Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
BMC Bioinformatics ; 21(1): 566, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33297947

ABSTRACT

BACKGROUND: Drug repositioning has been an important and efficient method for discovering new uses of known drugs. Researchers have been limited to one certain type of collaborative filtering (CF) models for drug repositioning, like the neighborhood based approaches which are good at mining the local information contained in few strong drug-disease associations, or the latent factor based models which are effectively capture the global information shared by a majority of drug-disease associations. Few researchers have combined these two types of CF models to derive a hybrid model which can offer the advantages of both. Besides, the cold start problem has always been a major challenge in the field of computational drug repositioning, which restricts the inference ability of relevant models. RESULTS: Inspired by the memory network, we propose the hybrid attentional memory network (HAMN) model, a deep architecture combining two classes of CF models in a nonlinear manner. First, the memory unit and the attention mechanism are combined to generate a neighborhood contribution representation to capture the local structure of few strong drug-disease associations. Then a variant version of the autoencoder is used to extract the latent factor of drugs and diseases to capture the overall information shared by a majority of drug-disease associations. During this process, ancillary information of drugs and diseases can help alleviate the cold start problem. Finally, in the prediction stage, the neighborhood contribution representation is coupled with the drug latent factor and disease latent factor to produce predicted values. Comprehensive experimental results on two data sets demonstrate that our proposed HAMN model outperforms other comparison models based on the AUC, AUPR and HR indicators. CONCLUSIONS: Through the performance on two drug repositioning data sets, we believe that the HAMN model proposes a new solution to improve the prediction accuracy of drug-disease associations and give pharmaceutical personnel a new perspective to develop new drugs.


Subject(s)
Algorithms , Computational Biology/methods , Drug Repositioning , Databases as Topic , Humans , Statistics as Topic
2.
BMC Bioinformatics ; 20(1): 423, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31412762

ABSTRACT

BACKGROUND: Computational drug repositioning, which aims to find new applications for existing drugs, is gaining more attention from the pharmaceutical companies due to its low attrition rate, reduced cost, and shorter timelines for novel drug discovery. Nowadays, a growing number of researchers are utilizing the concept of recommendation systems to answer the question of drug repositioning. Nevertheless, there still lie some challenges to be addressed: 1) Learning ability deficiencies; the adopted model cannot learn a higher level of drug-disease associations from the data. 2) Data sparseness limits the generalization ability of the model. 3)Model is easy to overfit if the effect of negative samples is not taken into consideration. RESULTS: In this study, we propose a novel method for computational drug repositioning, Additional Neural Matrix Factorization (ANMF). The ANMF model makes use of drug-drug similarities and disease-disease similarities to enhance the representation information of drugs and diseases in order to overcome the matter of data sparsity. By means of a variant version of the autoencoder, we were able to uncover the hidden features of both drugs and diseases. The extracted hidden features will then participate in a collaborative filtering process by incorporating the Generalized Matrix Factorization (GMF) method, which will ultimately give birth to a model with a stronger learning ability. Finally, negative sampling techniques are employed to strengthen the training set in order to minimize the likelihood of model overfitting. The experimental results on the Gottlieb and Cdataset datasets show that the performance of the ANMF model outperforms state-of-the-art methods. CONCLUSIONS: Through performance on two real-world datasets, we believe that the proposed model will certainly play a role in answering to the major challenge in drug repositioning, which lies in predicting and choosing new therapeutic indications to prospectively test for a drug of interest.


Subject(s)
Algorithms , Computational Biology/methods , Drug Repositioning , Databases as Topic , Drug Discovery , Humans , Models, Theoretical , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL