Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Int J Mol Sci ; 25(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38279210

ABSTRACT

Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is an important DNA repair enzyme and one of the causes of tumor resistance to topoisomerase 1 inhibitors such as topotecan. Inhibitors of this Tdp1 in combination with topotecan may improve the effectiveness of therapy. In this work, we synthesized usnic acid derivatives, which are hybrids of its known derivatives: tumor sensitizers to topotecan. New compounds inhibit Tdp1 in the micromolar and submicromolar concentration range; some of them enhance the effect of topotecan on the metabolic activity of cells of various lines according to the MTT test. One of the new compounds (compound 7) not only sensitizes Krebs-2 and Lewis carcinomas of mice to the action of topotecan, but also normalizes the state of the peripheral blood of mice, which is disturbed in the presence of a tumor. Thus, the synthesized substances may be the prototype of a new class of additional therapy for cancer.


Subject(s)
Benzofurans , Carcinoma , Topotecan , Animals , Mice , Topotecan/pharmacology , Topotecan/therapeutic use , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Esterases
2.
Molecules ; 29(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338326

ABSTRACT

Deoxycholic acid derivatives containing various heterocyclic functional groups at C-3 on the steroid scaffold were designed and synthesized as promising dual tyrosyl-DNA phosphodiesterase 1 and 2 (TDP1 and TDP2) inhibitors, which are potential targets to potentiate topoisomerase poison antitumor therapy. The methyl esters of DCA derivatives with benzothiazole or benzimidazole moieties at C-3 demonstrated promising inhibitory activity in vitro against TDP1 with IC50 values in the submicromolar range. Furthermore, methyl esters 4d-e, as well as their acid counterparts 3d-e, inhibited the phosphodiesterase activity of both TDP1 and TDP2. The combinations of compounds 3d-e and 4d-e with low-toxic concentrations of antitumor drugs topotecan and etoposide showed significantly greater cytotoxicity than the compounds alone. The docking of the derivatives into the binding sites of TDP1 and TDP2 predicted plausible binding modes of the DCA derivatives.


Subject(s)
Phosphodiesterase Inhibitors , Phosphoric Diester Hydrolases , Phosphodiesterase Inhibitors/chemistry , Phosphoric Diester Hydrolases/metabolism , Models, Molecular , Deoxycholic Acid/pharmacology , Structure-Activity Relationship
3.
Int J Mol Sci ; 24(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36982848

ABSTRACT

Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an important repair enzyme that removes various covalent adducts from the 3' end of DNA. Particularly, covalent complexes of topoisomerase 1 (TOP1) with DNA stabilized by DNA damage or by various chemical agents are an examples of such adducts. Anticancer drugs such as the TOP1 poisons topotecan and irinotecan are responsible for the stabilization of these complexes. TDP1 neutralizes the effect of these anticancer drugs, eliminating the DNA adducts. Therefore, the inhibition of TDP1 can sensitize tumor cells to the action of TOP1 poisons. This review contains information about methods for determining the TDP1 activity, as well as describing the inhibitors of these enzyme derivatives of natural biologically active substances, such as aminoglycosides, nucleosides, polyphenolic compounds, and terpenoids. Data on the efficiency of combined inhibition of TOP1 and TDP1 in vitro and in vivo are presented.


Subject(s)
Antineoplastic Agents , Biological Products , Biological Products/pharmacology , Phosphoric Diester Hydrolases/metabolism , DNA Repair Enzymes/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , DNA Topoisomerases, Type I/metabolism , DNA Repair , DNA
4.
Int J Mol Sci ; 24(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36835244

ABSTRACT

Tyrosyl-DNA-phosphodiesterase 1 (TDP1) is a promising target for antitumor therapy; the use of TDP1 inhibitors with a topoisomerase 1 poison such as topotecan is a potential combination therapy. In this work, a novel series of 3,5-disubstituted thiazolidine-2,4-diones was synthesized and tested against TDP1. The screening revealed some active compounds with IC50 values less than 5 µM. Interestingly, compounds 20d and 21d were the most active, with IC50 values in the submicromolar concentration range. None of the compounds showed cytotoxicity against HCT-116 (colon carcinoma) and MRC-5 (human lung fibroblasts) cell lines in the 1-100 µM concentration range. Finally, this class of compounds did not sensitize cancer cells to the cytotoxic effect of topotecan.


Subject(s)
Phosphodiesterase Inhibitors , Phosphoric Diester Hydrolases , Thiazolidinediones , Humans , Models, Molecular , Monoterpenes/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Topotecan/pharmacology , Thiazolidinediones/pharmacology
5.
Int J Mol Sci ; 24(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37298106

ABSTRACT

Tyrosyl-DNA-phosphodiesterase 1 (TDP1) is an important enzyme in the DNA repair system. The ability of the enzyme to repair DNA damage induced by a topoisomerase 1 poison such as the anticancer drug topotecan makes TDP1 a promising target for complex antitumor therapy. In this work, a set of new 5-hydroxycoumarin derivatives containing monoterpene moieties was synthesized. It was shown that most of the conjugates synthesized demonstrated high inhibitory properties against TDP1 with an IC50 in low micromolar or nanomolar ranges. Geraniol derivative 33a was the most potent inhibitor with IC50 130 nM. Docking the ligands to TDP1 predicted a good fit with the catalytic pocket blocking access to it. The conjugates used in non-toxic concentration increased cytotoxicity of topotecan against HeLa cancer cell line but not against conditionally normal HEK 293A cells. Thus, a new structural series of TDP1 inhibitors, which are able to sensitize cancer cells to the topotecan cytotoxic effect has been discovered.


Subject(s)
Antineoplastic Agents , Topotecan , Humans , Topotecan/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Phosphodiesterase Inhibitors/chemistry , Structure-Activity Relationship , Phosphoric Diester Hydrolases/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor
6.
Bioorg Med Chem Lett ; 73: 128909, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35907608

ABSTRACT

Tyrosyl-DNA phosphodiesterase 1(TDP1) is a promising target for a new therapy in oncological disease as an adjunct to topoisomerase 1 (TOP1) drugs. In this paper, novel thiazolidin-4-one derivatives with a benzyl and monoterpene substituents were synthesized. Compounds with a monoterpene fragment attached via a phenyloxy linker were active against TDP1 with IC50 values in the 1 ÷ 3 µM range, while direct attachment of monoterpene moiety to the thiazolidin-4-one fragment had no activity. Molecular modelling predicted two plausible binding modes of the active compounds both effectively blocking access to the catalytic site of TDP. At non-toxic concentrations the active ligands potentiated the efficacy of the TOP1 poison topotecan in human cervical cancer HeLa cells, but not in non-cancerous HEK293A cells.


Subject(s)
Phosphodiesterase Inhibitors , Phosphoric Diester Hydrolases , Esterases/metabolism , HeLa Cells , Humans , Monoterpenes/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Structure-Activity Relationship
7.
Molecules ; 27(11)2022 May 24.
Article in English | MEDLINE | ID: mdl-35684313

ABSTRACT

Inhibiting tyrosyl-DNA phosphodiesterase 1 (TDP1) is a promising strategy for increasing the effectiveness of existing antitumor therapy since it can remove the DNA lesions caused by anticancer drugs, which form covalent complexes with topoisomerase 1 (TOP1). Here, new adamantane-monoterpene conjugates with a 1,2,4-triazole or 1,3,4-thiadiazole linker core were synthesized, where (+)-and (-)-campholenic and (+)-camphor derivatives were used as monoterpene fragments. The campholenic derivatives 14a-14b and 15a-b showed activity against TDP1 at a low micromolar range with IC50 ~5-6 µM, whereas camphor-containing compounds 16 and 17 were ineffective. Surprisingly, all the compounds synthesized demonstrated a clear synergy with topotecan, a TOP1 poison, regardless of their ability to inhibit TDP1. These findings imply that different pathways of enhancing topotecan toxicity other than the inhibition of TDP1 can be realized.


Subject(s)
Adamantane , Antineoplastic Agents , Adamantane/pharmacology , Antineoplastic Agents/pharmacology , Camphor , Monoterpenes/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Topotecan/pharmacology
8.
Molecules ; 27(8)2022 Apr 09.
Article in English | MEDLINE | ID: mdl-35458631

ABSTRACT

Inhibition of human DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 (Tdp1) by different chiral lipophilic nucleoside derivatives was studied. New Tdp1 inhibitors were found in the series of the studied compounds with IC50 = 2.7-6.7 µM. It was shown that D-lipophilic nucleoside derivatives manifested higher inhibition activity than their L-analogs, and configuration of the carbohydrate moiety can influence the mechanism of Tdp1 inhibition.


Subject(s)
Nucleosides , Phosphoric Diester Hydrolases , Humans , Ligands , Nucleosides/pharmacology , Phosphoric Diester Hydrolases/chemistry
9.
Mol Divers ; 25(4): 2389-2397, 2021 Nov.
Article in English | MEDLINE | ID: mdl-32833106

ABSTRACT

Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a DNA repair enzyme that plays a key role in repairing damage caused by various antitumor drugs. It is a promising target in medicinal chemistry for the creation of cancer adjuvant therapy. Inhibition of this enzyme together with the use of anticancer chemotherapy enhances the effect of the latter. The natural mutant of TDP1, TDP1(H493R), causes severe neurodegenerative disease spinocerebellar ataxia syndrome with axonal neuropathy (SCAN1). Inhibition of TDP1(H493R) appears to be useful in containment the progression of the disease. A library of compounds was synthesized starting from dehydroabietylamine including heterocyclic pharmacophore groups in the core. To obtain the desired products, the starting dehydroabietylamine was introduced sequentially in reaction with isothiocyanate and ethyl bromoacetate. Different classes of heterocyclic derivatives-2-iminothiazolidin-4-ons and 2-thioxoimidazolidin-4-ones-were obtained depending on the addition order of reagents. 2-Iminothiazolidin-4-thiones were obtained from 2-iminothiazolidin-4-ones under the action of the Lawesson's reagent. Effective TDP1 inhibitors were found among the obtained compounds that work in submicromolar concentrations. The inhibitor of TDP1(H493R) was also detected.


Subject(s)
Phosphoric Diester Hydrolases
10.
Int J Mol Sci ; 22(21)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34768766

ABSTRACT

Tyrosyl-DNA phosphodiesterase 1 (TDP1) catalyzes the cleavage of the phosphodiester bond between the tyrosine residue of topoisomerase 1 (TOP1) and the 3' phosphate of DNA in the single-strand break generated by TOP1. TDP1 promotes the cleavage of the stable DNA-TOP1 complexes with the TOP1 inhibitor topotecan, which is a clinically used anticancer drug. This article reports the synthesis and study of usnic acid thioether and sulfoxide derivatives that efficiently suppress TDP1 activity, with IC50 values in the 1.4-25.2 µM range. The structure of the heterocyclic substituent introduced into the dibenzofuran core affects the TDP1 inhibitory efficiency of the compounds. A five-membered heterocyclic fragment was shown to be most pharmacophoric among the others. Sulfoxide derivatives were less cytotoxic than their thioester analogs. We observed an uncompetitive type of inhibition for the four most effective inhibitors of TDP1. The anticancer effect of TOP1 inhibitors can be enhanced by the simultaneous inhibition of PARP1, TDP1, and TDP2. Some of the compounds inhibited not only TDP1 but also TDP2 and/or PARP1, but at significantly higher concentration ranges than TDP1. Leader compound 10a showed promising synergy on HeLa cells in conjunction with the TOP1 inhibitor topotecan.


Subject(s)
Benzofurans/chemistry , DNA-Binding Proteins/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Sulfides/chemistry , Benzofurans/pharmacology , Cell Line , Cell Survival/drug effects , DNA Topoisomerases, Type I/metabolism , DNA-Binding Proteins/metabolism , Enzyme Inhibitors/chemical synthesis , Humans , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Structure-Activity Relationship , Sulfides/pharmacology , Sulfoxides/chemistry , Sulfoxides/pharmacology , Topoisomerase I Inhibitors/pharmacology , Topotecan/pharmacology
11.
Molecules ; 26(7)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808389

ABSTRACT

A new type of berberine derivatives was obtained by the reaction of berberrubine with aliphatic sulfonyl chlorides. The new polycyclic compounds have a sultone ring condensed to C and D rings of a protoberberine core. The reaction conditions were developed to facilitate the formation of sultones with high yields without by-product formation. Thus, it was shown that the order of addition of reagents affects the composition of the reaction products: when sulfochlorides are added to berberrubine, their corresponding 9-O-sulfonates are predominantly formed; when berberrubine is added to pre-generated sulfenes, sultones are the only products. The reaction was shown to proceed stereo-selectively and the cycle configuration was confirmed by 2D NMR spectroscopy. The inhibitory activity of the synthesized sultones and their 12-brominated analogs against the DNA-repair enzyme tyrosyl-DNA phosphodiesterase 1 (Tdp1), an important target for a potential antitumor therapy, was studied. All derivatives were active in the micromolar and submicromolar range, in contrast to the acyclic analogs and 9-O-sulfonates, which were inactive. The significance of the sultone cycle and bromine substituent in binding with the enzyme was confirmed using molecular modeling. The active inhibitors are mostly non-toxic to the HeLa cancer cell line, and several ligands show synergy with topotecan, a topoisomerase 1 poison in clinical use. Thus, novel berberine derivatives can be considered as candidates for adjuvant therapy against cancer.


Subject(s)
Berberine/analogs & derivatives , Phosphodiesterase Inhibitors/chemistry , Phosphoric Diester Hydrolases/chemistry , Antineoplastic Agents/chemistry , Berberine/chemistry , Drug Design , HeLa Cells , Humans , Models, Molecular , Structure-Activity Relationship
12.
Molecules ; 27(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35011303

ABSTRACT

A series of deoxycholic acid (DCA) amides containing benzyl ether groups on the steroid core were tested against the tyrosyl-DNA phosphodiesterase 1 (TDP1) and 2 (TDP2) enzymes. In addition, 1,2,4- and 1,3,4-oxadiazole derivatives were synthesized to study the linker influence between a para-bromophenyl moiety and the steroid scaffold. The DCA derivatives demonstrated promising inhibitory activity against TDP1 with IC50 in the submicromolar range. Furthermore, the amides and the 1,3,4-oxadiazole derivatives inhibited the TDP2 enzyme but at substantially higher concentration. Tryptamide 5 and para-bromoanilide 8 derivatives containing benzyloxy substituent at the C-3 position and non-substituted hydroxy group at C-12 on the DCA scaffold inhibited both TDP1 and TDP2 as well as enhanced the cytotoxicity of topotecan in non-toxic concentration in vitro. According to molecular modeling, ligand 5 is anchored into the catalytic pocket of TDP1 by one hydrogen bond to the backbone of Gly458 as well as by π-π stacking between the indolyl rings of the ligand and Tyr590, resulting in excellent activity. It can therefore be concluded that these derivatives contribute to the development of specific TDP1 and TDP2 inhibitors for adjuvant therapy against cancer in combination with topoisomerase poisons.


Subject(s)
Deoxycholic Acid/analogs & derivatives , Deoxycholic Acid/chemistry , Phosphodiesterase Inhibitors/chemistry , Phosphoric Diester Hydrolases/chemistry , Binding Sites , Cell Line , Chemical Phenomena , Chemistry Techniques, Synthetic , Deoxycholic Acid/pharmacology , Enzyme Activation/drug effects , Humans , Models, Molecular , Molecular Conformation , Molecular Structure , Phosphodiesterase Inhibitors/chemical synthesis , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Protein Binding , Recombinant Proteins/chemistry , Structure-Activity Relationship
13.
Molecules ; 26(11)2021 May 24.
Article in English | MEDLINE | ID: mdl-34073771

ABSTRACT

Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a promising target for anticancer therapy due to its ability to counter the effects topoisomerase 1 (Top1) poison, such as topotecan, thus, decreasing their efficacy. Compounds containing adamantane and monoterpenoid residues connected via 1,2,4-triazole or 1,3,4-thiadiazole linkers were synthesized and tested against Tdp1. All the derivatives exhibited inhibition at low micromolar or nanomolar concentrations with the most potent inhibitors having IC50 values in the 0.35-0.57 µM range. The cytotoxicity was determined in the HeLa, HCT-116 and SW837 cancer cell lines; moderate CC50 (µM) values were seen from the mid-teens to no effect at 100 µM. Furthermore, citral derivative 20c, α-pinene-derived compounds 20f, 20g and 25c, and the citronellic acid derivative 25b were found to have a sensitizing effect in conjunction with topotecan in the HeLa cervical cancer and colon adenocarcinoma HCT-116 cell lines. The ligands are predicted to bind in the catalytic pocket of Tdp1 and have favorable physicochemical properties for further development as a potential adjunct therapy with Top1 poisons.


Subject(s)
Adamantane/pharmacology , Monoterpenes/chemistry , Phosphoric Diester Hydrolases/drug effects , Adamantane/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Cell Line, Tumor , Humans , Ligands , Mass Spectrometry , Proton Magnetic Resonance Spectroscopy , Structure-Activity Relationship
14.
J Nat Prod ; 83(8): 2320-2329, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32786885

ABSTRACT

Hybrid molecules created from different pharmacophores of natural and synthetic equivalents are successfully used in pharmaceutical practice. One promising target for anticancer therapy is tyrosyl-DNA phosphodiesterase 1 (Tdp1) because it can repair DNA lesions caused by DNA-topoisomerase 1 (Top1) inhibitors, resulting in drug resistance. In this study, new hybrid compounds were synthesized by combining the pharmacophoric moiety of a set of natural compounds with inhibitory properties against Tdp1, particularly, phenolic usnic acid and a set of different monoterpenoid fragments. These fragments were connected through a hydrazinothiazole linker. The inhibitory properties of the new compounds mainly depended on the structure of the terpenoid moieties. The two most potent compounds, 9a and 9b, were synthesized from citral and citronellal, which contain acyclic fragments with IC50 values in the range of 10-16 nM. Some synthesized derivatives showed low cytotoxicity against HeLa cells and increased the effect of the Top1 inhibitor topotecan in vitro by three to seven times. These derivatives may be considered as potential agents for the development of anticancer therapies when combined with Top1 inhibitors.


Subject(s)
Benzofurans/chemistry , Monoterpenes/chemistry , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/drug effects , Benzofurans/pharmacology , Crystallography, X-Ray , HeLa Cells , Humans , Hydrogen Bonding , Models, Molecular , Molecular Structure , Monoterpenes/pharmacology , Spectrum Analysis/methods , Structure-Activity Relationship
15.
Int J Mol Sci ; 21(19)2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32998385

ABSTRACT

A series of berberine and tetrahydroberberine sulfonate derivatives were prepared and tested against the tyrosyl-DNA phosphodiesterase 1 (Tdp1) DNA-repair enzyme. The berberine derivatives inhibit the Tdp1 enzyme in the low micromolar range; this is the first reported berberine based Tdp1 inhibitor. A structure-activity relationship analysis revealed the importance of bromine substitution in the 12-position on the tetrahydroberberine scaffold. Furthermore, it was shown that the addition of a sulfonate group containing a polyfluoroaromatic moiety at position 9 leads to increased potency, while most of the derivatives containing an alkyl fragment at the same position were not active. According to the molecular modeling, the bromine atom in position 12 forms a hydrogen bond to histidine 493, a key catalytic residue. The cytotoxic effect of topotecan, a clinically important topoisomerase 1 inhibitor, was doubled in the cervical cancer HeLa cell line by derivatives 11g and 12g; both displayed low toxicity without topotecan. Derivatives 11g and 12g can therefore be used for further development to sensitize the action of clinically relevant Topo1 inhibitors.


Subject(s)
Antineoplastic Agents, Phytogenic/chemical synthesis , Berberine/analogs & derivatives , Phosphodiesterase Inhibitors/chemical synthesis , Phosphoric Diester Hydrolases/chemistry , Topoisomerase I Inhibitors/pharmacology , Topotecan/pharmacology , Antineoplastic Agents, Phytogenic/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Berberine/chemistry , Berberine/pharmacology , Binding Sites , DNA Repair/drug effects , Drug Combinations , Drug Design , Drug Synergism , HeLa Cells , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Phosphodiesterase Inhibitors/metabolism , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Protein Binding , Protein Conformation , Structure-Activity Relationship , Topoisomerase I Inhibitors/chemistry , Topotecan/chemistry
16.
Molecules ; 25(16)2020 Aug 13.
Article in English | MEDLINE | ID: mdl-32823658

ABSTRACT

Inhibition of DNA repair enzymes tyrosyl-DNA phosphodiesterase 1 and poly(ADP-ribose)polymerases 1 and 2 in the presence of pyrimidine nucleoside derivatives was studied here. New effective Tdp1 inhibitors were found in a series of nucleoside derivatives possessing 2',3',5'-tri-O-benzoyl-d-ribofuranose and 5-substituted uracil moieties and have half-maximal inhibitory concentrations (IC50) in the lower micromolar and submicromolar range. 2',3',5'-Tri-O-benzoyl-5-iodouridine manifested the strongest inhibitory effect on Tdp1 (IC50 = 0.6 µM). A decrease in the number of benzoic acid residues led to a marked decline in the inhibitory activity, and pyrimidine nucleosides lacking lipophilic groups (uridine, 5-fluorouridine, 5-chlorouridine, 5-bromouridine, 5-iodouridine, and ribothymidine) did not cause noticeable inhibition of Tdp1 (IC50 > 50 µM). No PARP1/2 inhibitors were found among the studied compounds (residual activity in the presence of 1 mM substances was 50-100%). Several O-benzoylated uridine and cytidine derivatives strengthened the action of topotecan on HeLa cervical cancer cells.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hydrophobic and Hydrophilic Interactions , Phosphoric Diester Hydrolases/metabolism , Pyrimidine Nucleosides/chemistry , Pyrimidine Nucleosides/pharmacology , Dose-Response Relationship, Drug , Enzyme Inhibitors/toxicity , HeLa Cells , Humans , Pyrimidine Nucleosides/toxicity
17.
Molecules ; 25(15)2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32751997

ABSTRACT

Two novel structural types of tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors with hexahydroisobenzofuran 11 and 3-oxabicyclo [3.3.1]nonane 12 scaffolds were discovered. These monoterpene-derived compounds were synthesized through preliminary isomerization of (+)-3-carene to (+)-2-carene followed by reaction with heteroaromatic aldehydes. All the compounds inhibit the TDP1 enzyme at micro- and submicromolar levels, with the most potent compound having an IC50 value of 0.65 µM. TDP1 is an important DNA repair enzyme and a promising target for the development of new chemosensitizing agents. A panel of isogenic clones of the HEK293FT cell line knockout for the TDP1 gene was created using the CRISPR-Cas9 system. Cytotoxic effects of topotecan (Tpc) and non-cytotoxic compounds of the new structures were investigated separately and jointly in the TDP1 gene knockout cells. For two TDP1 inhibitors, 11h and 12k, a synergistic effect was observed with Tpc in the HEK293FT cells but was not found in TDP1 -/- cells. Thus, it is likely that the synergistic effect is caused by inhibition of TDP1. Synergy was also found for 11h in other cancer cell lines. Thus, sensitizing cancer cells using a non-cytotoxic drug can enhance the efficacy of currently used pharmaceuticals and, concomitantly, reduce toxic side effects.


Subject(s)
Bicyclic Monoterpenes/chemistry , Drug Design , Phosphodiesterase Inhibitors/chemical synthesis , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Signal Transduction/drug effects , CRISPR-Cas Systems , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Synergism , Gene Knockout Techniques , HCT116 Cells , HEK293 Cells , HeLa Cells , Humans , Inhibitory Concentration 50 , Phosphodiesterase Inhibitors/chemistry , Phosphoric Diester Hydrolases/genetics , Topotecan/pharmacology
18.
Med Res Rev ; 39(4): 1427-1441, 2019 07.
Article in English | MEDLINE | ID: mdl-31004352

ABSTRACT

Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a DNA repair enzyme that catalyzes the hydrolysis of the phosphodiester bond in the DNA-topoisomerase 1 (Top1) covalent complex and repairs some other 3'-end DNA adducts. Currently, Tdp1 functions as an important target in cancer drug design owing to its ability to break down various DNA adducts induced by chemotherapeutics. Tdp1 inhibitors may sensitize tumor cells to the action of Top1 poisons, thereby potentiating their effects. This mini-review summarizes findings from studies reporting the combined inhibition of Top1 and Tdp1. Two different approaches have been considered for developing such drug precursors.


Subject(s)
Antineoplastic Agents/pharmacology , Topoisomerase I Inhibitors/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Phosphoric Diester Hydrolases , Structure-Activity Relationship , Topoisomerase I Inhibitors/chemistry
19.
J Nat Prod ; 82(9): 2443-2450, 2019 09 27.
Article in English | MEDLINE | ID: mdl-31430155

ABSTRACT

A new class of tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors was found among resin acid derivatives. Several novel ureas and thioureas derived from dehydroabietylamine were synthesized and tested for TDP1 inhibition. The synthesized compounds showed IC50 values in the range of 0.1 to 3.7 µM and demonstrated low cytotoxicity against the human tumor cell lines U-937, U-87MG, MDA-MB, SK-Mel8, A-549, MCF7, T98G, and SNB19. Several compounds showed enhancement of the cytotoxic activity of the alkylating agent temozolomide, which is used as a first line therapy against glioblastoma (GBM), in the GBM cell lines U-87MG and SNB19.


Subject(s)
Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/pathology , DNA, Neoplasm/drug effects , Glioblastoma/pathology , Phosphodiesterase Inhibitors/pharmacology , Temozolomide/therapeutic use , Thiourea/chemistry , Tyrosine/chemistry , Urea/chemistry , Cell Line, Tumor , DNA, Neoplasm/chemistry , Drug Synergism , Humans , Phosphodiesterase Inhibitors/chemistry
20.
Planta Med ; 85(2): 103-111, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30142660

ABSTRACT

Usnic acid, a lichen secondary metabolite produced by a whole number of lichens, has attracted the interest of researchers owing to its broad range of biological activity, including antiviral, antibiotic, anticancer properties, and it possessing a certain toxicity. The synthesis of new usnic acid derivatives and the investigation of their biological activity may lead to the discovery of compounds with better pharmacological and toxicity profiles. In this context, a series of new usnic acid derivatives comprising a terpenoid moiety were synthesized, and their ability to inhibit the catalytic activity of the human DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 was investigated. The most potent compounds (15A, 15B, 15G: , and 16A, 16B, 16G: ) had IC50 values in the range of 0.33 - 2.7 µM. The inhibitory properties were mainly dependent on the flexibility and length of the terpenoid moiety, but not strongly dependent on the configuration of the asymmetric centers. The synthesized derivatives showed low cytotoxicity against human cell lines in an MTT assay. They could be used as a basis for the development of more effective anticancer therapies when combined with topoisomerase 1 inhibitors.


Subject(s)
Benzofurans/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/drug effects , Benzofurans/chemical synthesis , Benzofurans/chemistry , Cell Line, Tumor/drug effects , Escherichia coli , HEK293 Cells/drug effects , Humans , MCF-7 Cells/drug effects , Microorganisms, Genetically-Modified , Molecular Docking Simulation , Phosphodiesterase Inhibitors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL