodevelopmental Disorders , Child , Female , GATA Transcription Factors/genetics , Humans , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Nucleosomes , Phenotype , Pregnancy , Repressor Proteins
5.
Beilstein J Nanotechnol ; 13: 334-343, 2022.
Article in English | MEDLINE | ID: mdl-35425691

ABSTRACT

We have investigated the low-temperature magnetoresistive properties of a thin epitaxial Pd0.92Fe0.08 film at different directions of the current and the applied magnetic field. The obtained experimental results are well described within an assumption of a single-domain magnetic state of the film. In a wide range of the appled field directions, the magnetization reversal proceeds in two steps via the intermediate easy axis. An epitaxial heterostructure of two magnetically separated ferromagnetic layers, Pd0.92Fe0.08/Ag/Pd0.96Fe0.04, was synthesized and studied with dc magnetometry. Its magnetic configuration diagram has been constructed and the conditions have been determined for a controllable switching between stable parallel, orthogonal, and antiparallel arrangements of magnetic moments of the layers.

6.
Nanomaterials (Basel) ; 12(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36558214

ABSTRACT

The results of experimental and theoretical studies of standing spin waves in a series of epitaxial films of the ferromagnetic Pd1−xFex alloy (0.02 < x < 0.11) with different distributions of the magnetic properties across the thickness are presented. Films with linear and stepwise, as well as more complex Lorentzian, sine and cosine profiles of iron concentration in the alloy, and thicknesses from 20 to 400 nm are considered. A crucial influence of the magnetic properties profile on the spectrum of spin wave resonances is demonstrated. A capability of engineering the standing spin waves in graded ferromagnetic films for applications in magnonics is discussed.

7.
Beilstein J Nanotechnol ; 13: 836-844, 2022.
Article in English | MEDLINE | ID: mdl-36105688

ABSTRACT

A series of Pd1- x Fe x alloy epitaxial films (x = 0, 0.038, 0.062, and 0.080), a material promising for superconducting spintronics, was prepared and studied with ultrafast optical and magneto-optical laser spectroscopy in a wide temperature range of 4-300 K. It was found that the transition to the ferromagnetic state causes a qualitative change of both the reflectivity and the magneto-optical Kerr effect transients. A nanoscale magnetic inhomogeneity of the ferromagnet/paramagnet type inherent in the palladium-rich Pd1- x Fe x alloys reveals itself through the occurrence of a relatively slow, 10-25 ps, photoinduced demagnetization component following a subpicosecond one; the former vanishes at low temperatures only in the x = 0.080 sample. We argue that the 10 ps timescale demagnetization originates most probably from the diffusive transport of d electrons under the condition of nanoscale magnetic inhomogeneities. The low-temperature fraction of the residual paramagnetic phase can be deduced from the magnitude of the slow reflectivity relaxation component. It is estimated as ≈30% for x = 0.038 and ≈15% for x = 0.062 films. The minimal iron content ensuring the magnetic homogeneity of the ferromagnetic state in the Pd1- x Fe x alloy at low temperatures is about 7-8 atom %.

8.
Am J Med Genet A ; 155A(2): 367-71, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21271656

ABSTRACT

Low copy repeat (LCR) sequences in 17p11.2 predispose this region to genomic deletions and duplications. Duplication of 17p11.2, also known as Potocki-Lupski syndrome (PTLS), is a well-described microduplication syndrome featuring cognitive and language deficits, developmental delay, autistic behavior, structural cardiovascular anomalies, hypotonia, failure to thrive, apnea, and dysmorphism. We present a mother and her two children who share both dysmorphic features and the dup(17)(p11.2p11.2); the first child was born with hypoplastic left heart (HLH). The dup(17)(p11.2p11.2) was identified by GTG-banding analysis of peripheral blood specimens from all three individuals and confirmed by fluorescence in situ hybridization (FISH) and array comparative genomic hybridization (aCGH). Here we provide a thorough description of the phenotypes of the affected individuals, as well as describe physical features not reported previously for PTLS.


Subject(s)
Hypoplastic Left Heart Syndrome/pathology , Phenotype , Abnormalities, Multiple , Child, Preschool , Chromosome Disorders , Chromosome Duplication , Comparative Genomic Hybridization , Female , Humans , In Situ Hybridization, Fluorescence , Smith-Magenis Syndrome/genetics , Smith-Magenis Syndrome/pathology
9.
Mol Genet Metab ; 101(1): 33-9, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20580581

ABSTRACT

INTRODUCTION: Medium chain acyl-CoA dehydrogenase deficiency (MCADD) is the most frequent of the fatty acid oxidation disorders (FAOD), a group caused by defects in the mitochondrial B-oxidation of fatty acids. Fatty acid oxidation is critical in supplying energy during periods when glucose is limited or when energy needs are increased beyond the availability of glucose. In MCADD, this energy shortage can result in acute metabolic episodes or sudden death. The prevention of sudden death from MCADD served as the primary impetus to expand newborn screening. However, we have experienced sudden death in four children with MCADD despite their detection by newborn screening. The purpose of this report is to alert others to the danger of sudden death in MCADD even when it is detected by newborn screening, to identify the clinical symptoms that precede sudden death, and to examine the relationship between the newborn screening result and the risk for sudden death. METHODS: We describe these children and their metabolic findings with emphasis on their newborn screening octanoylcarnitine (C8) level, the primary marker for newborn detection of MCADD. We also performed a literature search of cases of sudden death in MCADD in which the clinical status preceding death is described. RESULTS: The newborn screening C8 levels in our four cases were markedly elevated, ranging from 8.4 to 24.8micromol/L (cut off<0.8micromol/L). Only two of the children were homozygous for the common c.985A>G MCAD mutation; the other two were heterozygous for this mutation. Similarly, among the eight reported cases which included MCAD genotypes, five were homozygous for the c.985A>G mutation, while two were heterozygous and one was homozygous for a splice site mutation. Vomiting 12-24h before sudden death was present in all four of our cases, and the review of reported cases of sudden death in MCADD disclosed vomiting as a frequent symptom. CONCLUSION: We suggest that in MCADD (1) a newborn screening C8 level of 6micromol/L or greater represents particular risk of sudden death; (2) that MCAD genotypes other than homozygosity for the c.985A>G mutation are also associated with sudden death; (3) that vomiting is a frequent symptom preceding sudden death; and (4) social support and medical follow-up of these families are crucial in reducing the occurrence of sudden death.


Subject(s)
Death, Sudden , Lipid Metabolism, Inborn Errors , Neonatal Screening , Acyl-CoA Dehydrogenase/blood , Acyl-CoA Dehydrogenase/deficiency , Acyl-CoA Dehydrogenase/genetics , Acyl-CoA Dehydrogenase/metabolism , Child, Preschool , Female , Homozygote , Humans , Infant , Infant, Newborn , Lipid Metabolism, Inborn Errors/blood , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/metabolism , Male , Mutation
10.
Nanomaterials (Basel) ; 11(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383847

ABSTRACT

A thin-film superconductor(S)/ferromagnet(F) F1/S/F2-type Pd0.96Fe0.04(20 nm)/VN(30 nm)/Pd0.92Fe0.08(12 nm) heteroepitaxial structure was synthesized on (001)-oriented single-crystal MgO substrate utilizing a combination of the reactive magnetron sputtering and the molecular-beam epitaxy techniques in ultrahigh vacuum conditions. The reference VN film, Pd0.96Fe0.04/VN, and VN/Pd0.92Fe0.08 bilayers were grown in one run with the target sample. In-situ low-energy electron diffraction and ex-situ X-ray diffraction investigations approved that all the Pd1-xFex and VN layers in the series grew epitaxial in a cube-on-cube mode. Electric resistance measurements demonstrated sharp transitions to the superconducting state with the critical temperature reducing gradually from 7.7 to 5.4 K in the sequence of the VN film, Pd0.96Fe0.04/VN, VN/Pd0.92Fe0.08, and Pd0.96Fe0.04/VN/Pd0.92Fe0.08 heterostructures due to the superconductor/ferromagnet proximity effect. Transition width increased in the same sequence from 21 to 40 mK. Magnetoresistance studies of the trilayer Pd0.96Fe0.04/VN/Pd0.92Fe0.08 sample revealed a superconducting spin-valve effect upon switching between the parallel and antiparallel magnetic configurations, and anomalies associated with the magnetic moment reversals of the ferromagnetic Pd0.92Fe0.08 and Pd0.96Fe0.04 alloy layers. The moderate critical temperature suppression and manifestations of superconducting spin-valve properties make this kind of material promising for superconducting spintronics applications.

11.
Beilstein J Nanotechnol ; 11: 807-813, 2020.
Article in English | MEDLINE | ID: mdl-32509494

ABSTRACT

Single-layer vanadium nitride (VN) and bilayer Pd0.96Fe0.04/VN and VN/Pd0.92Fe0.08 thin-film heterostructures for possible spintronics applications were synthesized on (001)-oriented single-crystalline magnesium oxide (MgO) substrates utilizing a four-chamber ultrahigh vacuum deposition and analysis system. The VN layers were reactively magnetron sputtered from a metallic vanadium target in Ar/N2 plasma, while the Pd1- x Fe x layers were deposited by co-evaporation of metallic Pd and Fe pellets from calibrated effusion cells in a molecular beam epitaxy chamber. The VN stoichiometry and Pd1- x Fe x composition were controlled by X-ray photoelectron spectroscopy. In situ low-energy electron diffraction and ex situ X-ray diffraction show that the 30 nm thick single-layer VN as well as the double-layer VN(30 nm)/Pd0.92Fe0.08(12 nm) and Pd0.96Fe0.04(20 nm)/VN(30 nm) structures have grown cube-on-cube epitaxially. Electric resistance measurements demonstrate a metallic-type temperature dependence for the VN film with a small residual resistivity of 9 µΩ·cm at 10 K, indicating high purity and structural quality of the film. The transition to the superconducting state was observed at 7.7 K for the VN film, at 7.2 K for the Pd0.96Fe0.04/VN structure and at 6.1 K for the VN/Pd0.92Fe0.08 structure with the critical temperature decreasing due to the proximity effect. Contrary to expectations, all transitions were very sharp with the width ranging from 25 mK for the VN film to 50 mK for the VN/Pd0.92Fe0.08 structure. We propose epitaxial single-crystalline thin films of VN and heteroepitaxial Pd1- x Fe x /VN and VN/Pd1- x Fe x (x ≤ 0.08) structures grown on MgO(001) as the materials of a choice for the improvement of superconducting magnetic random access memory characteristics.

12.
Pediatr Pulmonol ; 55(1): 130-135, 2020 01.
Article in English | MEDLINE | ID: mdl-31549486

ABSTRACT

BACKGROUND: The diagnosis of primary ciliary dyskinesia (PCD) is difficult and requires a combination of clinical features, nasal nitric oxide testing, cilia ultrastructural analysis by electron microscopy (EM), and genetics. A recently described cytoplasmic ultrastructural change termed "ciliary inclusions" was reported to be diagnostic of PCD; however, no supporting evidence of PCD was provided. In this study, we sought to confirm, or refute, the diagnosis of PCD in subjects with "ciliary inclusions" on EM. METHODS: Six subjects from five families with previous lab reports of "ciliary inclusions" on EMs of ciliated cells were identified and evaluated at a Genetic Disorders of Mucociliary Clearance Consortium site. We performed a detailed clinical history, nasal nitric oxide measurement, genetic testing including whole-exome sequencing (WES), and when possible, repeat ciliary EM study. RESULTS: Only one of six subjects had multiple and persistent clinical features congruent with PCD. No subject had situs inversus. Only one of six subjects had a very low nasal nitric oxide level. No "ciliary inclusions" were found in three subjects who had a repeat ciliary EM, and ciliary axonemal ultrastructures were normal. Genetic testing, including WES, was negative for PCD-causing genes, and for pathogenic variants in gene pathways that might cause "ciliary inclusions," such as ciliary biogenesis. CONCLUSION: "Ciliary Inclusions", in isolation, are not sufficient to diagnosis PCD. If seen, additional studies should be done to pursue an accurate diagnosis.


Subject(s)
Cilia/ultrastructure , Ciliary Motility Disorders/diagnosis , Child, Preschool , Ciliary Motility Disorders/genetics , Ciliary Motility Disorders/metabolism , Female , Genetic Testing , Humans , Infant , Male , Nasal Mucosa/metabolism , Nitric Oxide/metabolism , Exome Sequencing
13.
Mol Cytogenet ; 6(1): 38, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-24053112

ABSTRACT

BACKGROUND: Genomic microarrays have been used as the first-tier cytogenetic diagnostic test for patients with developmental delay/intellectual disability, autism spectrum disorders and/or multiple congenital anomalies. The use of SNP arrays has revealed regions of homozygosity in the genome which can lead to identification of uniparental disomy and parental consanguinity in addition to copy number variations. Consanguinity is associated with an increased risk of birth defects and autosomal recessive disorders. However, the frequency of parental consanguinity in children with developmental disabilities is unknown, and consanguineous couples may not be identified during doctor's visit or genetic counseling without microarray. RESULTS: We studied 607 proband pediatric patients referred for developmental disorders using a 4 × 180 K array containing both CGH and SNP probes. Using 720, 360, 180, and 90 Mb as the expected sizes of homozygosity for an estimated coefficient of inbreeding (F) 1/4, 1/8, 1/16, 1/32, parental consanguinity was detected in 21cases (3.46%). CONCLUSION: Parental consanguinity is not uncommon in children with developmental problems in our study population, and can be identified by use of a combined CGH and SNP chromosome microarray. Identification of parental consanguinity in such cases can be important for further diagnostic testing.

SELECTION OF CITATIONS
SEARCH DETAIL