Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 183(6): 1617-1633.e22, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33259802

ABSTRACT

Histone H3.3 glycine 34 to arginine/valine (G34R/V) mutations drive deadly gliomas and show exquisite regional and temporal specificity, suggesting a developmental context permissive to their effects. Here we show that 50% of G34R/V tumors (n = 95) bear activating PDGFRA mutations that display strong selection pressure at recurrence. Although considered gliomas, G34R/V tumors actually arise in GSX2/DLX-expressing interneuron progenitors, where G34R/V mutations impair neuronal differentiation. The lineage of origin may facilitate PDGFRA co-option through a chromatin loop connecting PDGFRA to GSX2 regulatory elements, promoting PDGFRA overexpression and mutation. At the single-cell level, G34R/V tumors harbor dual neuronal/astroglial identity and lack oligodendroglial programs, actively repressed by GSX2/DLX-mediated cell fate specification. G34R/V may become dispensable for tumor maintenance, whereas mutant-PDGFRA is potently oncogenic. Collectively, our results open novel research avenues in deadly tumors. G34R/V gliomas are neuronal malignancies where interneuron progenitors are stalled in differentiation by G34R/V mutations and malignant gliogenesis is promoted by co-option of a potentially targetable pathway, PDGFRA signaling.


Subject(s)
Brain Neoplasms/genetics , Carcinogenesis/genetics , Glioma/genetics , Histones/genetics , Interneurons/metabolism , Mutation/genetics , Neural Stem Cells/metabolism , Receptor, Platelet-Derived Growth Factor alpha/genetics , Animals , Astrocytes/metabolism , Astrocytes/pathology , Brain Neoplasms/pathology , Carcinogenesis/pathology , Cell Lineage , Cellular Reprogramming/genetics , Chromatin/metabolism , Embryo, Mammalian/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Gene Silencing , Glioma/pathology , Histones/metabolism , Lysine/metabolism , Mice, Inbred C57BL , Models, Biological , Neoplasm Grading , Oligodendroglia/metabolism , Promoter Regions, Genetic/genetics , Prosencephalon/embryology , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Transcription, Genetic , Transcriptome/genetics
2.
Cell ; 172(5): 1050-1062.e14, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29474906

ABSTRACT

While the preponderance of morbidity and mortality in medulloblastoma patients are due to metastatic disease, most research focuses on the primary tumor due to a dearth of metastatic tissue samples and model systems. Medulloblastoma metastases are found almost exclusively on the leptomeningeal surface of the brain and spinal cord; dissemination is therefore thought to occur through shedding of primary tumor cells into the cerebrospinal fluid followed by distal re-implantation on the leptomeninges. We present evidence for medulloblastoma circulating tumor cells (CTCs) in therapy-naive patients and demonstrate in vivo, through flank xenografting and parabiosis, that medulloblastoma CTCs can spread through the blood to the leptomeningeal space to form leptomeningeal metastases. Medulloblastoma leptomeningeal metastases express high levels of the chemokine CCL2, and expression of CCL2 in medulloblastoma in vivo is sufficient to drive leptomeningeal dissemination. Hematogenous dissemination of medulloblastoma offers a new opportunity to diagnose and treat lethal disseminated medulloblastoma.


Subject(s)
Medulloblastoma/blood supply , Medulloblastoma/pathology , Meningeal Neoplasms/blood supply , Meningeal Neoplasms/secondary , Allografts , Animals , Cell Line, Tumor , Chemokine CCL2/metabolism , Chromosomes, Human, Pair 10/genetics , Female , Humans , Male , Medulloblastoma/genetics , Mice, SCID , Neoplastic Cells, Circulating , Parabiosis
4.
BMC Cancer ; 24(1): 147, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291372

ABSTRACT

BACKGROUND: Pediatric low-grade glioma (pLGG) is essentially a single pathway disease, with most tumors driven by genomic alterations affecting the mitogen-activated protein kinase/ERK (MAPK) pathway, predominantly KIAA1549::BRAF fusions and BRAF V600E mutations. This makes pLGG an ideal candidate for MAPK pathway-targeted treatments. The type I BRAF inhibitor, dabrafenib, in combination with the MEK inhibitor, trametinib, has been approved by the United States Food and Drug Administration for the systemic treatment of BRAF V600E-mutated pLGG. However, this combination is not approved for the treatment of patients with tumors harboring BRAF fusions as type I RAF inhibitors are ineffective in this setting and may paradoxically enhance tumor growth. The type II RAF inhibitor, tovorafenib (formerly DAY101, TAK-580, MLN2480), has shown promising activity and good tolerability in patients with BRAF-altered pLGG in the phase 2 FIREFLY-1 study, with an objective response rate (ORR) per Response Assessment in Neuro-Oncology high-grade glioma (RANO-HGG) criteria of 67%. Tumor response was independent of histologic subtype, BRAF alteration type (fusion vs. mutation), number of prior lines of therapy, and prior MAPK-pathway inhibitor use. METHODS: LOGGIC/FIREFLY-2 is a two-arm, randomized, open-label, multicenter, global, phase 3 trial to evaluate the efficacy, safety, and tolerability of tovorafenib monotherapy vs. current standard of care (SoC) chemotherapy in patients < 25 years of age with pLGG harboring an activating RAF alteration who require first-line systemic therapy. Patients are randomized 1:1 to either tovorafenib, administered once weekly at 420 mg/m2 (not to exceed 600 mg), or investigator's choice of prespecified SoC chemotherapy regimens. The primary objective is to compare ORR between the two treatment arms, as assessed by independent review per RANO-LGG criteria. Secondary objectives include comparisons of progression-free survival, duration of response, safety, neurologic function, and clinical benefit rate. DISCUSSION: The promising tovorafenib activity data, CNS-penetration properties, strong scientific rationale combined with the manageable tolerability and safety profile seen in patients with pLGG led to the SIOPe-BTG-LGG working group to nominate tovorafenib for comparison with SoC chemotherapy in this first-line phase 3 trial. The efficacy, safety, and functional response data generated from the trial may define a new SoC treatment for newly diagnosed pLGG. TRIAL REGISTRATION: ClinicalTrials.gov: NCT05566795. Registered on October 4, 2022.


Subject(s)
Fireflies , Glioma , Animals , Child , Humans , Young Adult , Fireflies/metabolism , Proto-Oncogene Proteins B-raf , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism , Treatment Outcome , Mutation , Mitogen-Activated Protein Kinases , Oximes , Pyridones , Pyrimidinones/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
5.
Childs Nerv Syst ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819670

ABSTRACT

Pediatric low-grade gliomas (PLGG) are commonly treated with a combination of surgery, radiotherapy, and chemotherapy. Recent trends prioritize reducing long-term morbidities, particularly in younger patients. While historically chemotherapy was reserved for cases progressing after radiotherapy, evolving recommendations now advocate for its early use, particularly in younger age groups. The carboplatin and vincristine (CV) combination stands as a standard systemic therapy for PLGG, varying in dosage and administration between North America and Europe. Clinical trials have shown promising response rates, albeit with varying toxicity profiles. Vinblastine has emerged as another effective regimen with minimal toxicity. TPCV, a regimen combining thioguanine, procarbazine, lomustine, and vincristine, was compared to CV in a Children's Oncology Group trial, showing comparable outcomes, but more toxicity. Vinorelbine, temozolomide, and metronomic chemotherapy have also been explored, with varied success rates and toxicity profiles. Around 40-50% of PLGG patients require subsequent chemotherapy lines. Studies have shown varied efficacy in subsequent lines, with NF1 patients generally exhibiting better outcomes. The identification of molecular drivers like BRAF mutations has led to targeted therapies' development, showing promise in specific molecular subgroups. Trials comparing targeted therapy to conventional chemotherapy aim to delineate optimal treatment strategies based on molecular profiles. The landscape of chemotherapy in PLGG is evolving, with a growing focus on molecular subtyping and targeted therapies. Understanding the role of chemotherapy in conjunction with novel treatments is crucial for optimizing outcomes in pediatric patients with low-grade gliomas.

6.
Acta Neuropathol ; 145(1): 49-69, 2023 01.
Article in English | MEDLINE | ID: mdl-36437415

ABSTRACT

Pediatric central nervous system (CNS) tumors represent the most common cause of cancer-related death in children aged 0-14 years. They differ from their adult counterparts, showing extensive clinical and molecular heterogeneity as well as a challenging histopathological spectrum that often impairs accurate diagnosis. Here, we use DNA methylation-based CNS tumor classification in combination with copy number, RNA-seq, and ChIP-seq analysis to characterize a newly identified CNS tumor type. In addition, we report histology, patient characteristics, and survival data in this tumor type. We describe a biologically distinct pediatric CNS tumor type (n = 31 cases) that is characterized by focal high-level amplification and resultant overexpression of either PLAGL1 or PLAGL2, and an absence of recurrent genetic alterations characteristic of other pediatric CNS tumor types. Both genes act as transcription factors for a regulatory subset of imprinted genes (IGs), components of the Wnt/ß-Catenin pathway, and the potential drug targets RET and CYP2W1, which are also specifically overexpressed in this tumor type. A derived PLAGL-specific gene expression signature indicates dysregulation of imprinting control and differentiation/development. These tumors occurred throughout the neuroaxis including the cerebral hemispheres, cerebellum, and brainstem, and were predominantly composed of primitive embryonal-like cells lacking robust expression of markers of glial or neuronal differentiation (e.g., GFAP, OLIG2, and synaptophysin). Tumors with PLAGL1 amplification were typically diagnosed during adolescence (median age 10.5 years), whereas those with PLAGL2 amplification were diagnosed during early childhood (median age 2 years). The 10-year overall survival was 66% for PLAGL1-amplified tumors, 25% for PLAGL2-amplified tumors, 18% for male patients, and 82% for female patients. In summary, we describe a new type of biologically distinct CNS tumor characterized by PLAGL1/2 amplification that occurs predominantly in infants and toddlers (PLAGL2) or adolescents (PLAGL1) which we consider best classified as a CNS embryonal tumor and which is associated with intermediate survival. The cell of origin and optimal treatment strategies remain to be defined.


Subject(s)
Central Nervous System Neoplasms , Neuroectodermal Tumors, Primitive , Child , Child, Preschool , Female , Humans , Infant , Male , Cell Cycle Proteins/genetics , Central Nervous System Neoplasms/genetics , DNA Methylation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Neuroectodermal Tumors, Primitive/genetics , RNA-Binding Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics , Wnt Signaling Pathway/genetics
7.
J Neurooncol ; 161(1): 155-163, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36565363

ABSTRACT

PURPOSE: Literature dedicated to growth patterns and growth rate influencing factors of radiation-induced meningiomas (RIMs) is limited. To deliver new insights into the topic, a volumetric growth analysis of RIMs was performed. METHODS: This single-center, retrospective cohort study included patients diagnosed with intracranial meningioma who received radiation treatment at least > 5 years before the RIM diagnosis. Volumetric analysis of individual RIMs was performed using 3D volumetry at the time of RIM diagnosis and during follow-up. RIM growth was determined by calculating absolute (AGR), and relative (RGR) growth rates. Prognostic factors associated with RIM growth were evaluated. RESULTS: A total of 26 patients with 33 meningiomas were enrolled in the study and radiologically/clinically followed up during a median duration of 5.6 years (IQR 3.9-8.8 years). Median AGR was 0.19 cm3 per year and the median RGR was 34.5% per year. Surgically managed RIMs were more likely fast-growing compared to observed ones based on the AGR (p < 0.002). The recurrence rate after total resection was 14.3%. Younger age at RIM diagnosis was associated with higher tumor growth (RGR ≥ 30%, p = 0.040). A significant correlation was found between the length of latency period and the RGR (p = 0.005). CONCLUSION: To diagnose RIM as early as possible comprehensive MRI surveillance is required. Younger patients with shorter latency periods may profit from shortened MRI intervals, with further management being dependent on the growth rate and eventual symptomatology.


Subject(s)
Meningeal Neoplasms , Meningioma , Humans , Meningioma/diagnostic imaging , Meningioma/radiotherapy , Meningioma/pathology , Meningeal Neoplasms/diagnostic imaging , Meningeal Neoplasms/radiotherapy , Meningeal Neoplasms/pathology , Retrospective Studies , Prognosis
8.
Childs Nerv Syst ; 39(9): 2509-2513, 2023 09.
Article in English | MEDLINE | ID: mdl-37165121

ABSTRACT

Pontine gliomas represent difficult to treat entity due to the location and heterogeneous biology varying from indolent low-grade gliomas to aggressive diffuse intrinsic pontine glioma (DIPG). Making the correct tumor diagnosis in the pontine location is thus critical. Here, we report a case study of a 14-month-old patient initially diagnosed as histone H3 wild-type DIPG. Due to the low age of the patient, the MRI appearance of DIPG, and anaplastic astrocytoma histology, intensive chemotherapy based on the HIT-SKK protocol with vinblastine maintenance chemotherapy was administered. Rapid clinical improvement and radiological regression of the tumor were observed with nearly complete remission with durable effect and excellent clinical condition more than 6.5 years after diagnosis. Based on this unexpected therapeutic outcome, genome-wide DNA methylation array was employed and the sample was classified into the methylation class "Low-grade glioma, MYB(L1) altered." Additionally, RT-PCR revealed the presence of MYB::QKI fusion. Taken together, the histopathological classification, molecular-genetic and epigenetic features, clinical behavior, and pontine location have led us to reclassify the tumor as a pontine MYB-altered glioma. Our case demonstrates that more intensive chemotherapy can achieve long-term clinical effect in the treatment of MYB-altered pontine gliomas compared to previously used LGG-based regimens or radiotherapy. It also emphasizes the importance of a biopsy and a thorough molecular investigation of pontine lesions.


Subject(s)
Astrocytoma , Brain Stem Neoplasms , Glioma , Humans , Infant , Brain Stem Neoplasms/diagnostic imaging , Brain Stem Neoplasms/drug therapy , Brain Stem Neoplasms/genetics , Astrocytoma/diagnostic imaging , Astrocytoma/drug therapy , Astrocytoma/genetics , Glioma/diagnostic imaging , Glioma/drug therapy , Glioma/genetics , Histones/genetics , Pons/pathology
9.
Childs Nerv Syst ; 39(5): 1183-1192, 2023 05.
Article in English | MEDLINE | ID: mdl-36574011

ABSTRACT

PURPOSE: Current management of pediatric intramedullary ependymoma is extrapolated from adult series since large studies in children are unavailable. This has led us to share our experience with this rare tumor and compare it to the literature and to review and highlight important aspects of current management and point out inconsistencies. METHODS: This is a retrospective analysis of patients with intramedullary ependymoma managed at our institution between 2004 and 2021. RESULTS: During the study period, 5 patients were treated for intramedullary ependymoma. Cases of myxopapillary ependymoma were excluded. The mean age of our cohort was 11.2 years. We identified 4 cases of grade II ependymoma and 1 case of grade III ependymoma. Gross tumor removal (GTR) was achieved in two patients (40%) of patients. One patient was treated with radiotherapy for recurrence and two patients received chemotherapy. There were no cases of recurrence among patients treated with GTR, but in all patients treated with STR. Eighty percent of patients either improved or stayed stable neurologically. During follow-up (mean 73 months), 2 patients died of disease. CONCLUSION: GTR and tumor grade remain the key prognostic factor of long-term tumor-free survival. Many questions prevail regarding outcomes, correct use of adjuvant therapy, and prognostic factors.


Subject(s)
Ependymoma , Spinal Cord Neoplasms , Adult , Humans , Child , Retrospective Studies , Neurosurgical Procedures , Combined Modality Therapy , Ependymoma/surgery , Ependymoma/pathology , Spinal Cord Neoplasms/surgery , Spinal Cord Neoplasms/pathology
10.
Acta Neurochir (Wien) ; 165(12): 4279-4292, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37535206

ABSTRACT

BACKGROUND: Tumors of the fourth ventricle are frequently treated pathologies in pediatric neurosurgery. Data regarding predictors for permanent neurological deficits, long-term functional outcomes, cerebellar mutism (CM), the extent of resection (EOR), and oncological outcomes are scarce. We attempt to contribute to this topic with an analysis of our institutional cohort. METHODS: A retrospective single-center study of patients aged ≤ 19 years who underwent primary surgical resection of a fourth ventricular tumor over a 15-year period (2006-2021). Predictors analyzed included age, gender, surgical approach, anatomical pattern, tumor grade, EOR, tumor volume, and others as appropriate. RESULTS: One hundred six patients were included (64 males, mean age 7.3 years). The rate of permanent neurological deficit was 24.2%; lateral tumor extension (p = 0.036) and tumor volume greater than 38 cm3 (p = 0.020) were significant predictors. The presence of a deficit was the only significant predictor of reduced (less than 90) Lansky score (p = 0.005). CM occurred in 20.8% of patients and was influenced by medulloblastoma histology (p = 0.011), lateral tumor extension (p = 0.017), and male gender (p = 0.021). No significant difference between the transvermian and telovelar approach in the development of CM was detected (p = 0.478). No significant predictor was found for the EOR. EOR was not found to be a significant predictor of overall survival for both low-grade and high-grade tumors; however, gross total resection (GTR) was protective against tumor recurrence compared to near-total or subtotal resection (p < 0.001). In addition, survival was found to be better in older patients (≥ 7.0 years, p = 0.019). CONCLUSION: The overall rate of postoperative complications remains high due to the eloquent localization. Older patients (> 7 years) have been found to have better outcomes and prognosis. Achieving GTR whenever feasible and safe has been shown to be critical for tumor recurrence. CM was more common in patients with medulloblastoma and in patients with tumors extending through the foramen of Luschka. The telovelar approach uses a safe and anatomically sparing corridor; however, it has not been associated with a lower incidence of CM and neurological sequelae in our series, showing that each case should be assessed on an individual basis.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Child , Male , Aged , Fourth Ventricle/diagnostic imaging , Fourth Ventricle/surgery , Retrospective Studies , Neurosurgical Procedures/adverse effects , Medulloblastoma/surgery , Neoplasm Recurrence, Local/surgery , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Postoperative Complications/surgery , Cerebellar Neoplasms/surgery , Cerebellar Neoplasms/etiology , Treatment Outcome
11.
Acta Neurochir (Wien) ; 164(6): 1459-1472, 2022 06.
Article in English | MEDLINE | ID: mdl-35043265

ABSTRACT

BACKGROUND: Childhood thalamopeduncular gliomas arise at the interface of the thalamus and cerebral peduncle. The optimal treatment is total resection but not at the cost of neurological function. We present long-term clinical and oncological outcomes of maximal safe resection. METHODS: Retrospective review of prospectively collected data: demography, symptomatology, imaging, extent of resection, surgical complications, histology, functional and oncological outcome. RESULTS: During 16-year period (2005-2020), 21 patients were treated at our institution. These were 13 girls and 8 boys (mean age 7.6 years). Presentation included progressive hemiparesis in 9 patients, raised intracranial pressure in 9 patients and cerebellar symptomatology in 3 patients. The tumour was confined to the thalamus in 6 cases. Extent of resection was judged on postoperative imaging as total (6), near-total (6) and less extensive (9). Surgical complications included progression of baseline neurological status in 6 patients, and 5 of these gradually improved to preoperative status. All tumours were classified as low-grade gliomas. Disease progression was observed in 9 patients (median progression-free survival 7.3 years). At last follow-up (median 6.1 years), all patients were alive, median Lansky score of 90. Seven patients were without evidence of disease, 6 had stable disease, 7 stable following progression and 1 had progressive disease managed expectantly. CONCLUSION: Paediatric patients with low-grade thalamopeduncular gliomas have excellent long-term functional and oncological outcomes when gross total resection is not achievable. Surgery should aim at total resection; however, neurological function should not be endangered due to excellent chance for long-term survival.


Subject(s)
Brain Neoplasms , Glioma , Brain Neoplasms/complications , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Child , Female , Glioma/complications , Glioma/diagnostic imaging , Glioma/surgery , Humans , Magnetic Resonance Imaging , Male , Neurosurgical Procedures/methods , Retrospective Studies , Thalamus/diagnostic imaging , Thalamus/pathology , Thalamus/surgery , Treatment Outcome
12.
Genes Chromosomes Cancer ; 60(12): 837-840, 2021 12.
Article in English | MEDLINE | ID: mdl-34378283

ABSTRACT

Congenital mesoblastic nephroma (CMN), the most common renal tumor of infancy, is a mesenchymal neoplasm histologically classified into classic, cellular, or mixed types. Most cellular CMNs harbor a characteristic ETV6-NTRK3 fusion. Here, we report an unusual congenital mesoblastic nephroma presenting in a newborn boy with a novel EML4-ALK gene fusion revealed by Anchored Multiplex RNA Sequencing Assay. The EML4-ALK gene fusion expands the genetic spectrum implicated in the pathogenesis of congenital mesoblastic nephroma, with yet another example of kinase oncogenic activation through chromosomal rearrangement. The methylation profile of the tumor corresponds with infantile fibrosarcoma showing the biological similarity of these two entities.


Subject(s)
Fibrosarcoma/genetics , Nephroma, Mesoblastic/genetics , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Proteins c-ets/genetics , Receptor, trkC/genetics , Repressor Proteins/genetics , Fibrosarcoma/diagnosis , Fibrosarcoma/pathology , Humans , In Situ Hybridization, Fluorescence , Infant, Newborn , Male , Nephroma, Mesoblastic/diagnosis , Nephroma, Mesoblastic/pathology , RNA-Seq , ETS Translocation Variant 6 Protein
13.
Cesk Patol ; 58(3): 135-137, 2022.
Article in English | MEDLINE | ID: mdl-36224035

ABSTRACT

The new WHO classification of CNS tumors is largely based on molecular diagnostic. Without molecular methods some entities can no longer be diagnosed. We are trying to show a rational approach to the CNS tumors diagnostics, which is based on conventional molecular methods such as RT-PCR, Sanger sequencing, MLPA, extended by the next generation sequencing (NGS) and methylation SNP array.


Subject(s)
Central Nervous System Neoplasms , High-Throughput Nucleotide Sequencing , Central Nervous System Neoplasms/diagnosis , Central Nervous System Neoplasms/genetics , Humans , Mutation
14.
Acta Neuropathol ; 142(5): 827-839, 2021 11.
Article in English | MEDLINE | ID: mdl-34355256

ABSTRACT

Ependymomas encompass a heterogeneous group of central nervous system (CNS) neoplasms that occur along the entire neuroaxis. In recent years, extensive (epi-)genomic profiling efforts have identified several molecular groups of ependymoma that are characterized by distinct molecular alterations and/or patterns. Based on unsupervised visualization of a large cohort of genome-wide DNA methylation data, we identified a highly distinct group of pediatric-type tumors (n = 40) forming a cluster separate from all established CNS tumor types, of which a high proportion were histopathologically diagnosed as ependymoma. RNA sequencing revealed recurrent fusions involving the pleomorphic adenoma gene-like 1 (PLAGL1) gene in 19 of 20 of the samples analyzed, with the most common fusion being EWSR1:PLAGL1 (n = 13). Five tumors showed a PLAGL1:FOXO1 fusion and one a PLAGL1:EP300 fusion. High transcript levels of PLAGL1 were noted in these tumors, with concurrent overexpression of the imprinted genes H19 and IGF2, which are regulated by PLAGL1. Histopathological review of cases with sufficient material (n = 16) demonstrated a broad morphological spectrum of tumors with predominant ependymoma-like features. Immunohistochemically, tumors were GFAP positive and OLIG2- and SOX10 negative. In 3/16 of the cases, a dot-like positivity for EMA was detected. All tumors in our series were located in the supratentorial compartment. Median age of the patients at the time of diagnosis was 6.2 years. Median progression-free survival was 35 months (for 11 patients with data available). In summary, our findings suggest the existence of a novel group of supratentorial neuroepithelial tumors that are characterized by recurrent PLAGL1 fusions and enriched for pediatric patients.


Subject(s)
Cell Cycle Proteins/genetics , Ependymoma/genetics , Supratentorial Neoplasms/genetics , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Child , Female , Humans , Male , Oncogene Fusion
15.
Acta Neuropathol ; 142(5): 841-857, 2021 11.
Article in English | MEDLINE | ID: mdl-34417833

ABSTRACT

Large-scale molecular profiling studies in recent years have shown that central nervous system (CNS) tumors display a much greater heterogeneity in terms of molecularly distinct entities, cellular origins and genetic drivers than anticipated from histological assessment. DNA methylation profiling has emerged as a useful tool for robust tumor classification, providing new insights into these heterogeneous molecular classes. This is particularly true for rare CNS tumors with a broad morphological spectrum, which are not possible to assign as separate entities based on histological similarity alone. Here, we describe a molecularly distinct subset of predominantly pediatric CNS neoplasms (n = 60) that harbor PATZ1 fusions. The original histological diagnoses of these tumors covered a wide spectrum of tumor types and malignancy grades. While the single most common diagnosis was glioblastoma (GBM), clinical data of the PATZ1-fused tumors showed a better prognosis than typical GBM, despite frequent relapses. RNA sequencing revealed recurrent MN1:PATZ1 or EWSR1:PATZ1 fusions related to (often extensive) copy number variations on chromosome 22, where PATZ1 and the two fusion partners are located. These fusions have individually been reported in a number of glial/glioneuronal tumors, as well as extracranial sarcomas. We show here that they are more common than previously acknowledged, and together define a biologically distinct CNS tumor type with high expression of neural development markers such as PAX2, GATA2 and IGF2. Drug screening performed on the MN1:PATZ1 fusion-bearing KS-1 brain tumor cell line revealed preliminary candidates for further study. In summary, PATZ1 fusions define a molecular class of histologically polyphenotypic neuroepithelial tumors, which show an intermediate prognosis under current treatment regimens.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Kruppel-Like Transcription Factors/genetics , Neoplasms, Neuroepithelial/genetics , Neoplasms, Neuroepithelial/pathology , Repressor Proteins/genetics , Biomarkers, Tumor/genetics , Child , Child, Preschool , Female , Humans , Male , Oncogene Fusion , Oncogene Proteins, Fusion/genetics
16.
Cesk Patol ; 57(3): 136-143, 2021.
Article in English | MEDLINE | ID: mdl-34551560

ABSTRACT

Molecular assays for translocation detection in different tumors have gradually been incorporated into routine diagnostics. However, conventional methods such as fluorescence in situ hybridization (FISH) and reverse transcriptase-PCR come with several drawbacks. Next-generation sequencing (NGS) can provide in-depth detection of numerous gene alterations. The anchored multiplex PCR assay proved to be a fast and easy-to-analyze approach for routine diagnostics laboratories. Next-generation sequencing-based anchored multiplex PCR technique (Archer FusionPlex Panels) is beneficial in both diagnosis for patient care and in identification of a novel fusion breakpoint in tumors. NGS is useful in identifying targetable molecular changes (point mutations, fusion genes, etc.) in tumors that can serve as a rationale for inclusion of patients with advanced disease in ongoing clinical trials and allow for better risk stratification.


Subject(s)
High-Throughput Nucleotide Sequencing , Neoplasms , Humans , In Situ Hybridization, Fluorescence , Multiplex Polymerase Chain Reaction , Neoplasms/diagnosis , Neoplasms/genetics , Translocation, Genetic
17.
Cesk Patol ; 57(3): 154-160, 2021.
Article in English | MEDLINE | ID: mdl-34551564

ABSTRACT

Examination of changes in the methylation profile of DNA in cancer is currently used to determine the diagnosis or prognostic and predictive biomarkers. It complements histological or molecular biological examinations. At the same time, it helps to identify new diagnostic groups and subgroups. Currently, this diagnosis is most common in brain tumors, where it has become a routine examination. The established methylation profile may help even where the diagnosis or subgroup classification of the disease cannot be determined in any other way, as is the case with medulloblastoma.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Cerebellar Neoplasms/genetics , DNA Methylation , Humans , Prognosis
18.
Pediatr Blood Cancer ; 67(5): e28228, 2020 05.
Article in English | MEDLINE | ID: mdl-32124552

ABSTRACT

Seventeen children at six institutions with neurofibromatosis type 2 (NF2)-related vestibular schwannomas received bevacizumab. Eight of the 13 patients with initial hearing loss (61%) showed objective hearing improvement within six months of treatment. No patients showed hearing deterioration during therapy; however, only two patients showed objective radiological response. Seven of eight patients had tumor progression or worsening hearing loss upon cessation of treatment. Bevacizumab was well tolerated with no patients discontinuing therapy. Bevacizumab appears to postpone hearing loss in childhood NF2-associated vestibular schwannomas, but responses are not durable, suggesting that either longer maintenance therapy or new strategies are required.


Subject(s)
Bevacizumab/administration & dosage , Neurofibromin 2/metabolism , Neuroma, Acoustic/drug therapy , Neuroma, Acoustic/metabolism , Adolescent , Child , Female , Humans , Male , Neuroma, Acoustic/pathology , Neuroma, Acoustic/physiopathology
19.
Pediatr Blood Cancer ; 67(12): e28627, 2020 12.
Article in English | MEDLINE | ID: mdl-32959992

ABSTRACT

Central nervous system high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1) is a rare recently described entity. Fourteen CNS HGNET-MN1 patients were identified using genome-wide methylation arrays/RT-PCR across seven institutions. All patients had surgery (gross total resection: 10; subtotal resection: four) as initial management followed by observation alone in three patients, followed by radiotherapy in eight patients (focal: five; craniospinal: two; CyberKnife: one) and systemic chemotherapy in three patients. Seven patients relapsed; five local and two metastatic, despite adjuvant radiotherapy, of which three died. Treatment of CNS HGNET-MN1 remains a major treatment challenge despite aggressive surgical resections and upfront radiotherapy, warranting new approaches to this rare malignancy.


Subject(s)
Central Nervous System Neoplasms/pathology , Mutation , Neoplasms, Neuroepithelial/pathology , Trans-Activators/genetics , Tumor Suppressor Proteins/genetics , Adolescent , Adult , Central Nervous System Neoplasms/genetics , Central Nervous System Neoplasms/therapy , Child , Child, Preschool , Combined Modality Therapy , Female , Follow-Up Studies , Humans , Male , Neoplasms, Neuroepithelial/genetics , Neoplasms, Neuroepithelial/therapy , Prognosis , Retrospective Studies , Young Adult
20.
Cancer ; 125(11): 1867-1876, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30768777

ABSTRACT

BACKGROUND: Posterior fossa ependymoma (PFE) comprises 2 groups, PF group A (PFA) and PF group B (PFB), with stark differences in outcome. However, to the authors' knowledge, the long-term outcomes of PFA ependymoma have not been described fully. The objective of the current study was to identify predictors of survival and neurocognitive outcome in a large consecutive cohort of subgrouped patients with PFE over 30 years. METHODS: Demographic, survival, and neurocognitive data were collected from consecutive patients diagnosed with PFE from 1985 through 2014 at the Hospital for Sick Children in Toronto, Ontario, Canada. Subgroup was assigned using genome-wide methylation array and/or immunoreactivity to histone H3 K27 trimethylation (H3K27me3). RESULTS: A total of 72 PFE cases were identified, 89% of which were PFA. There were no disease recurrences noted among patients with PFB. The 10-year progression-free survival rate for all patients with PFA was poor at 37.1% (95% confidence interval, 25.9%-53.1%). Analysis of consecutive 10-year epochs revealed significant improvements in progression-free survival and/or overall survival over time. This pertains to the increase in the rate of gross (macroscopic) total resection from 35% to 77% and the use of upfront radiotherapy increasing from 65% to 96% over the observed period and confirmed in a multivariable model. Using a mixed linear model, analysis of longitudinal neuropsychological outcomes restricted to patients with PFA who were treated with focal irradiation demonstrated significant continuous declines in the full-scale intelligence quotient over time with upfront conformal radiotherapy, even when correcting for hydrocephalus, number of surgeries, and age at diagnosis (-1.33 ± 0.42 points/year; P = .0042). CONCLUSIONS: Data from a molecularly informed large cohort of patients with PFE clearly indicate improved survival over time, related to more aggressive surgery and upfront radiotherapy. However, to the best of the authors' knowledge, the current study is the first, in a subgrouped cohort, to demonstrate that this approach results in reduced neurocognitive outcomes over time.


Subject(s)
Ependymoma/therapy , Infratentorial Neoplasms/therapy , Neurocognitive Disorders/etiology , Neurosurgical Procedures/adverse effects , Radiotherapy/adverse effects , Adolescent , Child , Child, Preschool , Ependymoma/mortality , Ependymoma/psychology , Female , Humans , Infant , Infratentorial Neoplasms/mortality , Infratentorial Neoplasms/psychology , Male , Neoadjuvant Therapy/adverse effects , Ontario , Survival Analysis , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL