Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
Add more filters

Publication year range
1.
Cell ; 147(1): 132-46, 2011 Sep 30.
Article in English | MEDLINE | ID: mdl-21924763

ABSTRACT

Alternative splicing (AS) is a key process underlying the expansion of proteomic diversity and the regulation of gene expression. Here, we identify an evolutionarily conserved embryonic stem cell (ESC)-specific AS event that changes the DNA-binding preference of the forkhead family transcription factor FOXP1. We show that the ESC-specific isoform of FOXP1 stimulates the expression of transcription factor genes required for pluripotency, including OCT4, NANOG, NR5A2, and GDF3, while concomitantly repressing genes required for ESC differentiation. This isoform also promotes the maintenance of ESC pluripotency and contributes to efficient reprogramming of somatic cells into induced pluripotent stem cells. These results reveal a pivotal role for an AS event in the regulation of pluripotency through the control of critical ESC-specific transcriptional programs.


Subject(s)
Alternative Splicing , Cellular Reprogramming , Embryonic Stem Cells/metabolism , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Developmental , Pluripotent Stem Cells/metabolism , Repressor Proteins/metabolism , Animals , DNA/metabolism , Embryonic Stem Cells/cytology , Genes, Homeobox , Humans , Mice , Pluripotent Stem Cells/cytology , Protein Isoforms/metabolism
2.
Proc Natl Acad Sci U S A ; 119(49): e2207824119, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36454756

ABSTRACT

Revealing the molecular events associated with reprogramming different somatic cell types to pluripotency is critical for understanding the characteristics of induced pluripotent stem cell (iPSC) therapeutic derivatives. Inducible reprogramming factor transgenic cells or animals-designated as secondary (2°) reprogramming systems-not only provide excellent experimental tools for such studies but also offer a strategy to study the variances in cellular reprogramming outcomes due to different in vitro and in vivo environments. To make such studies less cumbersome, it is desirable to have a variety of efficient reprogrammable mouse systems to induce successful mass reprogramming in somatic cell types. Here, we report the development of two transgenic mouse lines from which 2° cells reprogram with unprecedented efficiency. These systems were derived by exposing primary reprogramming cells containing doxycycline-inducible Yamanaka factor expression to a transient interruption in transgene expression, resulting in selection for a subset of clones with robust transgene response. These systems also include reporter genes enabling easy readout of endogenous Oct4 activation (GFP), indicative of pluripotency, and reprogramming transgene expression (mCherry). Notably, somatic cells derived from various fetal and adult tissues from these 2° mouse lines gave rise to highly efficient and rapid reprogramming, with transgene-independent iPSC colonies emerging as early as 1 wk after induction. These mouse lines serve as a powerful tool to explore sources of variability in reprogramming and the mechanistic underpinnings of efficient reprogramming systems.


Subject(s)
Cellular Reprogramming , Doxycycline , Animals , Mice , Mice, Transgenic , Cellular Reprogramming/genetics , Transgenes , Clone Cells , Doxycycline/pharmacology
3.
Nat Rev Genet ; 19(10): 595-614, 2018 10.
Article in English | MEDLINE | ID: mdl-30089805

ABSTRACT

New fundamental discoveries in stem cell biology have yielded potentially transformative regenerative therapeutics. However, widespread implementation of stem-cell-derived therapeutics remains sporadic. Barriers that impede the development of these therapeutics can be linked to our incomplete understanding of how the regulatory networks that encode stem cell fate govern the development of the complex tissues and organs that are ultimately required for restorative function. Bioengineering tools, strategies and design principles represent core components of the stem cell bioengineering toolbox. Applied to the different layers of complexity present in stem-cell-derived systems - from gene regulatory networks in single stem cells to the systemic interactions of stem-cell-derived organs and tissues - stem cell bioengineering can address existing challenges and advance regenerative medicine and cellular therapies.


Subject(s)
Cell Differentiation , Cell Engineering/methods , Gene Regulatory Networks , Regenerative Medicine/methods , Stem Cells/metabolism , Humans , Stem Cells/cytology
4.
Nature ; 553(7689): 515-520, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29342133

ABSTRACT

The transcription factor Myc is essential for the regulation of haematopoietic stem cells and progenitors and has a critical function in haematopoietic malignancies. Here we show that an evolutionarily conserved region located 1.7 megabases downstream of the Myc gene that has previously been labelled as a 'super-enhancer' is essential for the regulation of Myc expression levels in both normal haematopoietic and leukaemic stem cell hierarchies in mice and humans. Deletion of this region in mice leads to a complete loss of Myc expression in haematopoietic stem cells and progenitors. This caused an accumulation of differentiation-arrested multipotent progenitors and loss of myeloid and B cells, mimicking the phenotype caused by Mx1-Cre-mediated conditional deletion of the Myc gene in haematopoietic stem cells. This super-enhancer comprises multiple enhancer modules with selective activity that recruits a compendium of transcription factors, including GFI1b, RUNX1 and MYB. Analysis of mice carrying deletions of individual enhancer modules suggests that specific Myc expression levels throughout most of the haematopoietic hierarchy are controlled by the combinatorial and additive activity of individual enhancer modules, which collectively function as a 'blood enhancer cluster' (BENC). We show that BENC is also essential for the maintenance of MLL-AF9-driven leukaemia in mice. Furthermore, a BENC module, which controls Myc expression in mouse haematopoietic stem cells and progenitors, shows increased chromatin accessibility in human acute myeloid leukaemia stem cells compared to blasts. This difference correlates with MYC expression and patient outcome. We propose that clusters of enhancers, such as BENC, form highly combinatorial systems that allow precise control of gene expression across normal cellular hierarchies and which also can be hijacked in malignancies.


Subject(s)
Enhancer Elements, Genetic/genetics , Gene Expression Regulation , Genes, myc/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Leukemia/genetics , Leukemia/pathology , Multigene Family/genetics , Animals , B-Lymphocytes/cytology , Cell Differentiation , Cell Lineage/genetics , Chromatin/genetics , Chromatin/metabolism , Down-Regulation , Female , Gene Deletion , Hematopoietic Stem Cells/pathology , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Male , Mice , Mice, Inbred C57BL , Multipotent Stem Cells/cytology , Myeloid Cells/cytology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Prognosis , Sequence Deletion , Survival Analysis , Transcription Factors/metabolism
5.
Nature ; 558(7711): E4, 2018 06.
Article in English | MEDLINE | ID: mdl-29769714

ABSTRACT

In the originally published version of this Letter, ref. 43 was erroneously provided twice. In the 'Estimation of relative cell-type-specific composition of AML samples' section in the Methods, the citation to ref. 43 after the GEO dataset GSE24759 is correct. However, in the 'Mice' section of the Methods, the citation to ref. 43 after 'TAMERE' should have been associated with a new reference1. The original Letter has been corrected online (with the new reference included as ref. 49).

6.
Mol Syst Biol ; 18(11): e10886, 2022 11.
Article in English | MEDLINE | ID: mdl-36366891

ABSTRACT

During development, cell state transitions are coordinated through changes in the identity of molecular regulators in a cell type- and dose-specific manner. The ability to rationally engineer such transitions in human pluripotent stem cells (hPSC) will enable numerous applications in regenerative medicine. Herein, we report the generation of synthetic gene circuits that can detect a desired cell state using AND-like logic integration of endogenous miRNAs (classifiers) and, upon detection, produce fine-tuned levels of output proteins using an miRNA-mediated output fine-tuning technology (miSFITs). Specifically, we created an "hPSC ON" circuit using a model-guided miRNA selection and circuit optimization approach. The circuit demonstrates robust PSC-specific detection and graded output protein production. Next, we used an empirical approach to create an "hPSC-Off" circuit. This circuit was applied to regulate the secretion of endogenous BMP4 in a state-specific and fine-tuned manner to control the composition of differentiating hPSCs. Our work provides a platform for customized cell state-specific control of desired physiological factors in hPSC, laying the foundation for programming cell compositions in hPSC-derived tissues and beyond.


Subject(s)
MicroRNAs , Pluripotent Stem Cells , Humans , Genes, Synthetic , Cell Differentiation/genetics , Pluripotent Stem Cells/metabolism , Gene Regulatory Networks , MicroRNAs/genetics , MicroRNAs/metabolism , Proteins/metabolism
7.
PLoS Comput Biol ; 18(2): e1009907, 2022 02.
Article in English | MEDLINE | ID: mdl-35213533

ABSTRACT

The increasing availability of single-cell RNA-sequencing (scRNA-seq) data from various developmental systems provides the opportunity to infer gene regulatory networks (GRNs) directly from data. Herein we describe IQCELL, a platform to infer, simulate, and study executable logical GRNs directly from scRNA-seq data. Such executable GRNs allow simulation of fundamental hypotheses governing developmental programs and help accelerate the design of strategies to control stem cell fate. We first describe the architecture of IQCELL. Next, we apply IQCELL to scRNA-seq datasets from early mouse T-cell and red blood cell development, and show that the platform can infer overall over 74% of causal gene interactions previously reported from decades of research. We will also show that dynamic simulations of the generated GRN qualitatively recapitulate the effects of known gene perturbations. Finally, we implement an IQCELL gene selection pipeline that allows us to identify candidate genes, without prior knowledge. We demonstrate that GRN simulations based on the inferred set yield results similar to the original curated lists. In summary, the IQCELL platform offers a versatile tool to infer, simulate, and study executable GRNs in dynamic biological systems.


Subject(s)
Algorithms , Gene Regulatory Networks , Animals , Computer Simulation , Gene Regulatory Networks/genetics , Mice , RNA-Seq , Single-Cell Analysis/methods , Exome Sequencing
8.
PLoS Biol ; 17(10): e3000081, 2019 10.
Article in English | MEDLINE | ID: mdl-31634368

ABSTRACT

In vitro models of postimplantation human development are valuable to the fields of regenerative medicine and developmental biology. Here, we report characterization of a robust in vitro platform that enabled high-content screening of multiple human pluripotent stem cell (hPSC) lines for their ability to undergo peri-gastrulation-like fate patterning upon bone morphogenetic protein 4 (BMP4) treatment of geometrically confined colonies and observed significant heterogeneity in their differentiation propensities along a gastrulation associable and neuralization associable axis. This cell line-associated heterogeneity was found to be attributable to endogenous Nodal expression, with up-regulation of Nodal correlated with expression of a gastrulation-associated gene profile, and Nodal down-regulation correlated with a preneurulation-associated gene profile expression. We harness this knowledge to establish a platform of preneurulation-like fate patterning in geometrically confined hPSC colonies in which fates arise because of a BMPs signalling gradient conveying positional information. Our work identifies a Nodal signalling-dependent switch in peri-gastrulation versus preneurulation-associated fate patterning in hPSC cells, provides a technology to robustly assay hPSC differentiation outcomes, and suggests conserved mechanisms of organized fate specification in differentiating epiblast and ectodermal tissues.


Subject(s)
Bone Morphogenetic Protein 4/pharmacology , Cell Lineage/drug effects , Gene Expression Regulation, Developmental , Nodal Protein/genetics , Pluripotent Stem Cells/drug effects , Biomechanical Phenomena , Body Patterning/genetics , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 4/metabolism , Cell Culture Techniques , Cell Differentiation/drug effects , Cell Line , Cell Lineage/genetics , Gastrulation/drug effects , Gastrulation/genetics , Gene Expression Profiling , Genetic Heterogeneity , High-Throughput Screening Assays , Humans , Models, Biological , Neurogenesis/drug effects , Neurogenesis/genetics , Nodal Protein/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Signal Transduction , Surface Properties
9.
Nature ; 540(7633): 433-437, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27926740

ABSTRACT

Refractoriness to induction chemotherapy and relapse after achievement of remission are the main obstacles to cure in acute myeloid leukaemia (AML). After standard induction chemotherapy, patients are assigned to different post-remission strategies on the basis of cytogenetic and molecular abnormalities that broadly define adverse, intermediate and favourable risk categories. However, some patients do not respond to induction therapy and another subset will eventually relapse despite the lack of adverse risk factors. There is an urgent need for better biomarkers to identify these high-risk patients before starting induction chemotherapy, to enable testing of alternative induction strategies in clinical trials. The high rate of relapse in AML has been attributed to the persistence of leukaemia stem cells (LSCs), which possess a number of stem cell properties, including quiescence, that are linked to therapy resistance. Here, to develop predictive and/or prognostic biomarkers related to stemness, we generated a list of genes that are differentially expressed between 138 LSC+ and 89 LSC- cell fractions from 78 AML patients validated by xenotransplantation. To extract the core transcriptional components of stemness relevant to clinical outcomes, we performed sparse regression analysis of LSC gene expression against survival in a large training cohort, generating a 17-gene LSC score (LSC17). The LSC17 score was highly prognostic in five independent cohorts comprising patients of diverse AML subtypes (n = 908) and contributed greatly to accurate prediction of initial therapy resistance. Patients with high LSC17 scores had poor outcomes with current treatments including allogeneic stem cell transplantation. The LSC17 score provides clinicians with a rapid and powerful tool to identify AML patients who do not benefit from standard therapy and who should be enrolled in trials evaluating novel upfront or post-remission strategies.


Subject(s)
Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/therapy , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Algorithms , Animals , Cohort Studies , Female , Gene Expression Regulation, Leukemic , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mice , Prognosis , Risk Assessment , Stem Cell Transplantation , Survival Analysis , Transcriptome , Transplantation, Homologous , Treatment Outcome , Xenograft Model Antitumor Assays
10.
Proc Natl Acad Sci U S A ; 116(30): 14823-14828, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31289234

ABSTRACT

Microrobotics extends the reach of human-controlled machines to submillimeter dimensions. We introduce a microrobot that relies on optoelectronic tweezers (OET) that is straightforward to manufacture, can take nearly any desirable shape or form, and can be programmed to carry out sophisticated, multiaxis operations. One particularly useful program is a serial combination of "load," "transport," and "deliver," which can be applied to manipulate a wide range of micrometer-dimension payloads. Importantly, microrobots programmed in this manner are much gentler on fragile mammalian cells than conventional OET techniques. The microrobotic system described here was demonstrated to be useful for single-cell isolation, clonal expansion, RNA sequencing, manipulation within enclosed systems, controlling cell-cell interactions, and isolating precious microtissues from heterogeneous mixtures. We propose that the optoelectronic microrobotic system, which can be implemented using a microscope and consumer-grade optical projector, will be useful for a wide range of applications in the life sciences and beyond.


Subject(s)
Micromanipulation/instrumentation , Robotics/instrumentation , Single-Cell Analysis/instrumentation , Electronics/instrumentation , Electronics/methods , Humans , MCF-7 Cells , Microfluidics/instrumentation , Microfluidics/methods , Micromanipulation/methods , Optical Imaging/instrumentation , Optical Imaging/methods , Robotics/methods , Single-Cell Analysis/methods
11.
Proc Natl Acad Sci U S A ; 115(25): 6369-6374, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29866848

ABSTRACT

The development of cell-based therapies to replace missing or damaged tissues within the body or generate cells with a unique biological activity requires a reliable and accessible source of cells. Human pluripotent stem cells (hPSC) have emerged as a strong candidate cell source capable of extended propagation in vitro and differentiation to clinically relevant cell types. However, the application of hPSC in cell-based therapies requires overcoming yield limitations in large-scale hPSC manufacturing. We explored methods to convert hPSC to alternative states of pluripotency with advantageous bioprocessing properties, identifying a suspension-based small-molecule and cytokine combination that supports increased single-cell survival efficiency, faster growth rates, higher densities, and greater expansion than control hPSC cultures. ERK inhibition was found to be essential for conversion to this altered state, but once converted, ERK inhibition led to a loss of pluripotent phenotype in suspension. The resulting suspension medium formulation enabled hPSC suspension yields 5.7 ± 0.2-fold greater than conventional hPSC in 6 d, for at least five passages. Treated cells remained pluripotent, karyotypically normal, and capable of differentiating into all germ layers. Treated cells could also be integrated into directed differentiated strategies as demonstrated by the generation of pancreatic progenitors (NKX6.1+/PDX1+ cells). Enhanced suspension-yield hPSC displayed higher oxidative metabolism and altered expression of adhesion-related genes. The enhanced bioprocess properties of this alternative pluripotent state provide a strategy to overcome cell manufacturing limitations of hPSC.


Subject(s)
Pluripotent Stem Cells/cytology , Bioreactors , Cell Culture Techniques/methods , Cell Differentiation/drug effects , Cell Line , Cytokines/pharmacology , Germ Layers/cytology , Germ Layers/drug effects , Humans , Pluripotent Stem Cells/drug effects , Small Molecule Libraries/pharmacology
12.
Development ; 144(23): 4298-4312, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28870989

ABSTRACT

How position-dependent cell fate acquisition occurs during embryogenesis is a central question in developmental biology. To study this process, we developed a defined, high-throughput assay to induce peri-gastrulation-associated patterning in geometrically confined human pluripotent stem cell (hPSC) colonies. We observed that, upon BMP4 treatment, phosphorylated SMAD1 (pSMAD1) activity in the colonies organized into a radial gradient. We developed a reaction-diffusion (RD)-based computational model and observed that the self-organization of pSMAD1 signaling was consistent with the RD principle. Consequent fate acquisition occurred as a function of both pSMAD1 signaling strength and duration of induction, consistent with the positional-information (PI) paradigm. We propose that the self-organized peri-gastrulation-like fate patterning in BMP4-treated geometrically confined hPSC colonies arises via a stepwise model of RD followed by PI. This two-step model predicted experimental responses to perturbations of key parameters such as colony size and BMP4 dose. Furthermore, it also predicted experimental conditions that resulted in RD-like periodic patterning in large hPSC colonies, and rescued peri-gastrulation-like patterning in colony sizes previously thought to be reticent to this behavior.


Subject(s)
Body Patterning/physiology , Gastrulation/physiology , Models, Biological , Body Patterning/genetics , Bone Morphogenetic Protein 4/physiology , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/genetics , Carrier Proteins/physiology , Cell Differentiation/physiology , Cells, Cultured , Colony-Forming Units Assay/methods , Gastrulation/genetics , High-Throughput Screening Assays/methods , Humans , Nodal Protein/physiology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/physiology , RNA, Small Interfering/genetics , Signal Transduction , Smad1 Protein/physiology
13.
Nat Methods ; 14(5): 531-538, 2017 May.
Article in English | MEDLINE | ID: mdl-28394335

ABSTRACT

The molecular and cellular signals that guide T-cell development from hematopoietic stem and progenitor cells (HSPCs) remain poorly understood. The thymic microenvironment integrates multiple niche molecules to potentiate T-cell development in vivo. Recapitulating these signals in vitro in a stromal cell-free system has been challenging and limits T-cell generation technologies. Here, we describe a fully defined engineered in vitro niche capable of guiding T-lineage development from HSPCs. Synergistic interactions between Notch ligand Delta-like 4 and vascular cell adhesion molecule 1 (VCAM-1) were leveraged to enhance Notch signaling and progenitor T-cell differentiation rates. The engineered thymus-like niche enables in vitro production of mouse Sca-1+cKit+ and human CD34+ HSPC-derived CD7+ progenitor T-cells capable of in vivo thymus colonization and maturation into cytokine-producing CD3+ T-cells. This engineered thymic-like niche provides a platform for in vitro analysis of human T-cell development as well as clinical-scale cell production for future development of immunotherapeutic applications.


Subject(s)
Cell Differentiation , Hematopoietic Stem Cells/cytology , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , T-Lymphocytes/cytology , Vascular Cell Adhesion Molecule-1/metabolism , Biotechnology/methods , CD3 Complex/immunology , Hematopoietic Stem Cells/immunology , Humans , Signal Transduction , T-Lymphocytes/immunology , Thymus Gland/cytology , Thymus Gland/immunology
14.
PLoS Comput Biol ; 15(1): e1006384, 2019 01.
Article in English | MEDLINE | ID: mdl-30601802

ABSTRACT

A growing body of evidence highlights the importance of the cellular microenvironment as a regulator of phenotypic and functional cellular responses to perturbations. We have previously developed cell patterning techniques to control population context parameters, and here we demonstrate context-explorer (CE), a software tool to improve investigation cell fate acquisitions through community level analyses. We demonstrate the capabilities of CE in the analysis of human and mouse pluripotent stem cells (hPSCs, mPSCs) patterned in colonies of defined geometries in multi-well plates. CE employs a density-based clustering algorithm to identify cell colonies. Using this automatic colony classification methodology, we reach accuracies comparable to manual colony counts in a fraction of the time, both in micropatterned and unpatterned wells. Classifying cells according to their relative position within a colony enables statistical analysis of spatial organization in protein expression within colonies. When applied to colonies of hPSCs, our analysis reveals a radial gradient in the expression of the transcription factors SOX2 and OCT4. We extend these analyses to colonies of different sizes and shapes and demonstrate how the metrics derived by CE can be used to asses the patterning fidelity of micropatterned plates. We have incorporated a number of features to enhance the usability and utility of CE. To appeal to a broad scientific community, all of the software's functionality is accessible from a graphical user interface, and convenience functions for several common data operations are included. CE is compatible with existing image analysis programs such as CellProfiler and extends the analytical capabilities already provided by these tools. Taken together, CE facilitates investigation of spatially heterogeneous cell populations for fundamental research and drug development validation programs.


Subject(s)
Cellular Microenvironment/physiology , Cytological Techniques/methods , Image Processing, Computer-Assisted/methods , Proteins/metabolism , Software , Algorithms , Animals , Cells, Cultured , Computational Biology , High-Throughput Screening Assays , Humans , Mice , Pluripotent Stem Cells/cytology , Proteins/analysis , Proteins/chemistry
15.
Nature ; 516(7530): 198-206, 2014 Dec 11.
Article in English | MEDLINE | ID: mdl-25503233

ABSTRACT

Somatic cell reprogramming to a pluripotent state continues to challenge many of our assumptions about cellular specification, and despite major efforts, we lack a complete molecular characterization of the reprograming process. To address this gap in knowledge, we generated extensive transcriptomic, epigenomic and proteomic data sets describing the reprogramming routes leading from mouse embryonic fibroblasts to induced pluripotency. Through integrative analysis, we reveal that cells transition through distinct gene expression and epigenetic signatures and bifurcate towards reprogramming transgene-dependent and -independent stable pluripotent states. Early transcriptional events, driven by high levels of reprogramming transcription factor expression, are associated with widespread loss of histone H3 lysine 27 (H3K27me3) trimethylation, representing a general opening of the chromatin state. Maintenance of high transgene levels leads to re-acquisition of H3K27me3 and a stable pluripotent state that is alternative to the embryonic stem cell (ESC)-like fate. Lowering transgene levels at an intermediate phase, however, guides the process to the acquisition of ESC-like chromatin and DNA methylation signature. Our data provide a comprehensive molecular description of the reprogramming routes and is accessible through the Project Grandiose portal at http://www.stemformatics.org.


Subject(s)
Cellular Reprogramming/genetics , Genome/genetics , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Animals , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly , DNA Methylation , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Epistasis, Genetic/genetics , Fibroblasts/cytology , Fibroblasts/metabolism , Histones/chemistry , Histones/metabolism , Internet , Mice , Proteome/genetics , Proteomics , RNA, Long Noncoding/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic/genetics , Transcriptome/genetics , Transgenes/genetics
16.
Mol Syst Biol ; 14(1): e7952, 2018 01 29.
Article in English | MEDLINE | ID: mdl-29378814

ABSTRACT

Pluripotent stem cells (PSCs) exist in multiple stable states, each with specific cellular properties and molecular signatures. The mechanisms that maintain pluripotency, or that cause its destabilization to initiate development, are complex and incompletely understood. We have developed a model to predict stabilized PSC gene regulatory network (GRN) states in response to input signals. Our strategy used random asynchronous Boolean simulations (R-ABS) to simulate single-cell fate transitions and strongly connected components (SCCs) strategy to represent population heterogeneity. This framework was applied to a reverse-engineered and curated core GRN for mouse embryonic stem cells (mESCs) and used to simulate cellular responses to combinations of five signaling pathways. Our simulations predicted experimentally verified cell population compositions and input signal combinations controlling specific cell fate transitions. Extending the model to PSC differentiation, we predicted a combination of signaling activators and inhibitors that efficiently and robustly generated a Cdx2+Oct4- cells from naïve mESCs. Overall, this platform provides new strategies to simulate cell fate transitions and the heterogeneity that typically occurs during development and differentiation.


Subject(s)
Gene Regulatory Networks , Mouse Embryonic Stem Cells/cytology , Pluripotent Stem Cells/cytology , Single-Cell Analysis/methods , Animals , Cell Differentiation , Cell Line , Gene Expression Profiling , Mice , Mouse Embryonic Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Reverse Genetics , Sequence Analysis, RNA , Signal Transduction , Systems Biology/methods
17.
Blood ; 129(3): 307-318, 2017 Jan 19.
Article in English | MEDLINE | ID: mdl-27827829

ABSTRACT

Several growth factors (GFs) that together promote quiescent human hematopoietic stem cell (HSC) expansion ex vivo have been identified; however, the molecular mechanisms by which these GFs regulate the survival, proliferation. and differentiation of human HSCs remain poorly understood. We now describe experiments in which we used mass cytometry to simultaneously measure multiple surface markers, transcription factors, active signaling intermediates, viability, and cell-cycle indicators in single CD34+ cord blood cells before and up to 2 hours after their stimulation with stem cell factor, Fms-like tyrosine kinase 3 ligand, interleukin-3, interleukin-6, and granulocyte colony-stimulating factor (5 GFs) either alone or combined. Cells with a CD34+CD38-CD45RA-CD90+CD49f+ (CD49f+) phenotype (∼10% HSCs with >6-month repopulating activity in immunodeficient mice) displayed rapid increases in activated STAT1/3/5, extracellular signal-regulated kinase 1/2, AKT, CREB, and S6 by 1 or more of these GFs, and ß-catenin only when the 5 GFs were combined. Certain minority subsets within the CD49f+ compartment were poorly GF-responsive and, among the more GF-responsive subsets of CD49f+ cells, different signaling intermediates correlated with the levels of the myeloid- and lymphoid-associated transcription factors measured. Phenotypically similar, but CD90-CD49f- cells (MPPs) contained lower baseline levels of multiple signaling intermediates than the CD90+CD49f+ cells, but showed similar response amplitudes to the same GFs. Importantly, we found activation or inhibition of AKT and ß-catenin directly altered immediate CD49f+ cell survival and proliferation. These findings identify rapid signaling events that 5 GFs elicit directly in the most primitive human hematopoietic cell types to promote their survival and proliferation.


Subject(s)
Hematopoietic Stem Cells/cytology , Signal Transduction/physiology , Animals , Cell Proliferation , Cell Survival , Humans , Immunophenotyping , Intercellular Signaling Peptides and Proteins , Mice , Transcription Factors
18.
Development ; 142(13): 2230-6, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26130754

ABSTRACT

Leukemia inhibitory factor (LIF) is a member of the interleukin-6 (IL-6) cytokine family. All members of this family activate signal transducer and activator of transcription 3 (STAT3), a transcription factor that influences stem and progenitor cell identity, proliferation and cytoprotection. The role of LIF in development was first identified when LIF was demonstrated to support the propagation of mouse embryonic stem cells. Subsequent studies of mice deficient for components of the LIF pathway have revealed important roles for LIF signaling during development and homeostasis. Here and in the accompanying poster, we provide a broad overview of JAK-STAT signaling during development, with a specific focus on LIF-mediated JAK-STAT3 activation.


Subject(s)
Embryonic Development , Leukemia Inhibitory Factor/metabolism , Signal Transduction , Animals , Humans , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Stem Cells/cytology , Stem Cells/metabolism
19.
Small ; 14(45): e1803342, 2018 11.
Article in English | MEDLINE | ID: mdl-30307718

ABSTRACT

Optical micromanipulation has become popular for a wide range of applications. In this work, a new type of optical micromanipulation platform, patterned optoelectronic tweezers (p-OET), is introduced. In p-OET devices, the photoconductive layer (that is continuous in a conventional OET device) is patterned, forming regions in which the electrode layer is locally exposed. It is demonstrated that micropatterns in the photoconductive layer are useful for repelling unwanted particles/cells, and also for keeping selected particles/cells in place after turning off the light source, minimizing light-induced heating. To clarify the physical mechanism behind these effects, systematic simulations are carried out, which indicate the existence of strong nonuniform electric fields at the boundary of micropatterns. The simulations are consistent with experimental observations, which are explored for a wide variety of geometries and conditions. It is proposed that the new technique may be useful for myriad applications in the rapidly growing area of optical micromanipulation.


Subject(s)
Micromanipulation/methods , Optical Tweezers , Animals , Cell Separation , Humans
20.
Biotechnol Bioeng ; 115(8): 2061-2066, 2018 08.
Article in English | MEDLINE | ID: mdl-29679475

ABSTRACT

Heterogeneity in pluripotent stem cell (PSC) aggregation leads to variability in mass transfer and signaling gradients between aggregates, which results in heterogeneous differentiation and therefore variability in product quality and yield. We have characterized a chemical-based method to control aggregate size within a specific, tunable range with low heterogeneity, thereby reducing process variability in PSC expansion. This method enables controlled, scalable, stirred suspension-based manufacturing of PSC cultures that are critical for the translation of regenerative medicine strategies to clinical products.


Subject(s)
Biotechnology/methods , Cell Aggregation , Cytological Techniques/methods , Pluripotent Stem Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL