Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Environ Manage ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090440

ABSTRACT

Semi-natural grasslands (SNGLs) in Estonia are threatened by abandonment. This threat is leading to concerns about the degradation of biodiversity within grassland communities. Despite the high relevance of economic incentives in this context, how such incentives influence land managers' decision-making regarding the agricultural use of SNGLs has not been investigated. To obtain its socio-ecological implications for policy-making, we developed regionally specific agricultural scenarios (compensation payments, livestock capacity, hey export, and bioenergy production) and an interdisciplinary modelling approach that made it possible to simulate agricultural land use changes through land managers' responses to varied economic conditions. Through this approach, we found that some economic factors hampered the use of SNGLs: the moderate profitability of beef production, labour shortages, and the relatively high profitability of mulching. We observed a positive relationship between SNGLs and habitat suitability for breeding and feeding birds. However, due to the high maintenance costs of SNGLs, the modelling results indicated that increasing the use of SNGLs through public budgets caused crowding-out effects, i.e., the deteriorating market integration of regional agriculture. This study emphasises the need for policy measures aimed at cost-effective, labour-efficient management practices for SNGLs.

2.
Reg Environ Change ; 23(3): 97, 2023.
Article in English | MEDLINE | ID: mdl-37489177

ABSTRACT

Diverse agricultural land uses are a typical feature of multifunctional landscapes. The uncertain change in the drivers of global land use, such as climate, market and policy technology and demography, challenges the long-term management of agricultural diversification. As these global drivers also affect smaller scales, it is important to capture the traits of regionally specific farm activities to facilitate adaptation to change. By downscaling European shared socioeconomic pathways (SSPs) for agricultural and food systems, combined with representative concentration pathways (RCP) to regionally specific, alternative socioeconomic and climate scenarios, the present study explores the major impacts of the drivers of global land use on regional agriculture by simulating farm-level decisions and identifies the socio-ecological implications for promoting diverse agricultural landscapes in 2050. A hilly orchard region in northern Switzerland was chosen as a case study to represent the multifunctional nature of Swiss agriculture. Results show that the different regionalised pathways lead to contrasting impacts on orchard meadows, production levels and biodiversity. Increased financial support for ecological measures, adequate farm labour supplies for more labour-intensive farming and consumer preferences that favour local farm produce can offset the negative impacts of climate change and commodity prices and contribute to agricultural diversification and farmland biodiversity. However, these conditions also caused a significant decline in farm production levels. This study suggests that considering a broader set of land use drivers beyond direct payments, while acknowledging potential trade-offs and diverse impacts across different farm types, is required to effectively manage and sustain diversified agricultural landscapes in the long run. Supplementary information: The online version contains supplementary material available at 10.1007/s10113-023-02092-5.

3.
Environ Monit Assess ; 193(Suppl 1): 269, 2021 May 14.
Article in English | MEDLINE | ID: mdl-33988773

ABSTRACT

Provisioning ecosystem services play a vital role in sustaining human well-being. Agro-ecosystems contribute a significant share of these services, besides food and fodder and also fuel and fibre as well as regulating and cultural ecosystem services. Until now, the indication of provisioning ecosystem services of agro-ecosystems has been based almost only on yield numbers of agricultural products. Such an indication is problematic due to several reasons which include a disregard of the role of significant anthropogenic contributions to ecosystem service co-generation, external environmental effects and strong dependence on site conditions. We argue for an enhanced indication of provisioning ecosystem services that considers multiple aspects of their delivery. The conceptual base for such an indication has been made by prior publications which have been reviewed. Relevant points were taken up in this article and condensed into a conceptual model in order to develop a more holistic and expanded set of indictors, which was then exemplarily applied and tested in three case studies in Germany. The case studies represent different natural conditions, and the indicator set application showed that ecosystem services (ES) flow-in terms of output alone-does not characterise agro-ecosystems sufficiently. The proposed aspects of provisioning ecosystem services can give a fuller picture, for example, by input-output relationships, as it is possible by just using single indicators. Uncertainties as well as pros and cons of such an approach are elaborated. Finally, recommendations for an enhanced indication of provisioning ecosystem services in agro-ecosystems that can help to integrate agricultural principles with ideas of sustainability and site-specific land use are derived.


Subject(s)
Conservation of Natural Resources , Ecosystem , Agriculture , Environmental Monitoring , Germany , Humans
4.
Environ Monit Assess ; 187(6): 336, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25957192

ABSTRACT

The environmental impacts of land use vary regionally. Differences in geomorphology, climate, landscape structure, and biotope inventories are regarded as the main causes of this variation. We present a methodological approach for identifying regional responses in land use type to large-scale changes and the implications for the provision of habitat for farmland birds. The methodological innovations of this approach are (i) the coupling of impact assessments with economic models, (ii) the linking of cropping techniques at the plot scale with the regional distribution of land use, and (iii) the integration of statistical or monitoring data on recent states. This approach allows for the regional differentiation of farmers' responses to changing external conditions and for matching the ecological impacts of land use changes with regional environmental sensitivities. An exemplary scenario analysis was applied for a case study of an area in Germany, assessing the impacts of increased irrigation and the promotion of energy cropping on farmland birds, evaluated as a core indicator for farmland biodiversity. The potential effects on farmland birds were analyzed based on the intrinsic habitat values of the crops and cropping techniques. The results revealed that the strongest decrease in habitat availability for farmland birds occurred in regions with medium-to-low agricultural yields. As a result of the limited cropping alternatives, the increase in maize production was highest in marginal regions for both examined scenarios. Maize production replaced many crops with good-to-medium habitat suitability for birds. The declines in habitat quality were strongest in regions that are not in focus for conservation efforts for farmland birds.


Subject(s)
Agriculture/statistics & numerical data , Birds/physiology , Environmental Monitoring , Agriculture/methods , Animals , Biodiversity , Birds/classification , Crops, Agricultural , Ecosystem , Environment , Germany , Zea mays
5.
Environ Manage ; 53(3): 620-35, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24337194

ABSTRACT

Despite the reported benefits of conservation agriculture (CA), its wider up-scaling in Sub-Saharan Africa (SSA) has remained fairly limited. This paper shows how a newly developed qualitative expert assessment approach for CA adoption (QAToCA) was applied to determine its adoption potential in SSA. CA adoption potential is not a predictor of observed adoption rates. Instead, our aim was to systematically check relevant factors that may be influencing its adoption. QAToCA delivers an assessment of how suitable conditions "and thus the likelihood for CA adoption" are. Results show that the high CA adoption potentials exhibited by the Malawi and Zambia case relate mostly to positive institutional factors. On the other hand, the low adoption potential of the Zimbabwe case, in spite of observed higher estimates, is attributed mainly to unstable and less secured market conditions for CA. In the case of Southern Burkina Faso, the potential for CA adoption is determined to be high, and this assessment deviates from lower observed figures. This is attributed mainly to strong competition of CA and livestock for residues in this region. Lastly, the high adoption potential found in Northern Burkina Faso is explained mainly by the fact that farmers here have no alternative other than to adopt the locally adapted CA system-Zaï farming. Results of this assessment should help promoters of CA in the given regions to reflect on their activities and to eventually adjust or redesign them based on a more explicit understanding of where problems and opportunities are found.


Subject(s)
Agriculture/methods , Conservation of Natural Resources/methods , Models, Theoretical , Africa South of the Sahara , Agriculture/economics , Animals , Community Participation , Cost-Benefit Analysis , Local Government
6.
J Environ Manage ; 114: 404-13, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23164542

ABSTRACT

This paper presents a whole farm bio-economic modelling approach for the assessment and optimisation of amphibian conservation conditions applied at the example of a large scale organic farm in North-Eastern Germany. The assessment focuses mainly on the habitat quality as affected by conservation measures such as through specific adapted crop production activities (CPA) and in-field buffer strips for the European tree frog (Hyla arborea), considering also interrelations with other amphibian species (i.e. common spadefoot toad (Pelobates fuscus), fire-bellied toad (Bombina bombina)). The aim of the approach is to understand, analyse and optimize the relationships between the ecological and economic performance of an organic farming system, based on the expectation that amphibians are differently impacted by different CPAs. The modelling system consists of a set of different sub-models that generate a farm model on the basis of environmentally evaluated CPAs. A crop-rotation sub-model provides a set of agronomically sustainable crop rotations that ensures overall sufficient nitrogen supply and controls weed, pest and disease infestations. An economic sub-model calculates the gross margins for each possible CPA including costs of inputs such as labour and machinery. The conservation effects of the CPAs are assessed with an ecological sub-model evaluates the potential negative or positive effect that each work step of a CPA has on amphibians. A mathematical programming sub-model calculates the optimal farm organization taking into account the limited factors of the farm (e.g. labour, land) as well as ecological improvements. In sequential model runs, the habitat quality is to be improved by the model, while the highest possible gross margin is still to be achieved. The results indicate that the model can be used to show the scope of action that a farmer has to improve habitat quality by reducing damage to amphibian population on its land during agricultural activities. Thereby, depending on the level of habitat quality that is aimed at, different measures may provide the most efficient solution. Lower levels of conservation can be achieved with low-cost adapted CPAs, such as an increased cutting height, reduced sowing density and grubbing instead of ploughing. Higher levels of conservation require e.g. grassland-like managed buffer strips around ponds in sensible areas, which incur much higher on-farm conservation costs.


Subject(s)
Anura , Conservation of Natural Resources , Models, Biological , Models, Economic , Organic Agriculture , Animals
7.
Environ Sci Ecotechnol ; 16: 100274, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37206315

ABSTRACT

Multifunctional and diversified agriculture can address diverging pressures and demands by simultaneously enhancing productivity, biodiversity, and the provision of ecosystem services. The use of digital technologies can support this by designing and managing resource-efficient and context-specific agricultural systems. We present the Digital Agricultural Knowledge and Information System (DAKIS) to demonstrate an approach that employs digital technologies to enable decision-making towards diversified and sustainable agriculture. To develop the DAKIS, we specified, together with stakeholders, requirements for a knowledge-based decision-support tool and reviewed the literature to identify limitations in the current generation of tools. The results of the review point towards recurring challenges regarding the consideration of ecosystem services and biodiversity, the capacity to foster communication and cooperation between farmers and other actors, and the ability to link multiple spatiotemporal scales and sustainability levels. To overcome these challenges, the DAKIS provides a digital platform to support farmers' decision-making on land use and management via an integrative spatiotemporally explicit approach that analyses a wide range of data from various sources. The approach integrates remote and in situ sensors, artificial intelligence, modelling, stakeholder-stated demand for biodiversity and ecosystem services, and participatory sustainability impact assessment to address the diverse drivers affecting agricultural land use and management design, including natural and agronomic factors, economic and policy considerations, and socio-cultural preferences and settings. Ultimately, the DAKIS embeds the consideration of ecosystem services, biodiversity, and sustainability into farmers' decision-making and enables learning and progress towards site-adapted small-scale multifunctional and diversified agriculture while simultaneously supporting farmers' objectives and societal demands.

8.
Environ Manage ; 46(6): 862-77, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21113782

ABSTRACT

Bio-economic farm models are tools to evaluate ex-post or to assess ex-ante the impact of policy and technology change on agriculture, economics and environment. Recently, various BEFMs have been developed, often for one purpose or location, but hardly any of these models are re-used later for other purposes or locations. The Farm System Simulator (FSSIM) provides a generic framework enabling the application of BEFMs under various situations and for different purposes (generating supply response functions and detailed regional or farm type assessments). FSSIM is set up as a component-based framework with components representing farmer objectives, risk, calibration, policies, current activities, alternative activities and different types of activities (e.g., annual and perennial cropping and livestock). The generic nature of FSSIM is evaluated using five criteria by examining its applications. FSSIM has been applied for different climate zones and soil types (criterion 1) and to a range of different farm types (criterion 2) with different specializations, intensities and sizes. In most applications FSSIM has been used to assess the effects of policy changes and in two applications to assess the impact of technological innovations (criterion 3). In the various applications, different data sources, level of detail (e.g., criterion 4) and model configurations have been used. FSSIM has been linked to an economic and several biophysical models (criterion 5). The model is available for applications to other conditions and research issues, and it is open to be further tested and to be extended with new components, indicators or linkages to other models.


Subject(s)
Agriculture/economics , Models, Biological , Models, Economic , Agriculture/methods , Conservation of Natural Resources , Environment , Environmental Policy
9.
Ambio ; 49(4): 962-985, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31482377

ABSTRACT

In spite of positive expectations for environmental protection, payments for ecosystem services (PES) can bring about unintended disturbances to rural livelihoods. Based on resilience thinking, this article investigates livelihood resilience building at farm level through the interaction between farm adaptation and disturbances induced by China's Grain for Green project (GGP). Cluster analysis was conducted to investigate the complexity and diversity of farm adaptation; the crafting of composite indexes was designed to value resilience through disturbance, sensitivity, and adaptability; regression analyses linked the resilience indexes and farm adaptation with access to resources. The results show three adaptation typologies (i.e. reclamation of retired lands, contractive farming, and expansive farming) with distinct land use structures and resilience scores, and highlight the need to improving farmers' access and endowment of tangible (e.g. farming facilities) and intangible resources (e.g. skill training) for resilience-building practices in light of the GGP. The findings imply that policy interventions combining environmental restrictions with widening resource access to support alternative livelihoods can offset the unintended effects and amplify the success of PES programmes.


Subject(s)
Conservation of Natural Resources , Ecosystem , Agriculture , China , Farmers , Humans
10.
Front Plant Sci ; 7: 669, 2016.
Article in English | MEDLINE | ID: mdl-27242870

ABSTRACT

Europe's agriculture is highly specialized, dependent on external inputs and responsible for negative environmental impacts. Legume crops are grown on less than 2% of the arable land and more than 70% of the demand for protein feed supplement is imported from overseas. The integration of legumes into cropping systems has the potential to contribute to the transition to a more resource-efficient agriculture and reduce the current protein deficit. Legume crops influence the production of other crops in the rotation making it difficult to evaluate the overall agronomic effects of legumes in cropping systems. A novel assessment framework was developed and applied in five case study regions across Europe with the objective of evaluating trade-offs between economic and environmental effects of integrating legumes into cropping systems. Legumes resulted in positive and negative impacts when integrated into various cropping systems across the case studies. On average, cropping systems with legumes reduced nitrous oxide emissions by 18 and 33% and N fertilizer use by 24 and 38% in arable and forage systems, respectively, compared to systems without legumes. Nitrate leaching was similar with and without legumes in arable systems and reduced by 22% in forage systems. However, grain legumes reduced gross margins in 3 of 5 regions. Forage legumes increased gross margins in 3 of 3 regions. Among the cropping systems with legumes, systems could be identified that had both relatively high economic returns and positive environmental impacts. Thus, increasing the cultivation of legumes could lead to economic competitive cropping systems and positive environmental impacts, but achieving this aim requires the development of novel management strategies informed by the involvement of advisors and farmers.

11.
Front Plant Sci ; 6: 705, 2015.
Article in English | MEDLINE | ID: mdl-26442020

ABSTRACT

Europe has become heavily dependent on soya bean imports, entailing trade agreements and quality standards that do not satisfy the European citizen's expectations. White, yellow, and narrow-leafed lupins are native European legumes that can become true alternatives to soya bean, given their elevated and high-quality protein content, potential health benefits, suitability for sustainable production, and acceptability to consumers. Nevertheless, lupin cultivation in Europe remains largely insufficient to guarantee a steady supply to the food industry, which in turn must innovate to produce attractive lupin-based protein-rich foods. Here, we address different aspects of the food supply chain that should be considered for lupin exploitation as a high-value protein source. Advanced breeding techniques are needed to provide new lupin varieties for socio-economically and environmentally sustainable cultivation. Novel processes should be optimized to obtain high-quality, safe lupin protein ingredients, and marketable foods need to be developed and offered to consumers. With such an integrated strategy, lupins can be established as an alternative protein crop, capable of promoting socio-economic growth and environmental benefits in Europe.

SELECTION OF CITATIONS
SEARCH DETAIL