Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(52): e2300842120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38127979

ABSTRACT

Normal and pathologic neurobiological processes influence brain morphology in coordinated ways that give rise to patterns of structural covariance (PSC) across brain regions and individuals during brain aging and diseases. The genetic underpinnings of these patterns remain largely unknown. We apply a stochastic multivariate factorization method to a diverse population of 50,699 individuals (12 studies and 130 sites) and derive data-driven, multi-scale PSCs of regional brain size. PSCs were significantly correlated with 915 genomic loci in the discovery set, 617 of which are newly identified, and 72% were independently replicated. Key pathways influencing PSCs involve reelin signaling, apoptosis, neurogenesis, and appendage development, while pathways of breast cancer indicate potential interplays between brain metastasis and PSCs associated with neurodegeneration and dementia. Using support vector machines, multi-scale PSCs effectively derive imaging signatures of several brain diseases. Our results elucidate genetic and biological underpinnings that influence structural covariance patterns in the human brain.


Subject(s)
Brain Neoplasms , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Brain/pathology , Brain Mapping/methods , Genomics , Brain Neoplasms/pathology
2.
Mol Psychiatry ; 28(5): 2008-2017, 2023 05.
Article in English | MEDLINE | ID: mdl-37147389

ABSTRACT

Using machine learning, we recently decomposed the neuroanatomical heterogeneity of established schizophrenia to discover two volumetric subgroups-a 'lower brain volume' subgroup (SG1) and an 'higher striatal volume' subgroup (SG2) with otherwise normal brain structure. In this study, we investigated whether the MRI signatures of these subgroups were also already present at the time of the first-episode of psychosis (FEP) and whether they were related to clinical presentation and clinical remission over 1-, 3-, and 5-years. We included 572 FEP and 424 healthy controls (HC) from 4 sites (Sao Paulo, Santander, London, Melbourne) of the PHENOM consortium. Our prior MRI subgrouping models (671 participants; USA, Germany, and China) were applied to both FEP and HC. Participants were assigned into 1 of 4 categories: subgroup 1 (SG1), subgroup 2 (SG2), no subgroup membership ('None'), and mixed SG1 + SG2 subgroups ('Mixed'). Voxel-wise analyses characterized SG1 and SG2 subgroups. Supervised machine learning analyses characterized baseline and remission signatures related to SG1 and SG2 membership. The two dominant patterns of 'lower brain volume' in SG1 and 'higher striatal volume' (with otherwise normal neuromorphology) in SG2 were identified already at the first episode of psychosis. SG1 had a significantly higher proportion of FEP (32%) vs. HC (19%) than SG2 (FEP, 21%; HC, 23%). Clinical multivariate signatures separated the SG1 and SG2 subgroups (balanced accuracy = 64%; p < 0.0001), with SG2 showing higher education but also greater positive psychosis symptoms at first presentation, and an association with symptom remission at 1-year, 5-year, and when timepoints were combined. Neuromorphological subtypes of schizophrenia are already evident at illness onset, separated by distinct clinical presentations, and differentially associated with subsequent remission. These results suggest that the subgroups may be underlying risk phenotypes that could be targeted in future treatment trials and are critical to consider when interpreting neuroimaging literature.


Subject(s)
Psychotic Disorders , Schizophrenia , Humans , Brazil , Brain/diagnostic imaging , Magnetic Resonance Imaging
3.
Brain ; 143(3): 1027-1038, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32103250

ABSTRACT

Neurobiological heterogeneity in schizophrenia is poorly understood and confounds current analyses. We investigated neuroanatomical subtypes in a multi-institutional multi-ethnic cohort, using novel semi-supervised machine learning methods designed to discover patterns associated with disease rather than normal anatomical variation. Structural MRI and clinical measures in established schizophrenia (n = 307) and healthy controls (n = 364) were analysed across three sites of PHENOM (Psychosis Heterogeneity Evaluated via Dimensional Neuroimaging) consortium. Regional volumetric measures of grey matter, white matter, and CSF were used to identify distinct and reproducible neuroanatomical subtypes of schizophrenia. Two distinct neuroanatomical subtypes were found. Subtype 1 showed widespread lower grey matter volumes, most prominent in thalamus, nucleus accumbens, medial temporal, medial prefrontal/frontal and insular cortices. Subtype 2 showed increased volume in the basal ganglia and internal capsule, and otherwise normal brain volumes. Grey matter volume correlated negatively with illness duration in Subtype 1 (r = -0.201, P = 0.016) but not in Subtype 2 (r = -0.045, P = 0.652), potentially indicating different underlying neuropathological processes. The subtypes did not differ in age (t = -1.603, df = 305, P = 0.109), sex (chi-square = 0.013, df = 1, P = 0.910), illness duration (t = -0.167, df = 277, P = 0.868), antipsychotic dose (t = -0.439, df = 210, P = 0.521), age of illness onset (t = -1.355, df = 277, P = 0.177), positive symptoms (t = 0.249, df = 289, P = 0.803), negative symptoms (t = 0.151, df = 289, P = 0.879), or antipsychotic type (chi-square = 6.670, df = 3, P = 0.083). Subtype 1 had lower educational attainment than Subtype 2 (chi-square = 6.389, df = 2, P = 0.041). In conclusion, we discovered two distinct and highly reproducible neuroanatomical subtypes. Subtype 1 displayed widespread volume reduction correlating with illness duration, and worse premorbid functioning. Subtype 2 had normal and stable anatomy, except for larger basal ganglia and internal capsule, not explained by antipsychotic dose. These subtypes challenge the notion that brain volume loss is a general feature of schizophrenia and suggest differential aetiologies. They can facilitate strategies for clinical trial enrichment and stratification, and precision diagnostics.


Subject(s)
Gray Matter/pathology , Machine Learning , Schizophrenia/classification , Schizophrenia/pathology , White Matter/pathology , Adult , Atrophy/pathology , Brain/pathology , Case-Control Studies , Educational Status , Female , Humans , Hypertrophy/pathology , Magnetic Resonance Imaging , Male , Neuroimaging , Schizophrenia/cerebrospinal fluid , Young Adult
4.
Neuroimage ; 145(Pt B): 246-253, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27421184

ABSTRACT

Structural Magnetic Resonance Imaging (MRI) studies have attempted to use brain measures obtained at the first-episode of psychosis to predict subsequent outcome, with inconsistent results. Thus, there is a real need to validate the utility of brain measures in the prediction of outcome using large datasets, from independent samples, obtained with different protocols and from different MRI scanners. This study had three main aims: 1) to investigate whether structural MRI data from multiple centers can be combined to create a machine-learning model able to predict a strong biological variable like sex; 2) to replicate our previous finding that an MRI scan obtained at first episode significantly predicts subsequent illness course in other independent datasets; and finally, 3) to test whether these datasets can be combined to generate multicenter models with better accuracy in the prediction of illness course. The multi-center sample included brain structural MRI scans from 256 males and 133 females patients with first episode psychosis, acquired in five centers: University Medical Center Utrecht (The Netherlands) (n=67); Institute of Psychiatry, Psychology and Neuroscience, London (United Kingdom) (n=97); University of São Paulo (Brazil) (n=64); University of Cantabria, Santander (Spain) (n=107); and University of Melbourne (Australia) (n=54). All images were acquired on 1.5-Tesla scanners and all centers provided information on illness course during a follow-up period ranging 3 to 7years. We only included in the analyses of outcome prediction patients for whom illness course was categorized as either "continuous" (n=94) or "remitting" (n=118). Using structural brain scans from all centers, sex was predicted with significant accuracy (89%; p<0.001). In the single- or multi-center models, illness course could not be predicted with significant accuracy. However, when reducing heterogeneity by restricting the analyses to male patients only, classification accuracy improved in some samples. This study provides proof of concept that combining multi-center MRI data to create a well performing classification model is possible. However, to create complex multi-center models that perform accurately, each center should contribute a sample either large or homogeneous enough to first allow accurate classification within the single-center.


Subject(s)
Datasets as Topic , Disease Progression , Magnetic Resonance Imaging/methods , Multicenter Studies as Topic , Psychotic Disorders/diagnostic imaging , Adult , Female , Follow-Up Studies , Humans , Male , Proof of Concept Study , Sex Factors , Young Adult
5.
J Clin Psychopharmacol ; 37(1): 40-45, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27902528

ABSTRACT

OBJECTIVE: Mitochondrial dysfunction and energy metabolism impairment are key components in the pathophysiology of bipolar disorder (BD) and may involve a shift from aerobic to anaerobic metabolism. Measurement of brain lactate in vivo using proton magnetic resonance spectroscopy (H-MRS) represents an important tool to evaluate mitochondrial and metabolic dysfunction during mood episodes, as well as to monitor treatment response. To date, very few studies have quantified brain lactate in BD. In addition, no study has longitudinally evaluated lactate using H-MRS during depressive episodes or its association with mood stabilizer therapy. This study aimed to evaluate cingulate cortex (CC) lactate using 3-T H-MRS during acute depressive episodes in BD and the possible effects induced by lithium monotherapy. METHODS: Twenty medication-free outpatients with short length of BD (80% drug-naive) in a current major depressive episode were matched with control subjects. Patients were treated for 6 weeks with lithium monotherapy at therapeutic doses in an open-label trial (blood level, 0.48 ± 0.19 mmol/L). Cingulate cortex lactate was measured before (week 0) and after lithium therapy (week 6) using H-MRS. Antidepressant efficacy was assessed with the 21-item Hamilton Depression Rating Scale as the primary outcome. RESULTS: Subjects with BD depression showed a significantly higher CC lactate in comparison to control subjects. Furthermore, a significant decrease in CC lactate was observed after 6 weeks of lithium treatment compared with baseline (P = 0.002). CC Lactate levels was associated with family history of mood disorders and plasma lithium levels. CONCLUSIONS: This is the first report of increased CC lactate in patients with bipolar depression and lower levels after lithium monotherapy for 6 weeks. These findings indicate a shift to anaerobic metabolism and a role for lactate as a state marker during mood episodes. Energy and redox dysfunction may represent key targets for lithium's therapeutic actions.


Subject(s)
Antidepressive Agents/pharmacology , Bipolar Disorder/drug therapy , Bipolar Disorder/metabolism , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/metabolism , Gyrus Cinguli/metabolism , Lactates/metabolism , Lithium Compounds/pharmacology , Adult , Antidepressive Agents/blood , Female , Gyrus Cinguli/drug effects , Humans , Lithium Compounds/blood , Male , Proton Magnetic Resonance Spectroscopy , Young Adult
6.
Hum Psychopharmacol ; 30(1): 52-6, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25572309

ABSTRACT

OBJECTIVE: TNF system (TNF and its soluble receptors sTNFR1 and 2) has been investigated as a potential molecular target in bipolar disorder. The aim of the study was to compare plasma levels of these receptors in unmedicated bipolar depressed patients compared with healthy controls, and to evaluate the effects of a 6-week lithium treatment on sTNFR1 and sTNFR2 levels. METHODS: The study enrolled 29 patients with unmedicated bipolar disorder in a major depressive episode and 27 matched controls. Patients had blood collected at baseline and after 6 weeks of lithium treatment. The concentration of sTNFRs was measured by ELISA. RESULTS: sTNFR1 and sTNFR2 levels were significantly increased in bipolar depression in comparison with healthy subjects. Lithium treatment did not significantly change sTNFR1 and sTNFR2 levels from baseline to endpoint. There was no correlation between improvement in depressive symptoms and the change in sTNFR1 or sTNFR1 levels. CONCLUSION: These results reinforce the involvement of an activated immune response system in the pathophysiology of bipolar disorder, with no impact of lithium treatment on the related biomarkers.


Subject(s)
Bipolar Disorder/blood , Bipolar Disorder/drug therapy , Lithium Carbonate/therapeutic use , Receptors, Tumor Necrosis Factor, Type II/blood , Receptors, Tumor Necrosis Factor, Type I/blood , Adult , Case-Control Studies , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Phlebotomy , Psychiatric Status Rating Scales , Statistics, Nonparametric , Young Adult
7.
Int J Neuropsychopharmacol ; 18(6)2014 Oct 31.
Article in English | MEDLINE | ID: mdl-25522399

ABSTRACT

BACKGROUND: The hippocampus has been highly implicated in the pathophysiology of bipolar disorder (BD). Nevertheless, no study has longitudinally evaluated hippocampal metabolite levels in bipolar depression under treatment with lithium. METHODS: Nineteen medication-free BD patients (78.9% treatment-naïve and 73.7% with BD type II) presenting an acute depressive episode and 17 healthy controls were studied. Patients were treated for 6 weeks with lithium in an open-label trial. N-acetyl aspartate (NAA), creatine, choline, myo-Inositol, and glutamate levels were assessed in the left hippocampus before (week 0) and after (week 6) lithium treatment using 3T proton magnetic resonance spectroscopy (1H-MRS). The metabolite concentrations were estimated using internal water as reference and voxel segmentation for partial volume correction. RESULTS: At baseline, acutely depressed BD patients and healthy controls exhibited similar hippocampal metabolites concentrations, with no changes after 6 weeks of lithium monotherapy. A significant correlation between antidepressant efficacy and increases in NAA concentration over time was observed. Also, there was a significant positive correlation between the changes in glutamate concentrations over follow-up and plasma lithium levels at endpoint. Mixed effects model analysis revealed a bimodal effect of lithium plasma levels in hippocampal glutamate concentrations: levels of 0.2 to 0.49 mmol/L (n=9) were associated with a decrease in glutamate concentrations, whereas the subgroup of BD subjects with "standard" lithium levels (≥ 0.50 mmol/L; n = 10) showed an overall increase in glutamate concentrations over time. CONCLUSIONS: These preliminary results suggest that lithium has a bimodal action in hippocampal glutamate concentration depending on the plasma levels.


Subject(s)
Antimanic Agents/therapeutic use , Bipolar Disorder/drug therapy , Glutamic Acid/drug effects , Hippocampus/drug effects , Lithium Compounds/therapeutic use , Adolescent , Adult , Affect/drug effects , Antimanic Agents/blood , Bipolar Disorder/blood , Bipolar Disorder/diagnosis , Bipolar Disorder/psychology , Brazil , Drug Monitoring , Female , Hippocampus/metabolism , Humans , Lithium Compounds/blood , Male , Pilot Projects , Proton Magnetic Resonance Spectroscopy , Time Factors , Treatment Outcome , Young Adult
8.
Schizophr Res ; 257: 5-18, 2023 07.
Article in English | MEDLINE | ID: mdl-37230043

ABSTRACT

OBJECTIVES: Schizophrenia-related psychosis is associated with abnormalities in white matter (WM) microstructure and structural brain dysconnectivity. However, the pathological process underlying such changes is unknown. We sought to investigate the potential association between peripheral cytokine levels and WM microstructure during the acute phase of first-episode psychosis (FEP) in a cohort of drug-naïve patients. METHODS: Twenty-five non-affective FEP patients and 69 healthy controls underwent MRI scanning and blood collection at study entry. After achieving clinical remission, 21 FEP were reassessed; 38 age and biological sex-matched controls also had a second assessment. We measured fractional anisotropy (FA) of selected WM regions-of-interest (ROIs) and plasma levels of four cytokines (IL-6, IL-10, IFN-γ, and TNF-α). RESULTS: At baseline (acute psychosis), the FEP group showed reduced FA relative to controls in half the examined ROIs. Within the FEP group, IL-6 levels were negatively correlated with FA values. Longitudinally, patients showed increments of FA in several ROIs affected at baseline, and such changes were associated with reductions in IL-6 levels. CONCLUSIONS: A state-dependent process involving an interplay between a pro-inflammatory cytokine and brain WM might be associated with the clinical manifestation of FEP. This association suggests a deleterious effect of IL-6 on WM tracts during the acute phase of psychosis.


Subject(s)
Psychotic Disorders , White Matter , Humans , White Matter/pathology , Cytokines , Longitudinal Studies , Interleukin-6 , Diffusion Tensor Imaging , Brain/pathology , Anisotropy
9.
JAMA Psychiatry ; 80(5): 498-507, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37017948

ABSTRACT

Importance: Autism spectrum disorder (ASD) is associated with significant clinical, neuroanatomical, and genetic heterogeneity that limits precision diagnostics and treatment. Objective: To assess distinct neuroanatomical dimensions of ASD using novel semisupervised machine learning methods and to test whether the dimensions can serve as endophenotypes also in non-ASD populations. Design, Setting, and Participants: This cross-sectional study used imaging data from the publicly available Autism Brain Imaging Data Exchange (ABIDE) repositories as the discovery cohort. The ABIDE sample included individuals diagnosed with ASD aged between 16 and 64 years and age- and sex-match typically developing individuals. Validation cohorts included individuals with schizophrenia from the Psychosis Heterogeneity Evaluated via Dimensional Neuroimaging (PHENOM) consortium and individuals from the UK Biobank to represent the general population. The multisite discovery cohort included 16 internationally distributed imaging sites. Analyses were performed between March 2021 and March 2022. Main Outcomes and Measures: The trained semisupervised heterogeneity through discriminative analysis models were tested for reproducibility using extensive cross-validations. It was then applied to individuals from the PHENOM and the UK Biobank. It was hypothesized that neuroanatomical dimensions of ASD would display distinct clinical and genetic profiles and would be prominent also in non-ASD populations. Results: Heterogeneity through discriminative analysis models trained on T1-weighted brain magnetic resonance images of 307 individuals with ASD (mean [SD] age, 25.4 [9.8] years; 273 [88.9%] male) and 362 typically developing control individuals (mean [SD] age, 25.8 [8.9] years; 309 [85.4%] male) revealed that a 3-dimensional scheme was optimal to capture the ASD neuroanatomy. The first dimension (A1: aginglike) was associated with smaller brain volume, lower cognitive function, and aging-related genetic variants (FOXO3; Z = 4.65; P = 1.62 × 10-6). The second dimension (A2: schizophrenialike) was characterized by enlarged subcortical volumes, antipsychotic medication use (Cohen d = 0.65; false discovery rate-adjusted P = .048), partially overlapping genetic, neuroanatomical characteristics to schizophrenia (n = 307), and significant genetic heritability estimates in the general population (n = 14 786; mean [SD] h2, 0.71 [0.04]; P < 1 × 10-4). The third dimension (A3: typical ASD) was distinguished by enlarged cortical volumes, high nonverbal cognitive performance, and biological pathways implicating brain development and abnormal apoptosis (mean [SD] ß, 0.83 [0.02]; P = 4.22 × 10-6). Conclusions and Relevance: This cross-sectional study discovered 3-dimensional endophenotypic representation that may elucidate the heterogeneous neurobiological underpinnings of ASD to support precision diagnostics. The significant correspondence between A2 and schizophrenia indicates a possibility of identifying common biological mechanisms across the 2 mental health diagnoses.


Subject(s)
Autism Spectrum Disorder , Schizophrenia , Humans , Male , Adolescent , Young Adult , Adult , Middle Aged , Female , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Schizophrenia/diagnostic imaging , Schizophrenia/genetics , Schizophrenia/pathology , Endophenotypes , Cross-Sectional Studies , Reproducibility of Results , Neuroanatomy , Brain , Magnetic Resonance Imaging/methods
10.
Psychiatry Res Neuroimaging ; 324: 111494, 2022 08.
Article in English | MEDLINE | ID: mdl-35640450

ABSTRACT

Bipolar disorder (BD) is a highly variable and burdensome disease for patients and caregivers. A BD diagnosis almost triples the likelihood of developing dementia as the disease progresses. Neurocognitive reserve appears to be one of the most important influences on lifelong functional outcomes and quality of life in BD. Though several prior studies have assessed the effects of lithium on regional gray and white matter volumes in this population, representative cohorts are typically middle-aged, have a more severe pathology, and are not as commonly assessed in the depressive phase (which represents the majority of most patients' lifespans outside of remission). Here we have shown that positive adaptations with lithium can be observed throughout the brain after only six weeks of monotherapy at low-therapeutic serum levels. Importantly, these results remove some confounders seen in prior studies (patients were treatment free at time of enrollment and mostly treatment naïve). This cohort also includes underrepresented demographics in the literature (young adult patients, mostly bipolar II, and exclusively in the depressed phase). These findings bolster the extensive body of evidence in support of long-term lithium therapy in BD, furthering the possibility of its expanded use to wider demographics.


Subject(s)
Bipolar Disorder , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/drug therapy , Humans , Lithium/therapeutic use , Lithium Compounds/pharmacology , Lithium Compounds/therapeutic use , Magnetic Resonance Imaging/methods , Middle Aged , Quality of Life , Young Adult
11.
J Affect Disord ; 308: 71-75, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35427708

ABSTRACT

BACKGROUND: Comorbid anxiety is pervasive and carries an immense psychosocial burden for patients with bipolar disorder. Despite this, trials reporting anxiety-related outcomes in this population are uncommon, particularly with regards to monotherapies. METHODS: Patients (n = 31) with both bipolar I or II disorder in current depressive episodes were enrolled in a six-week, open-label, single-center trial assessing the efficacy of lithium monotherapy in treating symptoms depression and comorbid anxiety. Patients were mostly medication-free and lithium-naïve at baseline. RESULTS: Significant improvements in depression (HAMD) and anxiety (HAM-A) were observed at the six-week endpoint, with remission and response rates greater than 50%. There was a positive correlation between endpoint HAM-A scores and HAM-D scores, r = 0.80, (p < 0.01). Improvements were realized at low serum lithium concentrations (0.49 ± 0.20 mEq/L). LIMITATIONS: Lack of placebo control and small sample size warrants validation in larger randomized studies. CONCLUSIONS: Taken in the context of prior evidence, lithium may have an important role in treating comorbid anxiety in bipolar disorder, both as adjunct and monotherapy. Lower doses of lithium may provide equivalent efficacy and enhance tolerability and compliance.


Subject(s)
Bipolar Disorder , Anxiety/complications , Anxiety/drug therapy , Anxiety/epidemiology , Bipolar Disorder/complications , Bipolar Disorder/drug therapy , Bipolar Disorder/epidemiology , Diagnostic and Statistical Manual of Mental Disorders , Double-Blind Method , Humans , Lithium/therapeutic use , Lithium Compounds/therapeutic use , Treatment Outcome
12.
Am J Psychiatry ; 179(9): 650-660, 2022 09.
Article in English | MEDLINE | ID: mdl-35410495

ABSTRACT

OBJECTIVE: The prevalence and significance of schizophrenia-related phenotypes at the population level is debated in the literature. Here, the authors assessed whether two recently reported neuroanatomical signatures of schizophrenia-signature 1, with widespread reduction of gray matter volume, and signature 2, with increased striatal volume-could be replicated in an independent schizophrenia sample, and investigated whether expression of these signatures can be detected at the population level and how they relate to cognition, psychosis spectrum symptoms, and schizophrenia genetic risk. METHODS: This cross-sectional study used an independent schizophrenia-control sample (N=347; ages 16-57 years) for replication of imaging signatures, and then examined two independent population-level data sets: typically developing youths and youths with psychosis spectrum symptoms in the Philadelphia Neurodevelopmental Cohort (N=359; ages 16-23 years) and adults in the UK Biobank study (N=836; ages 44-50 years). The authors quantified signature expression using support-vector machine learning and compared cognition, psychopathology, and polygenic risk between signatures. RESULTS: Two neuroanatomical signatures of schizophrenia were replicated. Signature 1 but not signature 2 was significantly more common in youths with psychosis spectrum symptoms than in typically developing youths, whereas signature 2 frequency was similar in the two groups. In both youths and adults, signature 1 was associated with worse cognitive performance than signature 2. Compared with adults with neither signature, adults expressing signature 1 had elevated schizophrenia polygenic risk scores, but this was not seen for signature 2. CONCLUSIONS: The authors successfully replicated two neuroanatomical signatures of schizophrenia and describe their prevalence in population-based samples of youths and adults. They further demonstrated distinct relationships of these signatures with psychosis symptoms, cognition, and genetic risk, potentially reflecting underlying neurobiological vulnerability.


Subject(s)
Psychotic Disorders , Schizophrenia , Cognition , Cross-Sectional Studies , Gray Matter/pathology , Humans , Psychotic Disorders/diagnosis , Psychotic Disorders/epidemiology , Psychotic Disorders/genetics , Schizophrenia/epidemiology , Schizophrenia/genetics , Schizophrenia/pathology
13.
Med Image Anal ; 75: 102304, 2022 01.
Article in English | MEDLINE | ID: mdl-34818611

ABSTRACT

Disease heterogeneity is a significant obstacle to understanding pathological processes and delivering precision diagnostics and treatment. Clustering methods have gained popularity for stratifying patients into subpopulations (i.e., subtypes) of brain diseases using imaging data. However, unsupervised clustering approaches are often confounded by anatomical and functional variations not related to a disease or pathology of interest. Semi-supervised clustering techniques have been proposed to overcome this and, therefore, capture disease-specific patterns more effectively. An additional limitation of both unsupervised and semi-supervised conventional machine learning methods is that they typically model, learn and infer from data using a basis of feature sets pre-defined at a fixed anatomical or functional scale (e.g., atlas-based regions of interest). Herein we propose a novel method, "Multi-scAle heteroGeneity analysIs and Clustering" (MAGIC), to depict the multi-scale presentation of disease heterogeneity, which builds on a previously proposed semi-supervised clustering method, HYDRA. It derives multi-scale and clinically interpretable feature representations and exploits a double-cyclic optimization procedure to effectively drive identification of inter-scale-consistent disease subtypes. More importantly, to understand the conditions under which the clustering model can estimate true heterogeneity related to diseases, we conducted extensive and systematic semi-simulated experiments to evaluate the proposed method on a sizeable healthy control sample from the UK Biobank (N = 4403). We then applied MAGIC to imaging data from Alzheimer's disease (ADNI, N = 1728) and schizophrenia (PHENOM, N = 1166) patients to demonstrate its potential and challenges in dissecting the neuroanatomical heterogeneity of common brain diseases. Taken together, we aim to provide guidance regarding when such analyses can succeed or should be taken with caution. The code of the proposed method is publicly available at https://github.com/anbai106/MAGIC.


Subject(s)
Alzheimer Disease , Brain , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Cluster Analysis , Humans , Supervised Machine Learning
14.
Bipolar Disord ; 13(1): 28-40, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21320250

ABSTRACT

OBJECTIVES: Many morphometric magnetic resonance imaging (MRI) studies that have investigated the presence of gray matter (GM) volume abnormalities associated with the diagnosis of bipolar disorder (BD) have reported conflicting findings. None of these studies has compared patients with recent-onset psychotic BD with asymptomatic controls selected from exactly the same environment using epidemiological methods, or has directly contrasted BD patients against subjects with first-onset psychotic major depressive disorder (MDD). We examined structural brain differences between (i) BD (type I) subjects and MDD subjects with psychotic features in their first contact with the healthcare system in Brazil, and (ii) these two mood disorder groups relative to a sample of geographically matched asymptomatic controls. METHODS: A total of 26 BD subjects, 20 subjects with MDD, and 94 healthy controls were examined using either of two identical MRI scanners and acquisition protocols. Diagnoses were based on DSM-IV criteria and confirmed one year after brain scanning. Image processing was conducted using voxel-based morphometry. RESULTS: The BD group showed increased volume of the right dorsal anterior cingulate cortex relative to controls, while the MDD subjects exhibited bilateral foci GM deficits in the dorsolateral prefrontal cortex (p < 0.05, corrected for multiple comparisons). Direct comparison between BD and MDD patients showed a focus of GM reduction in the right-sided dorsolateral prefrontal cortex (p < 0.05, corrected for multiple comparisons) and a trend (p < 0.10, corrected) toward left-sided GM deficits in the dorsolateral prefrontal cortex of MDD patients. When analyses were repeated with scanner site as a confounding covariate the finding of increased right anterior cingulate volumes in BD patients relative to controls remained statistically significant (p=0.01, corrected for multiple comparisons). CONCLUSIONS: These findings reinforce the view that there are important pathophysiological distinctions between BD and MDD, and indicate that subtle dorsal anterior cingulate abnormalities may be relevant to the pathophysiology of BD.


Subject(s)
Bipolar Disorder/pathology , Brain/pathology , Depressive Disorder, Major/pathology , Magnetic Resonance Imaging , Adolescent , Adult , Bipolar Disorder/diagnosis , Bipolar Disorder/physiopathology , Brazil , Case-Control Studies , Female , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Population Surveillance , Social Environment , Young Adult
15.
Front Psychiatry ; 11: 496, 2020.
Article in English | MEDLINE | ID: mdl-32581873

ABSTRACT

INTRODUCTION: The first symptoms of psychosis are frequently shared amongst several neuropsychiatry disorders, which makes the differentiation by clinical diagnosis challenging. Early recognition of symptoms is important in the management of psychosis. Therefore, the implementation of molecular biomarkers will be crucial for transforming the currently used diagnostic and therapeutic approach, improving insights into the underlying biological processes and clinical management. OBJECTIVES: To define a set of metabolites that supports diagnosis or prognosis of schizophrenia (SCZ) and bipolar disorder (BD) at first onset psychosis. METHODS: Plasma samples from 55 drug-naïve patients, 28 SCZ and 27 BD, and 42 healthy controls (HC). All participants underwent a seminaturalistic treatment regimen, clinically evaluated on a weekly basis until achieving clinical remission. All clinical or sociodemographic aspects considered for this study were equivalent between the groups at first-onset psychosis time point. The plasma samples were analyzed by untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) using reversed-phase and hydrophilic interaction chromatography. The acquired molecular features were analyzed with MetaboAnalyst. RESULTS: We identified two patient groups with different metabolite profiles. Both groups are composed of SCZ and BD patients. We found differences between these two groups regarding general symptoms of PANSS score after remission (p = 0.008), and the improvement of general symptoms (delta of the score at remission minus the baseline) (-0.50 vs. -0.33, p = 0.019). CONCLUSION: Our results suggest that plasma metabolite profiles cluster clinical remission phenotypes based on PANSS general psychopathology scores.

16.
Eur Arch Psychiatry Clin Neurosci ; 259(6): 316-28, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19255710

ABSTRACT

Abnormalities in fronto-limbic-striatal white matter (WM) have been reported in bipolar disorder (BD), but results have been inconsistent across studies. Furthermore, there have been no detailed investigations as to whether acute mood states contribute to microstructural changes in WM tracts. In order to compare fiber density and structural integrity within WM tracts between BD depression and remission, whole-brain fractional anisotropy (FA) and mean diffusivity (MD) were assessed in 37 bipolar I disorder (BD-I) patients (16 depressed and 21 remitted), and 26 healthy individuals with diffusion tensor imaging. Significantly decreased FA and increased MD in bilateral prefronto-limbic-striatal white matter and right inferior fronto-occipital, superior and inferior longitudinal fasciculi were shown in all BD-I patients versus controls, as well as in depressed BD-I patients compared to both controls and remitted BD-I patients. Depressed BD-I patients also exhibited increased FA in the ventromedial prefrontal cortex. Remitted BD-I patients did not differ from controls in FA or MD. These findings suggest that BD-I depression may be associated with acute microstructural WM changes.


Subject(s)
Bipolar Disorder/pathology , Brain/pathology , Nerve Fibers, Myelinated/pathology , Adult , Analysis of Variance , Anisotropy , Bipolar Disorder/physiopathology , Brain Mapping , Diffusion Magnetic Resonance Imaging/methods , Disease Progression , Female , Functional Laterality , Humans , Image Interpretation, Computer-Assisted , Male , Middle Aged , Neural Pathways/pathology , Psychiatric Status Rating Scales , Statistics as Topic , Statistics, Nonparametric , Young Adult
17.
Am J Psychiatry ; 176(7): 531-542, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31014101

ABSTRACT

OBJECTIVE: Neuroimaging studies show structural alterations of various brain regions in children and adults with attention deficit hyperactivity disorder (ADHD), although nonreplications are frequent. The authors sought to identify cortical characteristics related to ADHD using large-scale studies. METHODS: Cortical thickness and surface area (based on the Desikan-Killiany atlas) were compared between case subjects with ADHD (N=2,246) and control subjects (N=1,934) for children, adolescents, and adults separately in ENIGMA-ADHD, a consortium of 36 centers. To assess familial effects on cortical measures, case subjects, unaffected siblings, and control subjects in the NeuroIMAGE study (N=506) were compared. Associations of the attention scale from the Child Behavior Checklist with cortical measures were determined in a pediatric population sample (Generation-R, N=2,707). RESULTS: In the ENIGMA-ADHD sample, lower surface area values were found in children with ADHD, mainly in frontal, cingulate, and temporal regions; the largest significant effect was for total surface area (Cohen's d=-0.21). Fusiform gyrus and temporal pole cortical thickness was also lower in children with ADHD. Neither surface area nor thickness differences were found in the adolescent or adult groups. Familial effects were seen for surface area in several regions. In an overlapping set of regions, surface area, but not thickness, was associated with attention problems in the Generation-R sample. CONCLUSIONS: Subtle differences in cortical surface area are widespread in children but not adolescents and adults with ADHD, confirming involvement of the frontal cortex and highlighting regions deserving further attention. Notably, the alterations behave like endophenotypes in families and are linked to ADHD symptoms in the population, extending evidence that ADHD behaves as a continuous trait in the population. Future longitudinal studies should clarify individual lifespan trajectories that lead to nonsignificant findings in adolescent and adult groups despite the presence of an ADHD diagnosis.


Subject(s)
Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Adolescent , Adult , Age Factors , Attention Deficit Disorder with Hyperactivity/pathology , Attention Deficit Disorder with Hyperactivity/physiopathology , Case-Control Studies , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Child , Child, Preschool , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuroimaging , Psychiatric Status Rating Scales , Sex Factors , Young Adult
18.
Neuroimage Clin ; 19: 476-486, 2018.
Article in English | MEDLINE | ID: mdl-29984156

ABSTRACT

With the advent of Big Data Imaging Analytics applied to neuroimaging, datasets from multiple sites need to be pooled into larger samples. However, heterogeneity across different scanners, protocols and populations, renders the task of finding underlying disease signatures challenging. The current work investigates the value of multi-task learning in finding disease signatures that generalize across studies and populations. Herein, we present a multi-task learning type of formulation, in which different tasks are from different studies and populations being pooled together. We test this approach in an MRI study of the neuroanatomy of schizophrenia (SCZ) by pooling data from 3 different sites and populations: Philadelphia, Sao Paulo and Tianjin (50 controls and 50 patients from each site), which posed integration challenges due to variability in disease chronicity, treatment exposure, and data collection. Some existing methods are also tested for comparison purposes. Experiments show that classification accuracy of multi-site data outperformed that of single-site data and pooled data using multi-task feature learning, and also outperformed other comparison methods. Several anatomical regions were identified to be common discriminant features across sites. These included prefrontal, superior temporal, insular, anterior cingulate cortex, temporo-limbic and striatal regions consistently implicated in the pathophysiology of schizophrenia, as well as the cerebellum, precuneus, and fusiform, middle temporal, inferior parietal, postcentral, angular, lingual and middle occipital gyri. These results indicate that the proposed multi-task learning method is robust in finding consistent and reliable structural brain abnormalities associated with SCZ across different sites, in the presence of multiple sources of heterogeneity.


Subject(s)
Brain Mapping , Brain/physiopathology , Magnetic Resonance Imaging , Neuroimaging/classification , Adolescent , Adult , Aged , Alzheimer Disease/physiopathology , Female , Humans , Learning/physiology , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neuroimaging/methods , Schizophrenia/physiopathology , Young Adult
19.
Schizophr Res ; 195: 402-405, 2018 05.
Article in English | MEDLINE | ID: mdl-28888361

ABSTRACT

Past studies have linked intracellular pathways related to psychotic disorders to the GSK3B enzyme. This study aimed to investigate GSK3B protein expression and phosphorylation in drug-naïve first-episode psychosis patients (n=43) at baseline and following symptom remission, and in healthy controls (n=77). At baseline GSK3B total level was higher in patients (p<0.001). In schizophrenia spectrum patients (n=25) GSK3B total and phosphorylated levels were higher than in controls and patients with other non-affective psychotic disorders (n=18) (p<0.001; p=0.027; p=0.05 respectively). No enzyme changes were found after clinical remission. The implication of this finding for the biology of psychoses warrants further studies to clarify whether increased GSK3B may be useful as a biomarker for psychosis in general, and schizophrenia in particular.


Subject(s)
Glycogen Synthase Kinase 3 beta/blood , Psychotic Disorders/blood , Schizophrenia/blood , Adult , Female , Humans , Male , Phosphorylation , Statistics, Nonparametric , Young Adult
20.
Neuroimage Clin ; 18: 932-942, 2018.
Article in English | MEDLINE | ID: mdl-29876278

ABSTRACT

Background: White matter (WM) structural changes, particularly affecting the corpus callosum (CC), seem to be critically implicated in psychosis. Whether such abnormalities are progressive or static is still a matter of debate in schizophrenia research. Aberrant maturation processes might also influence the longitudinal trajectory of age-related CC changes in schizophrenia patients. We investigated whether patients with first-episode schizophrenia-related psychoses (FESZ) would present longitudinal CC and whole WM volume changes over the 5 years after disease onset. Method: Thirty-two FESZ patients and 34 controls recruited using a population-based design completed a 5-year assessment protocol, including structural MRI scanning at baseline and follow-up. The linear effects of disease duration, clinical outcome and antipsychotic (AP) use over time on WM and CC volumes were studied using both voxelwise and volume-based morphometry analyses. We also examined maturation/aging abnormalities through cross-sectional analyses of age-related trajectories of total WM and CC volume changes. Results: No interaction between diagnosis and time was observed, and clinical outcome did not influence CC volumes in patients. On the other hand, FESZ patients continuously exposed to AP medication showed volume increase over time in posterior CC. Curve-estimation analyses revealed a different aging pattern in FESZ patients versus controls: while patients displayed a linear decline of total WM and anterior CC volumes with age, a non-linear trajectory of total WM and relative preservation of CC volumes were observed in controls. Conclusions: Continuous AP exposure can influence CC morphology during the first years after schizophrenia onset. Schizophrenia is associated with an abnormal pattern of total WM and anterior CC aging during non-elderly adulthood, and this adds complexity to the discussion on the static or progressive nature of structural abnormalities in psychosis.


Subject(s)
Antipsychotic Agents/therapeutic use , Corpus Callosum/drug effects , Corpus Callosum/pathology , Schizophrenia/drug therapy , Schizophrenia/pathology , Adult , Aged , Cross-Sectional Studies , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging/methods , Male , Psychotic Disorders/diagnosis , Psychotic Disorders/pathology , Schizophrenia/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL