Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 21(10): 1194-1204, 2020 10.
Article in English | MEDLINE | ID: mdl-32895539

ABSTRACT

Early atherosclerosis depends upon responses by immune cells resident in the intimal aortic wall. Specifically, the healthy intima is thought to be populated by vascular dendritic cells (DCs) that, during hypercholesterolemia, initiate atherosclerosis by being the first to accumulate cholesterol. Whether these cells remain key players in later stages of disease is unknown. Using murine lineage-tracing models and gene expression profiling, we reveal that myeloid cells present in the intima of the aortic arch are not DCs but instead specialized aortic intima resident macrophages (MacAIR) that depend upon colony-stimulating factor 1 and are sustained by local proliferation. Although MacAIR comprise the earliest foam cells in plaques, their proliferation during plaque progression is limited. After months of hypercholesterolemia, their presence in plaques is overtaken by recruited monocytes, which induce MacAIR-defining genes. These data redefine the lineage of intimal phagocytes and suggest that proliferation is insufficient to sustain generations of macrophages during plaque progression.


Subject(s)
Aorta/immunology , Macrophages/immunology , Monocytes/immunology , Plaque, Atherosclerotic/immunology , Tunica Intima/immunology , Animals , Cell Differentiation , Cell Lineage , Cell Movement , Cell Proliferation , Cells, Cultured , Cholesterol/metabolism , Disease Progression , Humans , Macrophage Colony-Stimulating Factor/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Parabiosis , Phagocytosis
3.
Nat Immunol ; 20(8): 980-991, 2019 08.
Article in English | MEDLINE | ID: mdl-31209406

ABSTRACT

Innate lymphoid cells (ILCs) are tissue-resident lymphocytes categorized on the basis of their core regulatory programs and the expression of signature cytokines. Human ILC3s that produce the cytokine interleukin-22 convert into ILC1-like cells that produce interferon-γ in vitro, but whether this conversion occurs in vivo remains unclear. In the present study we found that ILC3s and ILC1s in human tonsils represented the ends of a spectrum that included additional discrete subsets. RNA velocity analysis identified an intermediate ILC3-ILC1 cluster, which had strong directionality toward ILC1s. In humanized mice, the acquisition of ILC1 features by ILC3s showed tissue dependency. Chromatin studies indicated that the transcription factors Aiolos and T-bet cooperated to repress regulatory elements active in ILC3s. A transitional ILC3-ILC1 population was also detected in the human intestine. We conclude that ILC3s undergo conversion into ILC1-like cells in human tissues in vivo, and that tissue factors and Aiolos were required for this process.


Subject(s)
Immunity, Innate/immunology , Interferon-gamma/metabolism , Interleukins/metabolism , Intestinal Mucosa/immunology , Lymphocytes/immunology , Palatine Tonsil/immunology , Animals , Cell Differentiation/immunology , Cells, Cultured , Child , Child, Preschool , Humans , Ikaros Transcription Factor/metabolism , Intestinal Mucosa/cytology , Lymphocytes/classification , Lymphocytes/cytology , Mice , T-Box Domain Proteins/metabolism , Interleukin-22
4.
Immunity ; 54(1): 99-115.e12, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33271118

ABSTRACT

Systematic understanding of immune aging on a whole-body scale is currently lacking. We characterized age-associated alterations in immune cells across multiple mouse organs using single-cell RNA and antigen receptor sequencing and flow cytometry-based validation. We defined organ-specific and common immune alterations and identified a subpopulation of age-associated granzyme K (GZMK)-expressing CD8+ T (Taa) cells that are distinct from T effector memory (Tem) cells. Taa cells were highly clonal, had specific epigenetic and transcriptional signatures, developed in response to an aged host environment, and expressed markers of exhaustion and tissue homing. Activated Taa cells were the primary source of GZMK, which enhanced inflammatory functions of non-immune cells. In humans, proportions of the circulating GZMK+CD8+ T cell population that shares transcriptional and epigenetic signatures with mouse Taa cells increased during healthy aging. These results identify GZMK+ Taa cells as a potential target to address age-associated dysfunctions of the immune system.


Subject(s)
Aging/physiology , CD8-Positive T-Lymphocytes/physiology , Immune System/physiology , Inflammation/immunology , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, T-Cell/genetics , Animals , Cells, Cultured , Clone Cells , Cytotoxicity, Immunologic , Female , Gene Expression Profiling , Granzymes/metabolism , Humans , Immunologic Memory , Mice , Mice, Inbred C57BL , Sequence Analysis, RNA , Single-Cell Analysis , Transcriptome
5.
Arterioscler Thromb Vasc Biol ; 44(4): 807-821, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38269589

ABSTRACT

BACKGROUND: Rheumatic heart disease is the major cause of valvular heart disease in developing nations. Endothelial cells (ECs) are considered crucial contributors to rheumatic heart disease, but greater insight into their roles in disease progression is needed. METHODS: We used a Cdh5-driven EC lineage-tracing approach to identify and track ECs in the K/B.g7 model of autoimmune valvular carditis. Single-cell RNA sequencing was used to characterize the EC populations in control and inflamed mitral valves. Immunostaining and conventional histology were used to evaluate lineage tracing and validate single-cell RNA-sequencing findings. The effects of VEGFR3 (vascular endothelial growth factor receptor 3) and VEGF-C (vascular endothelial growth factor C) inhibitors were tested in vivo. The functional impact of mitral valve disease in the K/B.g7 mouse was evaluated using echocardiography. Finally, to translate our findings, we analyzed valves from human patients with rheumatic heart disease undergoing mitral valve replacements. RESULTS: Lineage tracing in K/B.g7 mice revealed new capillary lymphatic vessels arising from valve surface ECs during the progression of disease in K/B.g7 mice. Unsupervised clustering of mitral valve single-cell RNA-sequencing data revealed novel lymphatic valve ECs that express a transcriptional profile distinct from other valve EC populations including the recently identified PROX1 (Prospero homeobox protein 1)+ lymphatic valve ECs. During disease progression, these newly identified lymphatic valve ECs expand and upregulate a profibrotic transcriptional profile. Inhibiting VEGFR3 through multiple approaches prevented expansion of this mitral valve lymphatic network. Echocardiography demonstrated that K/B.g7 mice have left ventricular dysfunction and mitral valve stenosis. Valve lymphatic density increased with age in K/B.g7 mice and correlated with worsened ventricular dysfunction. Importantly, human rheumatic valves contained similar lymphatics in greater numbers than nonrheumatic controls. CONCLUSIONS: These studies reveal a novel mode of inflammation-associated, VEGFR3-dependent postnatal lymphangiogenesis in murine autoimmune valvular carditis, with similarities to human rheumatic heart disease.


Subject(s)
Heart Valve Diseases , Lymphatic Vessels , Myocarditis , Rheumatic Heart Disease , Humans , Mice , Animals , Rheumatic Heart Disease/genetics , Rheumatic Heart Disease/metabolism , Rheumatic Heart Disease/pathology , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor Receptor-3/genetics , Vascular Endothelial Growth Factor Receptor-3/metabolism , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Lymphatic Vessels/metabolism , Heart Valve Diseases/pathology , Disease Progression , RNA
6.
Arterioscler Thromb Vasc Biol ; 43(6): 943-957, 2023 06.
Article in English | MEDLINE | ID: mdl-37021574

ABSTRACT

BACKGROUND: Inflammation is a key driver of cardiovascular pathology, and many systemic autoimmune/rheumatic diseases are accompanied by increased cardiac risk. In the K/B.g7 mouse model of coexisting systemic autoantibody-mediated arthritis and valvular carditis, valve inflammation depends on macrophage production of TNF (tumor necrosis factor) and IL-6 (interleukin-6). Here, we sought to determine if other canonical inflammatory pathways participate and to determine whether TNF signaling through TNFR1 (tumor necrosis factor receptor 1) on endothelial cells is required for valvular carditis. METHODS: We first asked if type 1, 2, or 3 inflammatory cytokine systems (typified by IFNγ, IL-4, and IL-17, respectively) were critical for valvular carditis in K/B.g7 mice, using a combination of in vivo monoclonal antibody blockade and targeted genetic ablation studies. To define the key cellular targets of TNF, we conditionally deleted its main proinflammatory receptor, TNFR1, in endothelial cells. We analyzed how the absence of endothelial cell TNFR1 affected valve inflammation, lymphangiogenesis, and the expression of proinflammatory genes and molecules. RESULTS: We found that typical type 1, 2, and 3 inflammatory cytokine systems were not required for valvular carditis, apart from a known initial requirement of IL-4 for autoantibody production. Despite expression of TNFR1 on a wide variety of cell types in the cardiac valve, deleting TNFR1 specifically on endothelial cells protected K/B.g7 mice from valvular carditis. This protection was accompanied by reduced expression of VCAM-1 (vascular cell adhesion molecule), fewer valve-infiltrating macrophages, reduced pathogenic lymphangiogenesis, and diminished proinflammatory gene expression. CONCLUSIONS: TNF and IL-6 are the main cytokines driving valvular carditis in K/B.g7 mice. The interaction of TNF with TNFR1 specifically on endothelial cells promotes cardiovascular pathology in the setting of systemic autoimmune/rheumatic disease, suggesting that therapeutic targeting of the TNF:TNFR1 interaction could be beneficial in this clinical context.


Subject(s)
Heart Valve Diseases , Receptors, Tumor Necrosis Factor, Type I , Animals , Mice , Autoantibodies , Cytokines , Endothelial Cells/metabolism , Inflammation , Interleukin-4 , Interleukin-6/genetics , Myocarditis/genetics , Receptors, Tumor Necrosis Factor, Type I/genetics , Tumor Necrosis Factor-alpha , Vascular Cell Adhesion Molecule-1/metabolism
7.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article in English | MEDLINE | ID: mdl-33431694

ABSTRACT

Plasmacytoid dendritic cells (pDCs) specialize in the production of type I IFN (IFN-I). pDCs can be depleted in vivo by injecting diphtheria toxin (DT) in a mouse in which pDCs express a diphtheria toxin receptor (DTR) transgene driven by the human CLEC4C promoter. This promoter is enriched for binding sites for TCF4, a transcription factor that promotes pDC differentiation and expression of pDC markers, including CLEC4C. Here, we found that injection of DT in CLEC4C-DTR+ mice markedly augmented Th2-dependent skin inflammation in a model of contact hypersensitivity (CHS) induced by the hapten fluorescein isothiocyanate. Unexpectedly, this biased Th2 response was independent of reduced IFN-I accompanying pDC depletion. In fact, DT treatment altered the representation of conventional dendritic cells (cDCs) in the skin-draining lymph nodes during the sensitization phase of CHS; there were fewer Th1-priming CD326+ CD103+ cDC1 and more Th2-priming CD11b+ cDC2. Single-cell RNA-sequencing of CLEC4C-DTR+ cDCs revealed that CD326+ DCs, like pDCs, expressed DTR and were depleted together with pDCs by DT treatment. Since CD326+ DCs did not express Tcf4, DTR expression might be driven by yet-undefined transcription factors activating the CLEC4C promoter. These results demonstrate that altered DC representation in the skin-draining lymph nodes during sensitization to allergens can cause Th2-driven CHS.


Subject(s)
Dendritic Cells/immunology , Dermatitis, Contact/immunology , Interferon Type I/genetics , Lectins, C-Type/genetics , Receptors, Immunologic/genetics , Skin/immunology , Animals , Antigens, CD/genetics , Antigens, CD/immunology , Cell Lineage/genetics , Cell Lineage/immunology , Dermatitis, Contact/genetics , Dermatitis, Contact/pathology , Diphtheria Toxin/genetics , Heparin-binding EGF-like Growth Factor/genetics , Heparin-binding EGF-like Growth Factor/immunology , Humans , Integrin alpha Chains/genetics , Integrin alpha Chains/immunology , Lymph Nodes/immunology , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic/genetics , Th2 Cells/immunology , Transcription Factor 4/genetics , Transcription Factor 4/immunology
8.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34921113

ABSTRACT

Here, we show that Porphyromonas gingivalis (Pg), an endogenous oral pathogen, dampens all aspects of interferon (IFN) signaling in a manner that is strikingly similar to IFN suppression employed by multiple viral pathogens. Pg suppressed IFN production by down-regulating several IFN regulatory factors (IRFs 1, 3, 7, and 9), proteolytically degrading STAT1 and suppressing the nuclear translocation of the ISGF3 complex, resulting in profound and systemic repression of multiple interferon-stimulated genes. Pg-induced IFN paralysis was not limited to murine models but was also observed in the oral tissues of human periodontal disease patients, where overabundance of Pg correlated with suppressed IFN generation. Mechanistically, multiple virulence factors and secreted proteases produced by Pg transcriptionally suppressed IFN promoters and also cleaved IFN receptors, making cells refractory to exogenous IFN and inducing a state of broad IFN paralysis. Thus, our data show a bacterial pathogen with equivalence to viruses in the down-regulation of host IFN signaling.


Subject(s)
Gingiva/immunology , Host-Pathogen Interactions/immunology , Interferons/metabolism , Interleukins/metabolism , Microbiota , Porphyromonas gingivalis/physiology , Animals , Cell Line , Gingiva/metabolism , Humans , Mice , Primary Cell Culture
9.
Cancer Immunol Immunother ; 72(6): 1461-1478, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36472588

ABSTRACT

Pancreatic ductal adenocarcinoma (PDA) is a lethal and metastatic malignancy resistant to therapy. Elucidating how pancreatic tumor-specific T cells differentiate and are maintained in vivo could inform novel therapeutic avenues to promote T cell antitumor activity. Here, we show that the spleen is a critical site harboring tumor-specific CD8 T cells that functionally segregate based on differential Cxcr3 and Klrg1 expression. Cxcr3+ Klrg1- T cells express the memory stem cell marker Tcf1, whereas Cxcr3-Klrg1 + T cells express GzmB consistent with terminal differentiation. We identify a Cxcr3+ Klrg1+ intermediate T cell subpopulation in the spleen that is highly enriched for tumor specificity. However, tumor-specific T cells infiltrating primary tumors progressively downregulate both Cxcr3 and Klrg1 while upregulating exhaustion markers PD-1 and Lag-3. We show that antigen-specific T cell infiltration into PDA is Cxcr3 independent. Further, Cxcr3-deficiency results in enhanced antigen-specific T cell IFNγ production in primary tumors, suggesting that Cxcr3 promotes loss of effector function. Ultimately, however, Cxcr3 was critical for mitigating cancer cell dissemination following immunotherapy with CD40 agonist + anti-PD-L1 or T cell receptor engineered T cell therapy targeting mesothelin. In the absence of Cxcr3, splenic Klrg1 + GzmB + antitumor T cells wain while pancreatic cancer disseminates suggesting a role for these cells in eliminating circulating metastatic tumor cells. Intratumoral myeloid cells are poised to produce Cxcl10, whereas splenic DC subsets produce Cxcl9 following immunotherapy supporting differential roles for these chemokines on T cell differentiation. Together, our study supports that Cxcr3 mitigates tumor cell dissemination by impacting peripheral T cell fate rather than intratumoral T cell trafficking.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , CD8-Positive T-Lymphocytes/pathology , Cell Differentiation , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Receptors, CXCR3 , Pancreatic Neoplasms
10.
Circ Res ; 126(9): 1112-1126, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32324494

ABSTRACT

Technological advances in characterizing molecular heterogeneity at the single cell level have ushered in a deeper understanding of the biological diversity of cells present in tissues including atherosclerotic plaques. New subsets of cells have been discovered among cell types previously considered homogenous. The commercial availability of systems to obtain transcriptomes and matching surface phenotypes from thousands of single cells is rapidly changing our understanding of cell types and lineage identity. Emerging methods to infer cellular functions are beginning to shed new light on the interplay of components involved in multifaceted disease responses, like atherosclerosis. Here, we provide a technical guide for design, implementation, assembly, and interpretations of current single cell transcriptomics approaches from the perspective of employing these tools for advancing cardiovascular disease research.


Subject(s)
Atherosclerosis/genetics , Biomedical Research , Gene Expression Profiling , RNA-Seq , Single-Cell Analysis , Transcriptome , Animals , Atherosclerosis/metabolism , Atherosclerosis/pathology , Humans
11.
Circ Res ; 124(2): 263-278, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30582448

ABSTRACT

RATIONALE: Recent advancements have brought to light the origins, complexity, and functions of tissue-resident macrophages. However, in the context of tissue injury or disease, large numbers of monocytes infiltrate the heart and are thought to contribute to adverse remodeling and heart failure pathogenesis. Little is understood about the diversity of monocytes and monocyte-derived macrophages recruited to the heart after myocardial injury, including the mechanisms that regulate monocyte recruitment and fate specification. OBJECTIVE: We sought to test the hypothesis that distinct subsets of tissue-resident CCR2- (C-C chemokine receptor 2) and CCR2+ macrophages orchestrate monocyte recruitment and fate specification after myocardial injury. METHODS AND RESULTS: We reveal that in numerous mouse models of cardiomyocyte cell death (permanent myocardial infarction, reperfused myocardial infarction, and diphtheria toxin cardiomyocyte ablation), there is a shift in macrophage ontogeny whereby tissue-resident macrophages are predominately replaced by infiltrating monocytes and monocyte-derived macrophages. Using syngeneic cardiac transplantation to model ischemia-reperfusion injury and distinguish tissue-resident from recruited cell populations in combination with intravital 2-photon microscopy, we demonstrate that monocyte recruitment is differentially orchestrated by distinct subsets of tissue-resident cardiac macrophages. Tissue-resident CCR2+ macrophages promote monocyte recruitment through an MYD88 (myeloid differentiation primary response 88)-dependent mechanism that results in release of MCPs (monocyte chemoattractant proteins) and monocyte mobilization. In contrast, tissue-resident CCR2- macrophages inhibit monocyte recruitment. Using CD (cluster of differentiation) 169-DTR (diphtheria toxin receptor) and CCR2-DTR mice, we further show that selective depletion of either tissue-resident CCR2- or CCR2+ macrophages before myocardial infarction results in divergent effects on left ventricular function, myocardial remodeling, and monocyte recruitment. Finally, using single-cell RNA sequencing, we show that tissue-resident cardiac macrophages differentially instruct monocyte fate specification. CONCLUSIONS: Collectively, these observations establish the mechanistic basis by which monocytes are initially recruited to the injured heart and provide new insights into the heterogeneity of monocyte-derived macrophages.


Subject(s)
Cell Lineage , Chemotaxis, Leukocyte , Macrophages/metabolism , Monocytes/metabolism , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Receptors, CCR2/metabolism , Animals , Cell Death , Diphtheria Toxin/pharmacology , Disease Models, Animal , Heart Transplantation , Macrophage Activation , Macrophages/pathology , Mice, Inbred C57BL , Mice, Knockout , Monocytes/pathology , Myeloid Differentiation Factor 88/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocytes, Cardiac/pathology , Receptors, CCR2/genetics , Signal Transduction , Ventricular Function, Left , Ventricular Remodeling
12.
Circ Res ; 123(10): 1127-1142, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30359200

ABSTRACT

RATIONALE: Monocyte infiltration into the subintimal space and its intracellular lipid accumulation are the most prominent features of atherosclerosis. To understand the pathophysiology of atherosclerotic disease, we need to understand the characteristics of lipid-laden foamy macrophages in the subintimal space during atherosclerosis. OBJECTIVE: We sought to examine the transcriptomic profiles of foamy and nonfoamy macrophages isolated from atherosclerotic intima. METHODS AND RESULTS: Single-cell RNA sequencing analysis of CD45+ leukocytes from murine atherosclerotic aorta revealed that there are macrophage subpopulations with distinct differentially expressed genes involved in various functional pathways. To specifically characterize the intimal foamy macrophages of plaque, we developed a lipid staining-based flow cytometric method for analyzing the lipid-laden foam cells of atherosclerotic aortas. We used the fluorescent lipid probe BODIPY493/503 and assessed side-scattered light as an indication of cellular granularity. BODIPYhiSSChi foamy macrophages were found residing in intima and expressing CD11c. Foamy macrophage accumulation determined by flow cytometry was positively correlated with the severity of atherosclerosis. Bulk RNA sequencing analysis showed that compared with nonfoamy macrophages, foamy macrophages expressed few inflammatory genes but many lipid-processing genes. Intimal nonfoamy macrophages formed the major population expressing IL (interleukin)-1ß and many other inflammatory transcripts in atherosclerotic aorta. CONCLUSIONS: RNA sequencing analysis of intimal macrophages from atherosclerotic aorta revealed that lipid-loaded plaque macrophages are not likely the plaque macrophages that drive lesional inflammation.


Subject(s)
Macrophages/metabolism , Plaque, Atherosclerotic/metabolism , Transcriptome , Animals , Aorta/metabolism , Aorta/pathology , Cells, Cultured , Humans , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Plaque, Atherosclerotic/pathology
13.
J Am Soc Nephrol ; 29(1): 138-154, 2018 01.
Article in English | MEDLINE | ID: mdl-29217759

ABSTRACT

Dendritic cells (DCs) are thought to form a dendritic network across barrier surfaces and throughout organs, including the kidney, to perform an important sentinel function. However, previous studies of DC function used markers, such as CD11c or CX3CR1, that are not unique to DCs. Here, we evaluated the role of DCs in renal inflammation using a CD11c reporter mouse line and two mouse lines with DC-specific reporters, Zbtb46-GFP and Snx22-GFP. Multiphoton microscopy of kidney sections confirmed that most of the dendritically shaped CD11c+ cells forming a network throughout the renal interstitium expressed macrophage-specific markers. In contrast, DCs marked by Zbtb46-GFP or Snx22-GFP were less abundant, concentrated around blood vessels, and round in shape. We confirmed this pattern of localization using imaging mass cytometry. Motility measurements showed that resident macrophages were sessile, whereas DCs were motile before and after inflammation. Although uninflamed glomeruli rarely contained DCs, injury with nephrotoxic antibodies resulted in accumulation of ZBTB46 + cells in the periglomerular region. ZBTB46 identifies all classic DCs, which can be categorized into two functional subsets that express either CD103 or CD11b. Depletion of ZBTB46 + cells attenuated the antibody-induced kidney injury, whereas deficiency of the CD103+ subset accelerated injury through a mechanism that involved increased neutrophil infiltration. RNA sequencing 7 days after nephrotoxic antibody injection showed that CD11b+ DCs expressed the neutrophil-attracting cytokine CXCL2, whereas CD103+ DCs expressed high levels of several anti-inflammatory genes. These results provide new insights into the distinct functions of the two major DC subsets in glomerular inflammation.


Subject(s)
Dendritic Cells/physiology , Glomerulonephritis/immunology , Glomerulonephritis/pathology , Animals , Antigens, CD/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , CD11 Antigens/genetics , CD11b Antigen/genetics , Cell Movement , Chemokine CXCL2/genetics , Dendritic Cells/metabolism , Dendritic Cells/pathology , Gene Expression , Genes, Reporter , Green Fluorescent Proteins/metabolism , Integrin alpha Chains/metabolism , Macrophages , Male , Mice , Mice, Knockout , Neutrophils/pathology , Neutrophils/physiology , Repressor Proteins/genetics , Sequence Analysis, RNA , Sorting Nexins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
14.
Isr Med Assoc J ; 17(3): 141-4, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25946763

ABSTRACT

BACKGROUND: Forensic imaging was officially introduced in Israel in 2011. Religious and cultural opposition to autopsies prevails in most of the population of Israel. OBJECTIVES: To examine the extent to which forensic imaging has been accepted as an adjuvant or partial replacement of forensic autopsy, particularly among those opposed to forensic autopsy. METHODS: The study was conducted in the pediatric population. Data were collected from the National Center of Forensic Medicine and Assaf Harofeh Medical Center during the 18 month period following the introduction of forensic imaging (group A). The data were compared to those of the previous 18 months (group B). The examined parameters were cases submitted, examined, autopsied or imaged depending on family consent. RESULTS: Consent to autopsy was similar in both groups (A = 56% vs. B = 54%). In group A, consent for imaging was 24% of all cases, and of those imaged 77% underwent autopsy. Of those examined externally only, 16% consented to imaging. For 7% of the total cases in group A, estimation of cause of death was based on virtopsy alone. CONCLUSIONS: In a country with a high level of religious and cultural opposition to autopsy, it is a challenge to add forensic imaging to the pediatric forensic investigation. Those consenting to forensic imaging are more likely to be those consenting to autopsy. Consent for forensic imaging only was given in 7% of cases. Greater efforts should be invested to educate and inform the public regarding the benefits of virtual autopsy and the importance of data acquired from forensic images.


Subject(s)
Autopsy , Forensic Medicine , Whole Body Imaging , Cause of Death , Child , Female , Forensic Medicine/legislation & jurisprudence , Forensic Medicine/methods , Humans , Israel , Judicial Role , Male
15.
Harefuah ; 152(8): 451-2, 500, 2013 Aug.
Article in Hebrew | MEDLINE | ID: mdl-24167927

ABSTRACT

INTRODUCTION: A rare event of fatal sexual assault by the insertion of a wooden rod through the anus to the upper chest is reported. Examination of the body at the scene did not raise any suspicion of assault while the subsequent autopsy revealed findings that changed the assessment of the cause of death and the circumstances. CASE HISTORY: The body of a 57 years old man with a history of psychiatric illness was found in his room. At autopsy a round wooden rod which was inserted through the anus was found in the peritoneal and pleural cavities. In addition, signs of manual pressure were detected on the neck and trunk, and on the head and extremities signs of blunt trauma were observed. DISCUSSION: In patients affected by mental disorders it is difficult to distinguish between self-inflicted anal injuries and injuries sustained during an attack. Detection of damage to other areas of the body (such as the neck) assist in determining the nature of the assault. SUMMARY: This case demonstrates the need for a full autopsy in every case of death under unclear circumstances, especially when a limited examination of the body can't determine the type of death (natural, accident, suicide or homicide).


Subject(s)
Anal Canal/injuries , Peritoneal Cavity/injuries , Pleural Cavity/injuries , Sex Offenses , Autopsy , Fatal Outcome , Foreign Bodies , Humans , Male , Mental Disorders/physiopathology , Middle Aged
16.
Harefuah ; 152(10): 581-6, 625, 2013 Oct.
Article in Hebrew | MEDLINE | ID: mdl-24450029

ABSTRACT

The progress in quality and availability of imaging studies has made them an invaluable part of the clinical diagnostic process, so much so that the forensic medical community had to acknowledge their importance and to implement them in death investigations. Since 2011 roughly 200 post-mortem radiographic examinations were conducted, mostly followed by full autopsies. Four of those cases are given as an example of the benefits and limitations of these methods. A review of the literature and our experience so far, show that computed tomography provides better visualization and 3D reconstruction of traumatic bone injuries, as well as good assessment of air in the tissues and vascular system, gunshot wound tracts, and anthropological characteristics for identification. Imaging methods are relatively limited in definite diagnostic findings in cases of sudden death from natural causes, such as pneumonia, pulmonary embolism, acute myocardial infarction or meningitis, problems which can be partially solved with the aid of angiographic studies. These methods also do not allow for sampling of tissues for microscopic examination, nor fluid samples for cultures and toxicology. In the current cultural and social reality in Israel, imaging studies enable minimization of the autopsy and, in certain cases, its relinquishment serves as a compromise between the necessity of death investigation and beliefs in the wholeness of the body. In light of the advantages of imaging, no autopsy of a trauma-related death can be complete without it.


Subject(s)
Autopsy/methods , Cause of Death , Forensic Medicine/methods , Diagnostic Imaging/methods , Female , Humans , Imaging, Three-Dimensional/methods , Infant , Israel , Male , Middle Aged , Tomography, X-Ray Computed/methods , Young Adult
17.
Immunohorizons ; 7(11): 737-746, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37934060

ABSTRACT

TH17 cells are implicated in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). We previously reported that the transcription factor basic helix-loop-helix family member e40 (BHLHE40) marks cytokine-producing pathogenic TH cells during EAE, and that its expression in T cells is required for clinical disease. In this study, using dual reporter mice, we show BHLHE40 expression within TH1/17 and ex-TH17 cells following EAE induction. Il17a-Cre-mediated deletion of BHLHE40 in TH cells led to less severe EAE with reduced TH cell cytokine production. Characterization of the leukocytes in the CNS during EAE by single-cell RNA sequencing identified differences in the infiltrating myeloid cells when BHLHE40 was present or absent in TH17 cells. Our studies highlight the importance of BHLHE40 in promoting TH17 cell encephalitogenicity and instructing myeloid cell responses during active EAE.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Encephalomyelitis, Autoimmune, Experimental , Th17 Cells , Animals , Mice , Cross Reactions , Cytokines , Myeloid Cells , Basic Helix-Loop-Helix Transcription Factors/metabolism
18.
Cell Rep ; 42(7): 112732, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37402168

ABSTRACT

Pancreatic ductal adenocarcinoma (PDA) orchestrates a suppressive tumor microenvironment that fosters immunotherapy resistance. Tumor-associated macrophages (TAMs) are the principal immune cell infiltrating PDA and are heterogeneous. Here, by employing macrophage fate-mapping approaches and single-cell RNA sequencing, we show that monocytes give rise to most macrophage subsets in PDA. Tumor-specific CD4, but not CD8, T cells promote monocyte differentiation into MHCIIhi anti-tumor macrophages. By conditional major histocompatibility complex (MHC) class II deletion on monocyte-derived macrophages, we show that tumor antigen presentation is required for instructing monocyte differentiation into anti-tumor macrophages, promoting Th1 cells, abrogating Treg cells, and mitigating CD8 T cell exhaustion. Non-redundant IFNγ and CD40 promote MHCIIhi anti-tumor macrophages. Intratumoral monocytes adopt a pro-tumor fate indistinguishable from that of tissue-resident macrophages following loss of macrophage MHC class II or tumor-specific CD4 T cells. Thus, tumor antigen presentation by macrophages to CD4 T cells dictates TAM fate and is a major determinant of macrophage heterogeneity in cancer.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Monocytes , CD4-Positive T-Lymphocytes , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/genetics , Antigens, Neoplasm , Histocompatibility Antigens Class II , Tumor Microenvironment , Pancreatic Neoplasms
19.
Cell Stem Cell ; 30(6): 800-817.e9, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37267915

ABSTRACT

Cholesterol efflux pathways could be exploited in tumor biology to unravel cancer vulnerabilities. A mouse model of lung-tumor-bearing KRASG12D mutation with specific disruption of cholesterol efflux pathways in epithelial progenitor cells promoted tumor growth. Defective cholesterol efflux in epithelial progenitor cells governed their transcriptional landscape to support their expansion and create a pro-tolerogenic tumor microenvironment (TME). Overexpression of the apolipoprotein A-I, to raise HDL levels, protected these mice from tumor development and dire pathologic consequences. Mechanistically, HDL blunted a positive feedback loop between growth factor signaling pathways and cholesterol efflux pathways that cancer cells hijack to expand. Cholesterol removal therapy with cyclodextrin reduced tumor burden in progressing tumor by suppressing the proliferation and expansion of epithelial progenitor cells of tumor origin. Local and systemic perturbations of cholesterol efflux pathways were confirmed in human lung adenocarcinoma (LUAD). Our results position cholesterol removal therapy as a putative metabolic target in lung cancer progenitor cells.


Subject(s)
Lung Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Mice , Animals , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Cholesterol/metabolism , Lung Neoplasms/genetics , Cell Proliferation , Lung , Stem Cells/metabolism , Apolipoprotein A-I/metabolism , Tumor Microenvironment
20.
Nat Cardiovasc Res ; 2(11): 1015-1031, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38646596

ABSTRACT

Atherosclerosis is driven by the expansion of cholesterol-loaded 'foamy' macrophages in the arterial intima. Factors regulating foamy macrophage differentiation and survival in plaque remain poorly understood. Here we show, using trajectory analysis of integrated single-cell RNA sequencing data and a genome-wide CRISPR screen, that triggering receptor expressed on myeloid cells 2 (Trem2) is associated with foamy macrophage specification. Loss of Trem2 led to a reduced ability of foamy macrophages to take up oxidized low-density lipoprotein (oxLDL). Myeloid-specific deletion of Trem2 showed an attenuation of plaque progression, even when targeted in established atherosclerotic lesions, and was independent of changes in circulating cytokines, monocyte recruitment or cholesterol levels. Mechanistically, we link Trem2-deficient macrophages with a failure to upregulate cholesterol efflux molecules, resulting in impaired proliferation and survival. Overall, we identify Trem2 as a regulator of foamy macrophage differentiation and atherosclerotic plaque growth and as a putative therapeutic target for atherosclerosis.

SELECTION OF CITATIONS
SEARCH DETAIL