Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Spinal Cord ; 61(1): 15-21, 2023 01.
Article in English | MEDLINE | ID: mdl-35999254

ABSTRACT

STUDY DESIGN: Multicentre-observational study. OBJECTIVES: The 6-minute walk test (6mWT) is an established assessment of walking function in individuals with spinal cord injury (SCI). However, walking 6 min can be demanding for severely impaired individuals. The 2-minute walk test (2mWT) could be an appropriate alternative that has already been validated in other neurological disorders. The aim of this study was to assess construct validity and test-rest reliability of the 2mWT in individuals with SCI. In addition, the influence of walking performance on sensitivity to change of the 2mWT was assessed. SETTING: Swiss Paraplegic Center Nottwil, Switzerland; Balgrist University Hospital, Zürich, Switzerland. METHODS: Fifty individuals (aged 18-79) with SCI (neurological level of injury: C1-L3, AIS: A-D) were assessed on two test days separated by 1 to 7 days. The first assessment consisted of a 2mWT familiarization, followed by a 2mWT and 10-meter walk test (10MWT) (including the Walking Index for Spinal Cord Injury (WISCI II)) in randomized order. The second assessment consisted of 2mWT and 6mWT in randomized order. Tests were separated by at least 30 min of rest. RESULTS: The interclass correlation coefficient between the 2mWT assessed on the first and second test day was excellent (r = 0.980, p < 0.001). The 2mWT correlated very strongly with the 6mWT (r = 0.992, p < 0.001) and the 10MWT (r = 0.964, p < 0.001), and moderately with the WISCI II (r = 0.571, p < 0.001). Sensitivity to change was slightly affected by walking performance. CONCLUSION: The 2mWT is a valid and reliable alternative to the 6mWT to measure walking function in individuals with SCI. TRIAL REGISTRATION: NCT04555759.


Subject(s)
Spinal Cord Injuries , Humans , Spinal Cord Injuries/diagnosis , Walk Test , Reproducibility of Results , Walking , Paraplegia/diagnosis , Paraplegia/etiology
2.
Mult Scler ; 26(11): 1298-1302, 2020 10.
Article in English | MEDLINE | ID: mdl-31081454

ABSTRACT

Accurate functional outcome measures are critical for both clinical trials and routine patient assessments. Many functional outcomes improve with test repetition, a phenomenon that can confound the findings of longitudinal assessments. In this viewpoint, we tackle the poorly considered issue of practice effects in prevailing clinical walking tests based on current literature, while also presenting the original data from our own work, in which we investigated practice effects in the timed 25-foot walk (T25FW), timed-up and go (TUG), and 2-minute walk test (2MWT). In these tests, performed on 3 consecutive days in 10 patients with multiple sclerosis and 40 healthy controls, we observed significant practice effects in several established walking outcomes, including a 9.0% improvement in patients' TUG performance (p = 0.0146). Pre-training in these walking tests prior to baseline measurement may mitigate practice effects, thereby improving the accuracy and value of their repeated use in research and clinical settings.


Subject(s)
Multiple Sclerosis , Walking , Humans , Multiple Sclerosis/diagnosis , Physical Therapy Modalities , Walk Test
3.
Spinal Cord ; 56(7): 628-642, 2018 07.
Article in English | MEDLINE | ID: mdl-29700477

ABSTRACT

STUDY DESIGN: This is a focused review article. OBJECTIVES: To identify important concepts in lower extremity (LE) assessment with a focus on locomotor outcomes and provide guidance on how existing outcome measurement tools may be best used to assess experimental therapies in spinal cord injury (SCI). The emphasis lies on LE outcomes in individuals with complete and incomplete SCI in Phase II-III trials. METHODS: This review includes a summary of topics discussed during a workshop focusing on LE function in SCI, conceptual discussion of corresponding outcome measures and additional focused literature review. RESULTS: There are a number of sensitive, accurate, and responsive outcome tools measuring both quantitative and qualitative aspects of LE function. However, in trials with individuals with very acute injuries, a baseline assessment of the primary (or secondary) LE outcome measure is often not feasible. CONCLUSION: There is no single outcome measure to assess all individuals with SCI that can be used to monitor changes in LE function regardless of severity and level of injury. Surrogate markers have to be used to assess LE function in individuals with severe SCI. However, it is generally agreed that a direct measurement of the performance for an appropriate functional activity supersedes any surrogate marker. LE assessments have to be refined so they can be used across all time points after SCI, regardless of the level or severity of spinal injury. SPONSORS: Craig H. Neilsen Foundation, Spinal Cord Outcomes Partnership Endeavor.


Subject(s)
Clinical Trials as Topic/methods , Lower Extremity/physiopathology , Outcome Assessment, Health Care , Spinal Cord Injuries/therapy , Humans , Spinal Cord Injuries/pathology
4.
Acta Neuropathol ; 134(3): 423-440, 2017 09.
Article in English | MEDLINE | ID: mdl-28646336

ABSTRACT

Two hallmarks of chronic multiple sclerosis lesions are the absence of significant spontaneous remyelination and primary as well as secondary neurodegeneration. Both characteristics may be influenced by the presence of inhibitory factors preventing myelin and neuronal repair. We investigated the potential of antibodies against Nogo-A, a well-known inhibitory protein for neuronal growth and plasticity, to enhance neuronal regeneration and remyelination in two animal models of multiple sclerosis. We induced a targeted experimental autoimmune encephalomyelitis (EAE) lesion in the dorsal funiculus of the cervical spinal cord of adult rats resulting in a large drop of skilled forelimb motor functions. We subsequently observed improved recovery of forelimb function after anti-Nogo-A treatment. Anterograde tracing of the corticospinal tract revealed enhanced axonal sprouting and arborisation within the spinal cord gray matter preferentially targeting pre-motor and motor spinal cord laminae on lesion level and above in the anti-Nogo-A-treated animals. An important additional effect of Nogo-A-neutralization was enhanced remyelination observed after lysolecithin-induced demyelination of spinal tracts. Whereas remyelinated fiber numbers in the lesion site were increased several fold, no effect of Nogo-A-inhibition was observed on oligodendrocyte precursor proliferation, migration, or differentiation. Enhancing remyelination and promoting axonal regeneration and plasticity represent important unmet medical needs in multiple sclerosis. Anti-Nogo-A antibodies hold promise as a potential new therapy for multiple sclerosis, in particular during the chronic phase of the disease when neurodegeneration and remyelination failure determine disability evolution.


Subject(s)
Axons/immunology , Brain/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Nogo Proteins/immunology , Remyelination/immunology , Animals , Antibodies/pharmacology , Axons/drug effects , Axons/pathology , Brain/drug effects , Brain/pathology , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Inflammation/immunology , Inflammation/pathology , Rats , Rats, Inbred Lew , Recovery of Function/physiology , Remyelination/drug effects
5.
Mult Scler ; 22(11): 1463-1475, 2016 10.
Article in English | MEDLINE | ID: mdl-26762672

ABSTRACT

BACKGROUND: Prolonged-release fampridine (PR-fampridine, 4-aminopyridine) increases walking speed in the timed 25-foot walk test (T25FW) in some patients (timed-walk responders) with multiple sclerosis (MS). OBJECTIVE: To explore the effects of PR-fampridine on different aspects of walking function and to identify associated gait modifications in subjects with MS. METHODS: In this prospective, randomized, placebo-controlled, double-blind, phase II study (FAMPKIN; clinicaltrials.gov, NCT01576354), subjects received a 6-week course of oral placebo or PR-fampridine treatment (10 mg, twice daily) before crossing over. Using 3D-motion-analysis, kinematic and kinetic parameters were assessed during treadmill walking (primary endpoint). Clinical outcome measures included T25FW, 6-minute walk test (6MWT), and balance scales. Physical activity in everyday life was measured with an accelerometer device. RESULTS: Data from 55 patients were suitable for analysis. Seventeen subjects were timed-walk responders under PR-fampridine. For the total study population and for responders, a significant increase in walking speed (T25FW) and distance (6MWT) was observed. Gait pattern changes were found at the single-subject level and correlated with improvements in the T25FW and 6MWT. Physical activity was increased in responders. CONCLUSION: PR-fampridine improves walking speed, endurance, and everyday physical activity in a subset of subjects with MS and leads to individual modifications of the gait pattern.


Subject(s)
4-Aminopyridine/therapeutic use , Gait Disorders, Neurologic/physiopathology , Multiple Sclerosis/drug therapy , Potassium Channel Blockers/therapeutic use , Adult , Biomechanical Phenomena , Delayed-Action Preparations , Double-Blind Method , Female , Gait , Gait Disorders, Neurologic/etiology , Humans , Male , Middle Aged , Multiple Sclerosis/complications , Multiple Sclerosis/physiopathology , Treatment Outcome , Walk Test , Walking Speed
6.
J Neurosci ; 34(40): 13399-410, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25274818

ABSTRACT

Anatomically incomplete spinal cord injuries are often followed by considerable functional recovery in patients and animal models, largely because of processes of neuronal plasticity. In contrast to the corticospinal system, where sprouting of fibers and rearrangements of circuits in response to lesions have been well studied, structural adaptations within descending brainstem pathways and intraspinal networks are poorly investigated, despite the recognized physiological significance of these systems across species. In the present study, spontaneous neuroanatomical plasticity of severed bulbospinal systems and propriospinal neurons was investigated following unilateral C4 spinal hemisection in adult rats. Injection of retrograde tracer into the ipsilesional segments C3-C4 revealed a specific increase in the projection from the ipsilesional gigantocellular reticular nucleus in response to the injury. Substantial regenerative fiber sprouting of reticulospinal axons above the injury site was demonstrated by anterograde tracing. Regrowing reticulospinal fibers exhibited excitatory, vGLUT2-positive varicosities, indicating their synaptic integration into spinal networks. Reticulospinal fibers formed close appositions onto descending, double-midline crossing C3-C4 propriospinal neurons, which crossed the lesion site in the intact half of the spinal cord and recrossed to the denervated cervical hemicord below the injury. These propriospinal projections around the lesion were significantly enhanced after injury. Our results suggest that severed reticulospinal fibers, which are part of the phylogenetically oldest motor command system, spontaneously arborize and form contacts onto a plastic propriospinal relay, thereby bypassing the lesion. These rearrangements were accompanied by substantial locomotor recovery, implying a potential physiological relevance of the detour in restoration of motor function after spinal injury.


Subject(s)
Medulla Oblongata/physiology , Neural Pathways/physiology , Neuronal Plasticity/physiology , Neurons/pathology , Reticular Formation/pathology , Spinal Cord Injuries/pathology , Animals , Axons , Cell Count , Disease Models, Animal , Female , Functional Laterality/physiology , GABA Plasma Membrane Transport Proteins/metabolism , Motor Activity/physiology , Neural Pathways/drug effects , Neural Pathways/metabolism , Rats , Rats, Inbred Lew , Recovery of Function , Reticular Formation/metabolism , Spinal Cord/drug effects , Spinal Cord/pathology , Spinal Cord Injuries/physiopathology , Vesicular Glutamate Transport Protein 1/metabolism , Vesicular Glutamate Transport Protein 2/metabolism
7.
Brain ; 137(Pt 6): 1716-32, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24736305

ABSTRACT

Anatomical plasticity such as fibre growth and the formation of new connections in the cortex and spinal cord is one known mechanism mediating functional recovery after damage to the central nervous system. Little is known about anatomical plasticity in the brainstem, which contains key locomotor regions. We compared changes of the spinal projection pattern of the major descending systems following a cervical unilateral spinal cord hemisection in adult rats. As in humans (Brown-Séquard syndrome), this type of injury resulted in a permanent loss of fine motor control of the ipsilesional fore- and hindlimb, but for basic locomotor functions substantial recovery was observed. Antero- and retrograde tracings revealed spontaneous changes in spinal projections originating from the reticular formation, in particular from the contralesional gigantocellular reticular nucleus: more reticulospinal fibres from the intact hemicord crossed the spinal midline at cervical and lumbar levels. The intact-side rubrospinal tract showed a statistically not significant tendency towards an increased number of midline crossings after injury. In contrast, the corticospinal and the vestibulospinal tract, as well as serotonergic projections, showed little or no side-switching in this lesion paradigm. Spinal adaptations were accompanied by modifications at higher levels of control including side-switching of the input to the gigantocellular reticular nuclei from the mesencephalic locomotor region. Electrolytic microlesioning of one or both gigantocellular reticular nuclei in behaviourally recovered rats led to the reappearance of the impairments observed acutely after the initial injury showing that anatomical plasticity in defined brainstem motor networks contributes significantly to functional recovery after injury of the central nervous system.


Subject(s)
Brain Stem/physiopathology , Locomotion/physiology , Nerve Regeneration/physiology , Neuronal Plasticity/physiology , Spinal Cord Injuries/physiopathology , Animals , Brain Stem/pathology , Disease Models, Animal , Female , Functional Laterality/physiology , Rats , Recovery of Function/physiology , Spinal Cord Injuries/pathology
8.
Front Neurol ; 15: 1335795, 2024.
Article in English | MEDLINE | ID: mdl-38895696

ABSTRACT

Brown-Séquard Syndrome (BSS) is a rare neurological condition caused by a unilateral spinal cord injury (SCI). Upon initial ipsilesional hemiplegia, patients with BSS typically show substantial functional recovery over time. Preclinical studies on experimental BSS demonstrated that spontaneous neuroplasticity in descending motor systems is a key mechanism promoting functional recovery. The reticulospinal (RS) system is one of the main descending motor systems showing a remarkably high ability for neuroplastic adaptations after incomplete SCI. In humans, little is known about the contribution of RS plasticity to functional restoration after SCI. Here, we investigated RS motor drive to different muscles in a subject with Brown-Séquard-plus Syndrome (BSPS) five months post-injury using the StartReact paradigm. RS drive was compared between ipsi- and contralesional muscles, and associated with measures of functional recovery. Additionally, corticospinal (CS) drive was investigated using transcranial magnetic stimulation (TMS) in a subset of muscles. The biceps brachii showed a substantial enhancement of RS drive on the ipsi- vs. contralesional side, whereas no signs of CS plasticity were found ipsilesionally. This finding implies that motor recovery of ipsilesional elbow flexion is primarily driven by the RS system. Results were inversed for the ipsilesional tibialis anterior, where RS drive was not augmented, but motor-evoked potentials recovered over six months post-injury, suggesting that CS plasticity contributed to improvements in ankle dorsiflexion. Our findings indicate that the role of RS and CS plasticity in motor recovery differs between muscles, with CS plasticity being essential for the restoration of distal extremity motor function, and RS plasticity being important for the functional recovery of proximal flexor muscles after SCI in humans.

9.
Sci Rep ; 14(1): 3049, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38321085

ABSTRACT

Most established clinical walking tests assess specific aspects of movement function (velocity, endurance, etc.) but are generally unable to determine specific biomechanical or neurological deficits that limit an individual's ability to walk. Recently, inertial measurement units (IMU) have been used to collect objective kinematic data for gait analysis and could be a valuable extension for clinical assessments (e.g., functional walking measures). This study assesses the reliability of an IMU-based overground gait analysis during the 2-min walk test (2mWT) in individuals with spinal cord injury (SCI). Furthermore, the study elaborates on the capability of IMUs to distinguish between different gait characteristics in individuals with SCI. Twenty-six individuals (aged 22-79) with acute or chronic SCI (AIS: C and D) completed the 2mWT with IMUs attached above each ankle on 2 test days, separated by 1 to 7 days. The IMU-based gait analysis showed good to excellent test-retest reliability (ICC: 0.77-0.99) for all gait parameters. Gait profiles remained stable between two measurements. Sensor-based gait profiling was able to reveal patient-specific gait impairments even in individuals with the same walking performance in the 2mWT. IMUs are a valuable add-on to clinical gait assessments and deliver reliable information on detailed gait pathologies in individuals with SCI.Trial registration: NCT04555759.


Subject(s)
Gait , Spinal Cord Injuries , Humans , Walk Test , Reproducibility of Results , Walking
10.
Nat Methods ; 7(9): 701-8, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20836253

ABSTRACT

Rodents are frequently used to model damage and diseases of the central nervous system (CNS) that lead to functional deficits. Impaired locomotor function is currently evaluated by using scoring systems or biomechanical measures. These methods often suffer from limitations such as subjectivity, nonlinearity and low sensitivity, or focus on a few very restricted aspects of movement. Thus, full quantitative profiles of motor deficits after CNS damage are lacking. Here we report the detailed characterization of locomotor impairments after applying common forms of CNS damage in rodents. We obtained many objective and quantitative readouts from rats with either spinal cord injuries or strokes and from transgenic mice (Epha4−/−) during skilled walking, overground walking, wading and swimming, resulting in model-specific locomotor profiles. Our testing and analysis method enables comprehensive assessment of locomotor function in rodents and has broad application in various fields of life science research.


Subject(s)
Central Nervous System/physiopathology , Locomotion , Psychomotor Performance , Animals , Central Nervous System/injuries , Female , Gait , Locomotion/physiology , Mice , Mice, Inbred C57BL , Psychomotor Disorders/diagnosis , Psychomotor Disorders/physiopathology , Rats , Rats, Inbred Lew , Swimming , Walking
11.
Brain ; 135(Pt 11): 3265-81, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23169918

ABSTRACT

Whereas large injuries to the brain lead to considerable irreversible functional impairments, smaller strokes or traumatic lesions are often associated with good recovery. This recovery occurs spontaneously, and there is ample evidence from preclinical studies to suggest that adjacent undamaged areas (also known as peri-infarct regions) of the cortex 'take over' control of the disrupted functions. In rodents, sprouting of axons and dendrites has been observed in this region following stroke, while reduced inhibition from horizontal or callosal connections, or plastic changes in subcortical connections, could also occur. The exact mechanisms underlying functional recovery after small- to medium-sized strokes remain undetermined but are of utmost importance for understanding the human situation and for designing effective treatments and rehabilitation strategies. In the present study, we selectively destroyed large parts of the forelimb motor and premotor cortex of adult rats with an ischaemic injury. A behavioural test requiring highly skilled, cortically controlled forelimb movements showed that some animals recovered well from this lesion whereas others did not. To investigate the reasons behind these differences, we used anterograde and retrograde tracing techniques and intracortical microstimulation. Retrograde tracing from the cervical spinal cord showed a correlation between the number of cervically projecting corticospinal neurons present in the hindlimb sensory-motor cortex and good behavioural recovery. Anterograde tracing from the hindlimb sensory-motor cortex also showed a positive correlation between the degree of functional recovery and the sprouting of neurons from this region into the cervical spinal cord. Finally, intracortical microstimulation confirmed the positive correlation between rewiring of the hindlimb sensory-motor cortex and the degree of forelimb motor recovery. In conclusion, these experiments suggest that following stroke to the forelimb motor cortex, cells in the hindlimb sensory-motor area reorganize and become functionally connected to the cervical spinal cord. These new connections, probably in collaboration with surviving forelimb neurons and more complex indirect connections via the brainstem, play an important role for the recovery of cortically controlled behaviours like skilled forelimb reaching.


Subject(s)
Forelimb/physiopathology , Hindlimb/physiopathology , Motor Cortex/physiology , Pyramidal Tracts/physiology , Recovery of Function/physiology , Stroke/physiopathology , Animals , Disease Models, Animal , Electric Stimulation/methods , Endothelin-1 , Female , Magnetic Resonance Imaging/methods , Motor Cortex/pathology , Motor Cortex/physiopathology , Motor Skills/physiology , Nerve Regeneration/physiology , Neural Pathways/physiology , Neuroanatomical Tract-Tracing Techniques/methods , Neuroimaging/methods , Pyramidal Tracts/pathology , Rats , Rats, Long-Evans , Spinal Cord/pathology , Stroke/pathology
12.
J Neurotrauma ; 40(9-10): 952-964, 2023 05.
Article in English | MEDLINE | ID: mdl-36029211

ABSTRACT

After incomplete spinal cord injury (iSCI), the control of lower extremity movements may be affected by impairments in descending corticospinal tract function. Previous iSCI studies demonstrated relatively well-preserved movement control during simple alternating dorsiflections and plantar flexions albeit with severely reduced motor strength and range of motion. This task, however, required comparably limited fine motor control, impeding the sensitivity to assess the modulatory capacity of corticospinal control. Therefore, we introduced a more challenging ankle motor task necessitating complex and dynamic feedback-based movement adjustments to modulate corticospinal drive. Nineteen individuals with iSCI and 22 control subjects performed two different ankle movement tasks: (1) a regular, auditory-guided ankle movement task at a constant frequency as baseline assessment and (2) an irregular, visually guided ankle movement task following a pre-defined trajectory as a more challenging motor task. Both tasks were performed separately and in a randomized order. Electromyography (EMG) and kinematic data were recorded. The EMG frequency characteristics were investigated using wavelet transformations. Control participants exhibited a shift of relative EMG intensity from higher (>100 Hz) to lower frequencies (20-60 Hz) comparing the regular with the irregular movement task. There is evidence that EMG activity within these lower frequencies comprise information on corticospinal drive. The EMG frequency shift was less pronounced for the less impaired leg and absent for the more impaired leg of individuals with iSCI. The precision error during the irregular task was significantly higher for individuals with iSCI (more impaired leg: 12.34 ± 11.14%; less impaired leg: 6.93 ± 2.74%) compared with control participants (4.10 ± 0.84%). These results, along with the walking performance, correlated well with the delta frequency shift between the regular and irregular movement task in the 38 Hz band (corticospinal drive frequency) in the iSCI group, suggesting that task performance is related to the capacity to modulate corticospinal control. The irregular movement task holds promise as a tool for revealing further insights into corticospinal control of single-joint movements. It may serve as a surrogate marker for the assessment of modulatory capacity and the integrity of corticospinal control in individuals with iSCI early after injury and throughout rehabilitation.


Subject(s)
Ankle , Spinal Cord Injuries , Humans , Walking , Electromyography , Movement
13.
Trials ; 24(1): 117, 2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36803837

ABSTRACT

BACKGROUND: Few studies address the appropriate duration of post-surgical antibiotic therapy for orthopedic infections; with or without infected residual implants. We perform two similar randomized-clinical trials (RCT) to reduce the antibiotic use and associated adverse events. METHODS: Two unblinded RCTs in adult patients (non-inferiority with a margin of 10%, a power of 80%) with the primary outcomes "remission" and "microbiologically-identical recurrences" after a combined surgical and antibiotic therapy. The main secondary outcome is antibiotic-related adverse events. The RCTs allocate the participants between 3 vs. 6 weeks of post-surgical systemic antibiotic therapy for implant-free infections and between 6 vs. 12 weeks for residual implant-related infections. We need a total of 280 episodes (randomization schemes 1:1) with a minimal follow-up of 12 months. We perform two interim analyses starting approximately after 1 and 2 years. The study approximatively lasts 3 years. DISCUSSION: Both parallel RCTs will enable to prescribe less antibiotics for future orthopedic infections in adult patients. TRIAL REGISTRATION: ClinicalTrial.gov NCT05499481. Registered on 12 August 2022. PROTOCOL VERSION: 2 (19 May 2022).


Subject(s)
Anti-Bacterial Agents , Orthopedic Procedures , Surgical Wound Infection , Adult , Humans , Anti-Bacterial Agents/adverse effects , Randomized Controlled Trials as Topic , Postoperative Complications , Surgical Wound Infection/drug therapy
14.
Brain ; 134(Pt 8): 2261-73, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21752788

ABSTRACT

Cervical incomplete spinal cord injuries often lead to severe and persistent impairments of sensorimotor functions and are clinically the most frequent type of spinal cord injury. Understanding the motor impairments and the possible functional recovery of upper and lower extremities is of great importance. Animal models investigating motor dysfunction following cervical spinal cord injury are rare. We analysed the differential spontaneous recovery of fore- and hindlimb locomotion by detailed kinematic analysis in adult rats with unilateral C4/C5 hemisection, a lesion that leads to the Brown-Séquard syndrome in humans. The results showed disproportionately better performance of hindlimb compared with forelimb locomotion; hindlimb locomotion showed substantial recovery, whereas the ipsilesional forelimb remained in a very poor functional state. Such a differential motor recovery pattern is also known to occur in monkeys and in humans after similar spinal cord lesions. On the lesioned side, cortico-, rubro-, vestibulo- and reticulospinal tracts and the important modulatory serotonergic, dopaminergic and noradrenergic fibre systems were interrupted by the lesion. In an attempt to facilitate locomotion, different monoaminergic agonists were injected intrathecally. Injections of specific serotonergic and noradrenergic agonists in the chronic phase after the spinal cord lesion revealed remarkable, although mostly functionally negative, modulations of particular parameters of hindlimb locomotion. In contrast, forelimb locomotion was mostly unresponsive to these agonists. These results, therefore, show fundamental differences between fore- and hindlimb spinal motor circuitries and their functional dependence on remaining descending inputs and exogenous spinal excitation. Understanding these differences may help to develop future therapeutic strategies to improve upper and lower limb function in patients with incomplete cervical spinal cord injuries.


Subject(s)
Brown-Sequard Syndrome/physiopathology , Functional Laterality/physiology , Movement Disorders/etiology , Recovery of Function/physiology , Spinal Cord Injuries/complications , 8-Hydroxy-2-(di-n-propylamino)tetralin/therapeutic use , Animals , Apomorphine/therapeutic use , Clonidine/therapeutic use , Disease Models, Animal , Dopamine Agonists/therapeutic use , Drug Interactions , Female , Methoxamine/therapeutic use , Motor Activity/drug effects , Motor Neurons/pathology , Motor Neurons/physiology , Movement Disorders/drug therapy , Quipazine/therapeutic use , Rats , Rats, Inbred Lew , Recovery of Function/drug effects , Serotonin/metabolism , Serotonin Receptor Agonists/therapeutic use , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Sympatholytics/therapeutic use , Sympathomimetics/therapeutic use , Tyrosine 3-Monooxygenase/metabolism
15.
Mult Scler Relat Disord ; 63: 103802, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35487034

ABSTRACT

BACKGROUND: Walking impairment is a common and highly disabling symptom in people with MS (PwMS). Ambulatory deterioration is poorly characterized in PwMS and reliable prognosis that may guide clinical decisions is elusive. This study aimed to objectively track the progression of clinical walking performance and kinematic gait patterns in PwMS over 4 years, thereby revealing potential prognostic markers for deterioration of ambulatory function. METHODS: Twenty-two PwMS (48.8 ± 9.9 years, 14 females; expanded disability status scale [EDSS]: 4.5 ± 0.9 points) with gait impairments were recruited at the University Hospital Zurich, Switzerland. Gait function was monitored over a period of 4 years using a set of standardized clinical walking tests (timed 25-foot walk [T25FW], 6 min walk test [6MWT], 12-item MS walking scale [MSWS-12]) and comprehensive 3D kinematic gait analysis. Walking decline was assessed in the full patient cohort and in patient sub-groups that were built according to MS type (relapsing-remitting [RRMS], progressive [PMS]) and subjects' pathological gait signature (cluster groups 1-3). RESULTS: In the total cohort (n = 22), we found a significant worsening in the 6MWT (BL vs. 4y: -41.1 m; P = 0.0053), while the performance in the T25FW, MSWS-12 and the EDSS remained unchanged over 4 years. Subjects with PMS (n = 12) showed a significant worsening in the EDSS (BL vs. 4y: +0.6 points; P = 0.0053), which was not observed in participants with RRMS (n = 10). Whereas deterioration of clinical walking function was not different between subjects with RRMS and PMS, we identified differences in clinical walking deterioration between PwMS with varying gait pattern pathologies: Subjects with spastic-paretic gait impairments (cluster 1; n = 9) demonstrated a marked worsening in the T25FW (BL vs. 4y: +2 s; P = 0.0020) and 6MWT (BL vs. 4y: -92.9 m; P < 0.0001) which was not seen in PwMS with an ataxia-like (cluster 2; n = 8) or unstable walking pattern (cluster 3; n = 5). Deterioration of clinical walking performance in cluster 1 was accompanied by a specific worsening of gait deficits that were characteristic of this cluster at baseline, a phenomenon not found in the other sub-groups. Accordingly, aggravation of cluster 1-specific gait impairments over 4 years predicted deterioration of the 6MWT in the total cohort (n = 22) with an accuracy of 90.9% (sensitivity: 90.9%; specificity: 90.9%; Nagelkerkes coefficient of determination R2: 0.721), unveiling key determinants of MS-related walking decline. CONCLUSIONS: Our findings highlight the potential of quantitative, functional outcomes for objective tracking of disease progression in PwMS. Gait pattern analysis can provide valuable information on the underlying pathomechanisms of gait deterioration and may represent a complementary prognostic tool for walking function in PwMS. CLINICAL TRIAL: clinicaltrials.gov, NCT01576354.


Subject(s)
Gait Disorders, Neurologic , Multiple Sclerosis , Disability Evaluation , Female , Gait , Gait Analysis , Gait Disorders, Neurologic/diagnosis , Gait Disorders, Neurologic/etiology , Humans , Multiple Sclerosis/complications , Multiple Sclerosis/diagnosis , Prognosis , Walking
16.
Ann Neurol ; 68(1): 48-57, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20582944

ABSTRACT

OBJECTIVE: Spinal cord injury (SCI) leads to permanent motor and sensory deficits due to the damage of ascending and descending fiber tracts. In addition, malfunctions such as neuropathic pain or muscle spasms develop in many patients, possibly caused by injury-induced plastic changes of neuronal circuits above and below the lesion. New treatment strategies for spinal cord injury aim at enhancing plasticity and neurite growth, for example, by blocking the key neurite growth inhibitor Nogo-A or its downstream effectors. It is therefore crucial to investigate potential effects of such treatments on malfunctions such as muscle spasms. In addition, locomotor training, now a standard therapeutic tool to improve walking ability in incomplete SCI subjects, can be expected to influence the rearrangement of spinal cord circuits and the development of muscle spasms and other malfunctions. METHODS AND RESULTS: Here we present and validate a new rat model for muscle spasms after incomplete SCI and show that both intrathecal anti-Nogo-A antibody treatment and locomotor training, started early after injury, permanently reduce the development of muscle spasms. INTERPRETATION: The results show that an antibody-mediated suppression of the growth inhibitory protein Nogo-A leads to functional recovery and a lower level of malfunctions, suggesting the formation of functionally meaningful connections in the damaged spinal cord. Treadmill training early after SCI also has a beneficial effect.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Exercise Therapy/methods , Immunologic Factors/therapeutic use , Myelin Proteins/immunology , Spasm/prevention & control , Spinal Cord Injuries/therapy , Animals , Antibodies, Monoclonal/administration & dosage , Disease Models, Animal , Female , Immunologic Factors/administration & dosage , Locomotion , Nogo Proteins , Rats , Rats, Inbred Lew , Recovery of Function , Spasm/etiology , Spinal Cord Injuries/complications , Spinal Cord Injuries/drug therapy , Time Factors , Treatment Outcome
17.
J Neurosci ; 29(39): 12210-9, 2009 Sep 30.
Article in English | MEDLINE | ID: mdl-19793979

ABSTRACT

A lateral hemisection injury of the cervical spinal cord results in Brown-Séquard syndrome in humans and rats. The hands/forelimbs on the injured side are rendered permanently impaired, but the legs/hindlimbs recover locomotor functions. This is accompanied by increased use of the forelimb on the uninjured side. Nothing is known about the cortical circuits that correspond to these behavioral adaptations. In this study, on adult rats with cervical spinal cord lateral hemisection lesions (at segment C3/4), we explored the sensory representation and corticospinal projection of the intact (ipsilesional) cortex. Using blood oxygenation level-dependent functional magnetic resonance imaging and voltage-sensitive dye (VSD) imaging, we found that the cortex develops an enhanced representation of the unimpaired forepaw by 12 weeks after injury. VSD imaging also revealed the cortical spatio-temporal dynamics in response to electrical stimulation of the ipsilateral forepaw or hindpaw. Interestingly, stimulation of the ipsilesional hindpaw at 12 weeks showed a distinct activation of the hindlimb area in the intact, ipsilateral cortex, probably via the injury-spared spinothalamic pathway. Anterograde tracing of corticospinal axons from the intact cortex showed sprouting to recross the midline, innervating the spinal segments below the injury in both cervical and lumbar segments. Retrograde tracing of these midline-crossing axons from the cervical spinal cord (at segment C6/7) revealed the formation of a new ipsilateral forelimb representation in the cortex. Our results demonstrate profound reorganizations of the intact sensory-motor cortex after unilateral spinal cord injury. These changes may contribute to the behavioral adaptations, notably for the recovery of the ipsilesional hindlimb.


Subject(s)
Motor Cortex/physiology , Neuronal Plasticity/physiology , Recovery of Function/physiology , Somatosensory Cortex/physiology , Spinal Cord Injuries/physiopathology , Age Factors , Animals , Cervical Vertebrae , Female , Motor Cortex/anatomy & histology , Psychomotor Performance/physiology , Rats , Rats, Inbred Lew , Somatosensory Cortex/anatomy & histology , Spinal Cord Injuries/pathology
18.
J Neurotrauma ; 37(21): 2302-2314, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32552335

ABSTRACT

Locomotor recovery after incomplete spinal cord injury (iSCI) is influenced by spinal and supraspinal networks. Conventional clinical gait analysis fails to differentiate between these components. There is evidence that corticospinal control is enhanced during targeted walking, where each foot must be continuously placed on visual targets in randomized order. This study investigates the potential of targeted walking in the functional assessment of corticospinal integrity. Twenty-one controls and 16 individuals with chronic iSCI performed normal and targeted walking on a treadmill while electromyograms (EMGs) and kinematics were recorded. Precision (% of accurate foot placements) in targeted walking was significantly lower in individuals with iSCI (82.9 ± 14.7%, controls: 94.9 ± 4.0%). Although the overall kinematic pattern was comparable between walking conditions, controls showed significantly higher semitendinosus (ST) activity before heel-strike during targeted walking. This was accompanied by a shift of relative EMG intensity from 90-120 Hz to lower frequencies of 20-60 Hz, previously associated with corticospinal control of muscle activity. Targeted walking in individuals with iSCI evoked smaller EMG changes, suggesting that the switch to more corticospinal control is impaired. Accordingly, mildly impaired iSCI individuals revealed higher adaptations to the targeted walking task than more-impaired individuals. Recording of EMGs during targeted walking holds potential as a research tool to reveal further insights into the neuromuscular control of locomotion. It also complements findings of pre-clinical studies and is a promising novel surrogate marker of integrity of corticospinal control in individuals with iSCI and other neurological impairments. Future studies should investigate its potential for diagnosis or tracking recovery during rehabilitation.


Subject(s)
Adaptation, Physiological/physiology , Pyramidal Tracts/physiopathology , Spinal Cord Injuries/physiopathology , Walking/physiology , Adult , Aged , Biomechanical Phenomena , Electromyography , Exercise Test , Female , Gait/physiology , Humans , Male , Middle Aged , Muscle, Skeletal/physiopathology
19.
J Neurol ; 267(10): 2998-3007, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32500374

ABSTRACT

BACKGROUND: Walking dysfunction is common in people with multiple sclerosis (MS). Besides walking speed or endurance, one crucial feature of ambulatory function is the ability to adjust the gait pattern according to walking speed which relies on the integrity of spinal motor centres, their reciprocal connections to supraspinal networks and peripheral sensory input. OBJECTIVE: To investigate the capacity of people with MS to modify their gait pattern in response to changes in walking speed. METHODS: 3D gait analysis during free treadmill walking was performed in 35 people with MS and 20 healthy controls. Twelve kinematic parameters ranging from basic spatiotemporal measures to complex indicators of intralimb coordination were assessed at different absolute and relative walking speeds. RESULTS: Cadence, double-limb support time, trunk movements and especially measures of intralimb coordination demonstrated significantly less speed-dependent modifications in MS than in controls. These limitations were more prominent in subjects with stronger MS-related impairment (worse outcome in clinical walking tests, higher Expanded Disability Status Scale). CONCLUSION: The incapacity to modify specific elements of the walking pattern according to walking speed contributes to gait dysfunction in people with MS limiting activities of daily living. Gait modulation may serve as sensitive marker of walking function in MS. TRIAL REGISTRATION: Clinicaltrials.gov, NCT01576354; first posted April 12, 2012.


Subject(s)
Gait , Multiple Sclerosis , Activities of Daily Living , Biomechanical Phenomena , Humans , Multiple Sclerosis/complications , Walking , Walking Speed
20.
Neuromuscul Disord ; 30(6): 510-520, 2020 06.
Article in English | MEDLINE | ID: mdl-32527589

ABSTRACT

Myotonic Dystrophy Type 1 (DM1) is the most frequent hereditary, adult-onset muscular dystrophy. Nevertheless, DM1-associated cognitive-motor impairments have not been fully characterized so far. This study aimed at profiling cognitive and locomotor dysfunctions in these patients. In addition, cognitive-motor interactions were assessed using a dual-task paradigm. Comprehensive cognitive-motor impairment profiles were generated for 19 patients with DM1 and 19 healthy subjects by thorough clinical, biomechanical and neuropsychological examinations. Detailed gait analysis was performed using a 3D motion capture system, whereas cognitive function was assessed using a standardized neuropsychological test battery. Patients with DM1 showed impaired functional mobility, gait velocity and endurance. DM1-related gait pathology was mainly characterized by enhanced dynamic instability, gait variability, and restricted ankle dorsiflexion. Patients' cognitive impairments particularly concerned attentional functions. Dual-task conditions induced gait deviations that slightly differed between patients and controls. DM1-associated cognitive impairments correlated with reduced functional mobility and impaired ankle dorsiflexion. Patients with DM1 revealed significant impairments of walking function, balance and cognitive performance. Differential cognitive-motor interference and significant interactions between cognitive and motor dysfunctions point towards a prominent role of cognition in gait performance of patients with DM1.


Subject(s)
Cognitive Dysfunction/physiopathology , Executive Function/physiology , Gait Disorders, Neurologic/physiopathology , Myotonic Dystrophy/physiopathology , Postural Balance/physiology , Psychomotor Performance/physiology , Adult , Cognitive Dysfunction/etiology , Female , Gait Disorders, Neurologic/etiology , Humans , Male , Middle Aged , Myotonic Dystrophy/complications
SELECTION OF CITATIONS
SEARCH DETAIL