Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 312
Filter
Add more filters

Publication year range
1.
Hum Brain Mapp ; 45(4): e26636, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38488458

ABSTRACT

Parietal alpha activity shows a specific pattern of phasic changes during working memory. It decreases during the encoding and recall phases but increases during the maintenance phase. This study tested whether online rTMS delivered to the parietal cortex during the maintenance phase of a working memory task would increase alpha activity and hence improve working memory. Then, 46 healthy volunteers were randomly assigned to two groups to receive 3-day parietal 10 Hz online rTMS (either real or sham, 3600 pulses in total) that were time-locked to the maintenance phase of a spatial span task (180 trials in total). Behavioral performance on another spatial span task and EEG signals during a change detection task were recorded on the day before the first rTMS (pretest) and the day after the last rTMS (posttest). We found that rTMS improved performance on both online and offline spatial span tasks. For the offline change detection task, rTMS enhanced alpha activity within the maintenance phase and improved interference control of working memory at both behavioral (K score) and neural (contralateral delay activity) levels. These results suggested that rTMS with alpha frequency time-locked to the maintenance phase is a promising way to boost working memory.


Subject(s)
Memory, Short-Term , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Memory, Short-Term/physiology , Parietal Lobe/diagnostic imaging , Parietal Lobe/physiology , Mental Recall
2.
Int J Legal Med ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39164574

ABSTRACT

The inference of body fluids and tissues is critical in reconstructing crime scenes and inferring criminal behaviors. Nevertheless, present methods are incompatible with conventional DNA genotyping, and additional testing might result in excessive consumption of forensic scene materials. This study aims to investigate the feasibility of distinguishing common body fluids/tissues through the difference in mitochondrial DNA copy number (mtDNAcn). Four types of body fluids/tissues were analyzed in this study - hair, saliva, semen, and skeletal muscle. MtDNAcn was estimated by dividing the read counts of mitochondrial DNA to that of nuclear DNA (RRmt/nu). Results indicated that there were significant differences in RRmt/nu between different body fluids/tissues. Specifically, hair samples exhibited the highest RRmt/nu (log10RRmt/nu: 4.3 ± 0.28), while semen samples showed the lowest RRmt/nu (log10RRmt/nu: -0.1 ± 0.28). RRmt/nu values for DNA samples without extraction were notably higher (approximately 2.9 times) than those obtained after extraction. However, no significant difference in RRmt/nu was observed between various age and gender groups. Hierarchical clustering and Kmeans clustering analyses showed that body fluids/tissues of the same type clustered closely to each other and could be inferred with high accuracy. In conclusion, this study demonstrated that the simultaneous detection of nuclear and mitochondrial DNA made it possible to perform conventional DNA analyses and body fluid/tissue inference at the same time, thus killing two birds with one stone. Furthermore, mtDNAcn has the potential to serve as a novel and promising biomarker for the identification of body fluids/tissues.

3.
Cereb Cortex ; 33(4): 1119-1129, 2023 02 07.
Article in English | MEDLINE | ID: mdl-35332917

ABSTRACT

The amplitude of low-frequency fluctuation (ALFF) describes the regional intensity of spontaneous blood-oxygen-level-dependent signal in resting-state functional magnetic resonance imaging (fMRI). How the fMRI-ALFF relates to the amplitude in electrophysiological signals remains unclear. We here aimed to investigate the neural correlates of fMRI-ALFF by comparing the spatial difference of amplitude between the eyes-closed (EC) and eyes-open (EO) states from fMRI and magnetoencephalography (MEG), respectively. By synthesizing MEG signal into amplitude-based envelope time course, we first investigated 2 types of amplitude in MEG, meaning the amplitude of neural activities from delta to gamma (i.e. MEG-amplitude) and the amplitude of their low-frequency modulation at the fMRI range (i.e. MEG-ALFF). We observed that the MEG-ALFF in EC was increased at parietal sensors, ranging from alpha to beta; whereas the MEG-amplitude in EC was increased at the occipital sensors in alpha. Source-level analysis revealed that the increased MEG-ALFF in the sensorimotor cortex overlapped with the most reliable EC-EO differences observed in fMRI at slow-3 (0.073-0.198 Hz), and these differences were more significant after global mean standardization. Taken together, our results support that (i) the amplitude at 2 timescales in MEG reflect distinct physiological information and that (ii) the fMRI-ALFF may relate to the ALFF in neural activity.


Subject(s)
Magnetoencephalography , Sensorimotor Cortex , Magnetic Resonance Imaging/methods , Brain/physiology , Rest/physiology , Electroencephalography
4.
Plant Cell Rep ; 43(8): 203, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080075

ABSTRACT

KEY MESSAGE: Multiple regulatory pathways of Zostera japonica to salt stress were identified through growth, physiological, transcriptomic and metabolomic analyses. Seagrasses are marine higher submerged plants that evolved from terrestrial monocotyledons and have fully adapted to the high saline seawater environment during the long evolutionary process. As one of the seagrasses growing in the intertidal zone, Zostera japonica not only has the ability to quickly adapt to short-term salt stress but can also survive at salinities ranging from the lower salinity of the Yellow River estuary to the higher salinity of the bay, making it a good natural model for studying the mechanism underlying the adaptation of plants to salt stress. In this work, we screened the growth, physiological, metabolomic, and transcriptomic changes of Z. japonica after a 5-day exposure to different salinities. We found that high salinity treatment impeded the growth of Z. japonica, hindered its photosynthesis, and elicited oxidative damage, while Z. japonica increased antioxidant enzyme activity. At the transcriptomic level, hypersaline stress greatly reduced the expression levels of photosynthesis-related genes while increasing the expression of genes associated with flavonoid biosynthesis. Meanwhile, the expression of candidate genes involved in ion transport and cell wall remodeling was dramatically changed under hypersaline stress. Moreover, transcription factors signaling pathways such as mitogen-activated protein kinase (MAPK) were also significantly influenced by salt stress. At the metabolomic level, Z. japonica displayed an accumulation of osmolytes and TCA mediators under hypersaline stress. In conclusion, our results revealed a complex regulatory mechanism in Z. japonica under salt stress, and the findings will provide important guidance for improving salt resistance in crops.


Subject(s)
Gene Expression Regulation, Plant , Metabolomics , Salt Stress , Signal Transduction , Zosteraceae , Zosteraceae/genetics , Zosteraceae/physiology , Zosteraceae/metabolism , Salt Stress/genetics , Signal Transduction/genetics , Salt Tolerance/genetics , Gene Expression Profiling , Transcriptome/genetics , Salinity , Photosynthesis/genetics , Photosynthesis/drug effects , Metabolome/genetics
5.
J Dairy Sci ; 107(8): 5529-5541, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38310968

ABSTRACT

Finite natural resources, rising human population, and climate change pose challenges to traditional crop production. Hydroponically grown fodder (i.e., sprouted grains) can be an alternative feed source for dairy cows; however, only sprouted barley has been investigated in low-producing cows. We aimed to evaluate the effect of replacing conventional concentrates with sprouted barley or wheat, grown using hydroponics, on milk production, nutrient digestibility, and milk fatty acid profile in high-producing cows. Twenty-four multiparous Holstein cows (3.25 ± 1.33 lactations; 102 ± 23 DIM; 49 ± 4 kg/d of milk) were used in a replicated 3 × 3 Latin square design with 21-d experimental periods. Following a 2-wk covariate period, cows were fed 1 of 3 experimental diets: a TMR (1) without sprouted grains (control), or with (2) 10% sprouted barley, or (3) 10% sprouted wheat on a DM basis. Experimental diets were formulated to be isoenergetic and isonitrogenous with sprouted grains that replaced ground corn, soybean meal, canola meal, and dextrose. Sprouted grains were grown using a semi-automatic hydroponic system and harvested after 6 d of growth. Data and sample collection occurred during the last 3 d of the covariate and experimental periods. Wide ranges were observed for the DM percent of sprouted grains (12.1%-22.9% and 13.3%-25.7% for barley and wheat, respectively) and the ratio of sprouted fodder to seed (0.67-1.07 for both barley and wheat). Feeding sprouted grains did not modify the yield of milk or ECM; however, DMI were lower for barley, relative to control. Feed efficiencies were greater for barley than for control (1.49 ± 0.03 vs. 1.43 ± 0.03 for milk yield/DMI; 1.85 ± 0.03 vs. 1.73 ± 0.04 for ECM/DMI). Yields and concentrations of milk components (i.e., fat, true protein, and lactose) were not affected by treatment. Milk urea N concentrations were greater for wheat, relative to control or barley. Body weight (752 ± 3 vs. 742 ± 3 kg) and BW gains (6.53 ± 2.99 vs. -9.33 ± 2.91 kg/21 d) were higher for wheat than for control. Apparent total-tract digestibility of organic matter was greater for wheat relative to barley. Digestibilities of NDF and starch were higher for wheat and control, relative to barley, and CP digestibility was greater for wheat, relative to barley and control. Rumination and physical activity were not affected by treatment. In summary, replacing traditional concentrates with sprouted grains grown using hydroponics improved milk production efficiency (barley sprouts) or enhanced body weight gain (wheat sprouts). A life-cycle assessment needs to be conducted to determine the net effect of this feeding strategy for the dairy industry.


Subject(s)
Animal Feed , Diet , Digestion , Fatty Acids , Hordeum , Lactation , Milk , Triticum , Animals , Cattle , Female , Milk/chemistry , Milk/metabolism , Fatty Acids/metabolism , Diet/veterinary , Nutrients/metabolism , Animal Nutritional Physiological Phenomena
6.
J Dairy Sci ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38788840

ABSTRACT

The fatty acid (FA) and phospholipid composition of dietary lecithin may influence FA digestibility and milk production in cattle. Eight multiparous Holstein cows (99.4 ± 9.2 d in milk [DIM]; 48.9 ± 3.8 kg milk/d) were enrolled in a 3 × 3 incomplete Latin square design with 3 treatments provided as continuous abomasal infusates spanning 14-d experimental periods: water (CON), soybean phospholipids (SOY; 74.5 g of deoiled soy lecithin), or sunflower phospholipids (SUN; 133.5 g of hydrolyzed sunflower lecithin). Cows were fed the same diet, which contained (% dry matter) 27.0% neutral detergent fiber (NDF), 15.6% crude protein (CP), 26.2% starch, and 5.87% FA. Treatments did not modify body weight, milk fat, protein, or lactose contents, or the efficiency of producing energy-corrected milk. Cows infused with SUN had greater milk yields than those receiving SOY or CON treatments. Cows infused with SUN had higher total solids, protein, and lactose yields than cows receiving the SOY or CON treatments. Sunflower phospholipids enhanced feed efficiency (milk yield/dry matter intake) relative to SOY or CON. Treatment did not affect intakes or apparent total-tract digestibilities for NDF, CP, starch, or 16-carbon (16C) FA. Cows receiving SUN had greater total FA and 18-carbon (18C) FA intakes than SOY or CON, but treatments did not impact their digestibility. Milk FA composition was modified by treatment. Cows receiving SUN had a greater concentration of polyunsaturated FA and lower concentrations of saturated FA and monounsaturated FA in milk relative to SOY or CON. In conclusion, the abomasal infusion of SUN improved milk production and milk FA composition, indicating potential benefits for dairy cow nutrition and milk quality.

7.
Article in English | MEDLINE | ID: mdl-38662058

ABSTRACT

Impaired basic academic skills (e.g., word recognition) are common in children with Attention Deficit Hyperactivity Disorder (ADHD). The underlying neuropsychological and neural correlates of impaired Chinese reading skills in children with ADHD have not been substantially explored. Three hundred and two children with ADHD (all medication-naïve) and 105 healthy controls underwent the Chinese language skill assessment, and 175 also underwent fMRI scans (84 ADHD and 91 controls). Between-group and mediation analyses were applied to explore the interrelationships of the diagnosis of ADHD, cognitive dysfunction, and impaired reading skills. Five ADHD-related brain functional networks, including the default mode network (DMN) and the dorsal attention network (DAN), were built using predefined regions of interest. Voxel-based group-wise comparisons were performed. The ADHD group performed worse than the control group in word-level reading ability tests, with lower scores in Chinese character recognition (CR) and word chains (WS) (all P < 0.05). With full-scale IQ and sustained attention in the mediation model, the direct effect of ADHD status on the CR score became insignificant (P = 0.066). The underlying neural correlates for the orthographic knowledge (OT) and CR differed between the ADHD and the control group. The ADHD group tended to recruit more DMN regions to maintain their reading performance, while the control group seemed to utilize more DAN regions. Children with ADHD generally presented impaired word-level reading skills, which might be caused by impaired sustained attention and lower IQ. According to the brain functional results, we infer that ADHD children might utilize a different strategy to maintain their orthographic knowledge and character recognition performance.

8.
Hum Brain Mapp ; 44(16): 5450-5459, 2023 11.
Article in English | MEDLINE | ID: mdl-37694907

ABSTRACT

Functional connectivity (FC) derived from resting-state functional magnetic resonance imaging has been widely applied to guide precise repetitive transcranial magnetic stimulation (rTMS). The left, right, and bilateral dorsolateral prefrontal cortices (DLPFC) have been used as rTMS treatment target regions for autism spectrum disorder (ASD), albeit with moderate efficacy. Thus, we aimed to develop an individualized localization method for rTMS treatment of ASD. We included 266 male ASDs and 297 male typically-developed controls (TDCs) from the Autism Brain Imaging Data Exchange Dataset. The nucleus accumbens (NAc) was regarded as a promising effective region, which was used as a seed and individualized peak FC strength in the DLPFC was compared between ASD and TDC. Correlation analysis was conducted between individualized peak FC strength and symptoms in ASD. We also investigated the spatial distribution of individualized peak FC locations in the DLPFC and conducted voxel-wise analysis to compare NAc-based FC between the two groups. ASD showed stronger peak FC in the right DLPFC related to TDC (Cohen's d = -.19, 95% CI: -0.36 to -0.03, t = -2.30, p = .02). Moreover, negative correlation was found between the peak FC strength in the right DLPFC and Autism Diagnostic Observation Schedule (ADOS) scores, which assessed both the social communication and interaction (r = -.147, p = .04, uncorrected significant), and stereotyped behaviors and restricted interests (r = -.198, p = .02, corrected significant). Peak FC locations varied substantially across participants. No significant differences in NAc-based FC in the DLPFC were found in the voxel-wise comparison. Our study supports the use of individualized peak FC-guided precise rTMS treatment of male ASD. Moreover, stimulating the right DLPFC might alleviate core symptoms of ASD.


Subject(s)
Autism Spectrum Disorder , Transcranial Magnetic Stimulation , Humans , Male , Transcranial Magnetic Stimulation/methods , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/therapy , Prefrontal Cortex/physiology , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging
9.
Hum Brain Mapp ; 44(3): 1105-1117, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36394386

ABSTRACT

Amplitude of low-frequency fluctuation (ALFF) has been widely used for localization of abnormal activity at the single-voxel level in resting-state fMRI (RS-fMRI) studies. However, previous ALFF studies were based on fast Fourier transform (FFT-ALFF). Our recent study found that ALFF based on wavelet transform (Wavelet-ALFF) showed better sensitivity and reproducibility than FFT-ALFF. The current study aimed to test the reliability and validity of Wavelet-ALFF, and apply Wavelet-ALFF to investigate the modulation effect of repetitive transcranial magnetic stimulation (rTMS). The reliability and validity were assessed on multicenter RS-fMRI datasets under eyes closed (EC) and eyes open (EO) conditions (248 healthy participants in total). We then detected the sensitivity of Wavelet-ALFF using a rTMS modulation dataset (24 healthy participants). For each dataset, Wavelet-ALFF based on five mother wavelets (i.e., db2, bior4.4, morl, meyr and sym3) and FFT-ALFF were calculated in the conventional band and five frequency sub-bands. The results showed that the reliability of both inter-scanner and intra-scanner was higher with Wavelet-ALFF than with FFT-ALFF across multiple frequency bands, especially db2-ALFF in the higher frequency band slow-2 (0.1992-0.25 Hz). In terms of validity, the multicenter ECEO datasets showed that the effect sizes of Wavelet-ALFF with all mother wavelets (especially for db2-ALFF) were larger than those of FFT-ALFF across multiple frequency bands. Furthermore, Wavelet-ALFF detected a larger modulation effect than FFT-ALFF. Collectively, Wavelet db2-ALFF showed the best reliability and validity, suggesting that db2-ALFF may offer a powerful metric for inspecting regional spontaneous brain activities in future studies.


Subject(s)
Magnetic Resonance Imaging , Transcranial Magnetic Stimulation , Humans , Reproducibility of Results , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/physiology , Brain Mapping/methods
10.
BMC Plant Biol ; 23(1): 104, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36814193

ABSTRACT

BACKGROUND: Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have evolved to live entirely submerged in marine waters. Thus, these species are ideal for studying plant adaptation to marine environments. Herein, we sequenced the chloroplast (cp) genomes of two seagrass species (Zostera muelleri and Halophila ovalis) and performed a comparative analysis of them with 10 previously published seagrasses, resulting in various novel findings. RESULTS: The cp genomes of the seagrasses ranged in size from 143,877 bp (Zostera marina) to 178,261 bp (Thalassia hemprichii), and also varied in size among different families in the following order: Hydrocharitaceae > Cymodoceaceae > Ruppiaceae > Zosteraceae. The length differences between families were mainly related to the expansion and contraction of the IR region. In addition, we screened out 2,751 simple sequence repeats and 1,757 long repeat sequence types in the cp genome sequences of the 12 seagrass species, ultimately finding seven hot spots in coding regions. Interestingly, we found nine genes with positive selection sites, including two ATP subunit genes (atpA and atpF), three ribosome subunit genes (rps4, rps7, and rpl20), one photosystem subunit gene (psbH), and the ycf2, accD, and rbcL genes. These gene regions may have played critical roles in the adaptation of seagrasses to diverse environments. In addition, phylogenetic analysis strongly supported the division of the 12 seagrass species into four previously recognized major clades. Finally, the divergence time of the seagrasses inferred from the cp genome sequences was generally consistent with previous studies. CONCLUSIONS: In this study, we compared chloroplast genomes from 12 seagrass species, covering the main phylogenetic clades. Our findings will provide valuable genetic data for research into the taxonomy, phylogeny, and species evolution of seagrasses.


Subject(s)
Alismatales , Genome, Chloroplast , Hydrocharitaceae , Zosteraceae , Phylogeny , Alismatales/genetics , Zosteraceae/genetics , Hydrocharitaceae/genetics , Chloroplasts/genetics , Genomics , Evolution, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL