Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Histochem Cell Biol ; 157(1): 27-38, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34524512

ABSTRACT

Adapted fixation methods for electron microscopy allowed us to study liver cell fine structure in 217 biopsies of intact human livers over the course of 10 years. The following novel observations and concepts arose: single fat droplets in parenchymal cells can grow to a volume four times larger than the original cell, thereby extremely marginalizing the cytoplasm with all organelles. Necrosis of single parenchymal cells, still containing one huge fat droplet, suggests death by fat in a process of single-cell steatonecrosis. In a later stage of single-cell steatonecrosis, neutrophils and erythrocytes surround the single fat droplet, forming an inflammatory fat follicle indicating the apparent onset of inflammation. Also, fat droplets frequently incorporate masses of filamentous fragments and other material, most probably representing Mallory substance. No other structure or material was found that could possibly represent Mallory bodies. We regularly observe the extrusion of huge fat droplets, traversing the peripheral cytoplasm of parenchymal cells, the Disse space and the endothelium. These fat droplets fill the sinusoid as a sinusoidal lipid embolus. In conclusion, adapted methods of fixation applied to human liver tissue revealed that single, huge fat droplets cause necrosis and inflammation in single parenchymal cells. Fat droplets also collect Mallory substance and give rise to sinusoidal fat emboli. Therefore, degreasing of the liver seems to be an essential therapeutic first step in the self-repairing of non-alcoholic fatty liver disease. This might directly reduce single-cell steatotic necrosis and inflammation as elements in non-alcoholic steatohepatitis progression.


Subject(s)
Liver , Non-alcoholic Fatty Liver Disease , Hepatocytes/pathology , Humans , Inflammation/metabolism , Liver/pathology , Necrosis/metabolism , Necrosis/pathology , Non-alcoholic Fatty Liver Disease/metabolism
2.
Int J Mol Sci ; 23(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36077249

ABSTRACT

Liver sinusoidal endothelial cells (LSECs) facilitate the efficient transport of macromolecules and solutes between the blood and hepatocytes. The efficiency of this transport is realized via transcellular nanopores, called fenestrations. The mean fenestration size is 140 ± 20 nm, with the range from 50 nm to 350 nm being mostly below the limits of diffraction of visible light. The cellular mechanisms controlling fenestrations are still poorly understood. In this study, we tested a hypothesis that both Rho kinase (ROCK) and myosin light chain (MLC) kinase (MLCK)-dependent phosphorylation of MLC regulates fenestrations. We verified the hypothesis using a combination of several molecular inhibitors and by applying two high-resolution microscopy modalities: structured illumination microscopy (SIM) and scanning electron microscopy (SEM). We demonstrated precise, dose-dependent, and reversible regulation of the mean fenestration diameter within a wide range from 120 nm to 220 nm and the fine-tuning of the porosity in a range from ~0% up to 12% using the ROCK pathway. Moreover, our findings indicate that MLCK is involved in the formation of new fenestrations-after inhibiting MLCK, closed fenestrations cannot be reopened with other agents. We, therefore, conclude that the Rho-ROCK pathway is responsible for the control of the fenestration diameter, while the inhibition of MLCK prevents the formation of new fenestrations.


Subject(s)
Actins , Myosin Light Chains , Actins/metabolism , Animals , Endothelial Cells/metabolism , Hepatocytes/metabolism , Liver/metabolism , Mice , Microscopy, Electron, Scanning , Myosin Light Chains/metabolism , Myosin-Light-Chain Kinase/metabolism , Phosphorylation , rho-Associated Kinases/metabolism
3.
Traffic ; 20(12): 932-942, 2019 12.
Article in English | MEDLINE | ID: mdl-31569283

ABSTRACT

Fenestrae are open transmembrane pores that are a structural hallmark of healthy liver sinusoidal endothelial cells (LSECs). Their key role is the transport of solutes and macromolecular complexes between the sinusoidal lumen and the space of Disse. To date, the biochemical nature of the cytoskeleton elements that surround the fenestrae and sieve plates in LSECs remain largely elusive. Herein, we took advantage of the latest developments in atomic force imaging and super-resolution fluorescence nanoscopy to define the organization of the supramolecular complex(es) that surround the fenestrae. Our data revealed that spectrin, together with actin, lines the inner cell membrane and provided direct structural support to the membrane-bound pores. We conclusively demonstrated that diamide and iodoacetic acid (IAA) affect fenestrae number by destabilizing the LSEC actin-spectrin scaffold. Furthermore, IAA induces rapid and repeatable switching between the open vs closed state of the fenestrae, indicating that the spectrin-actin complex could play an important role in controlling the pore number. Our results suggest that spectrin functions as a key regulator in the structural preservation of the fenestrae, and as such, it might serve as a molecular target for altering transendothelial permeability.


Subject(s)
Actins/metabolism , Cell Membrane/ultrastructure , Endothelial Cells/ultrastructure , Liver/ultrastructure , Spectrin/metabolism , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/ultrastructure , Animals , Cell Membrane/metabolism , Cells, Cultured , Endothelial Cells/metabolism , Liver/blood supply , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Microscopy, Atomic Force , Single Molecule Imaging
4.
Hepatology ; 69(2): 876-888, 2019 02.
Article in English | MEDLINE | ID: mdl-30137644

ABSTRACT

The fenestrae of liver sinusoidal endothelial cells (LSECs) allow passive transport of solutes, macromolecules, and particulate material between the sinusoidal lumen and the liver parenchymal cells. Until recently, fenestrae and fenestrae-associated structures were mainly investigated using electron microscopy on chemically fixed LSECs. Hence, the knowledge about their dynamic properties has remained to date largely elusive. Recent progress in atomic force microscopy (AFM) has allowed the study of live cells in three dimensions (X, Y, and Z) over a prolonged time (t) and this at unprecedented speeds and resolving power. Hence, we employed the latest advances in AFM imaging on living LSECs. As a result, we were able to monitor the position, size, and number of fenestrae and sieve plates using four-dimensional AFM (X, Y, Z, and t) on intact LSECs in vitro. During these time-lapse experiments, dynamic data were collected on the origin and morphofunctional properties of the filtration apparatus of LSECs. We present structural evidence on single laying and grouped fenestrae, thereby elucidating their dynamic nature from formation to disappearance. We also collected data on the life span of fenestrae. More especially, the formation and closing of entire sieve plates were observed, and how the continuous rearrangement of sieve plates affects the structure of fenestrae within them was recorded. We observed also the dawn and rise of fenestrae-forming centers and defenestration centers in LSECs under different experimental conditions. Conclusion: Utilizing a multimodal biomedical high-resolution imaging technique we collected fine structural information on the life span, formation, and disappearance of LSEC fenestrae; by doing so, we also gathered evidence on three different pathways implemented in the loss of fenestrae that result in defenestrated LSECs.


Subject(s)
Endothelial Cells/physiology , Liver/cytology , Animals , Cytochalasin B , Depsipeptides , Mice , Microscopy, Atomic Force
5.
Pol J Microbiol ; 64(3): 307-10, 2015.
Article in English | MEDLINE | ID: mdl-26638541

ABSTRACT

This paper presents a description of an experiment in which the survival rate of the probiotic bacteria Lactobacillus acidophilus PCM2499 was increased only due to the presence of Fe3O4 magnetic nanoparticles. The survival rate increased from 1.3 to 10 times compare to the control. It has been shown that the minimum concentration of NPs with a positive effect equals 8 mg/ml and the maximum concentration of the NPs equals 24 mg/ml.


Subject(s)
Lactobacillus acidophilus/growth & development , Magnetite Nanoparticles/chemistry , Microbial Viability , Probiotics/chemistry , Culture Media/chemistry , Hydrogen-Ion Concentration , Lactobacillus acidophilus/chemistry
6.
Redox Biol ; 72: 103162, 2024 06.
Article in English | MEDLINE | ID: mdl-38669864

ABSTRACT

Protein disulfide isomerases (PDIs) are involved in many intracellular and extracellular processes, including cell adhesion and cytoskeletal reorganisation, but their contribution to the regulation of fenestrations in liver sinusoidal endothelial cells (LSECs) remains unknown. Given that fenestrations are supported on a cytoskeleton scaffold, this study aimed to investigate whether endothelial PDIs regulate fenestration dynamics in primary mouse LSECs. PDIA3 and PDIA1 were found to be the most abundant among PDI isoforms in LSECs. Taking advantage of atomic force microscopy, the effects of PDIA1 or PDIA3 inhibition on the fenestrations in LSECs were investigated using a classic PDIA1 inhibitor (bepristat) and novel aromatic N-sulfonamides of aziridine-2-carboxylic acid derivatives as PDIA1 (C-3389) or PDIA3 (C-3399) inhibitors. The effect of PDIA1 inhibition on liver perfusion was studied in vivo using dynamic contrast-enhanced magnetic resonance imaging. Additionally, PDIA1 inhibitors were examined in vitro in LSECs for effects on adhesion, cytoskeleton organisation, bioenergetics, and viability. Inhibition of PDIA1 with bepristat or C-3389 significantly reduced the number of fenestrations in LSECs, while inhibition of PDIA3 with C-3399 had no effect. Moreover, the blocking of free thiols by the cell-penetrating N-ethylmaleimide, but not by the non-cell-penetrating 4-chloromercuribenzenesulfonate, resulted in LSEC defenestration. Inhibition of PDIA1 did not affect LSEC adhesion, viability, and bioenergetics, nor did it induce a clear-cut rearrangement of the cytoskeleton. However, PDIA1-dependent defenestration was reversed by cytochalasin B, a known fenestration stimulator, pointing to the preserved ability of LSECs to form new pores. Importantly, systemic inhibition of PDIA1 in vivo affected intra-parenchymal uptake of contrast agent in mice consistent with LSEC defenestration. These results revealed the role of intracellular PDIA1 in the regulation of fenestration dynamics in LSECs, and in maintaining hepatic sinusoid homeostasis.


Subject(s)
Endothelial Cells , Liver , Protein Disulfide-Isomerases , Animals , Male , Mice , Cell Adhesion , Cells, Cultured , Cytoskeleton/metabolism , Endothelial Cells/metabolism , Endothelial Cells/cytology , Enzyme Inhibitors/pharmacology , Liver/metabolism , Liver/cytology , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/antagonists & inhibitors
7.
Micron ; 161: 103325, 2022 10.
Article in English | MEDLINE | ID: mdl-35932629

ABSTRACT

The Publisher regrets that this article is an accidental duplication of an article that has already been published in Micron, Volume 161, October 2022, 103325, https://doi.org/10.1016/j.micron.2022.103325. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.

8.
Micron ; 160: 103329, 2022 09.
Article in English | MEDLINE | ID: mdl-35934657

ABSTRACT

Atomic force microscopy (AFM) and atomic force spectroscopy (AFS) constantly develop to address the detailed description of biophysical changes occurring during cell pathologies. Although AFM is still not a clinical diagnostic tool, it provides invaluable information on the transition of cells from physiological to pathological states. This special issue on "Different approaches to force spectroscopy in the research of cell pathologies" covers some of the latest scientific reports created to bring AFM closer to diagnosing pathology in biological material.


Subject(s)
Mechanical Phenomena , Microscopy, Atomic Force/methods , Spectrum Analysis
9.
Sci Rep ; 12(1): 16276, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36175469

ABSTRACT

Although complex, the biological processes underlying ischemic stroke are better known than those related to biomechanical alterations of single cells. Mechanisms of biomechanical changes and their relations to the molecular processes are crucial for understanding the function and dysfunction of the brain. In our study, we applied atomic force microscopy (AFM) to quantify the alterations in biomechanical properties in neuroblastoma SH-SY5Y cells subjected to oxygen and glucose deprivation (OGD) and reoxygenation (RO). Obtained results reveal several characteristics. Cell viability remained at the same level, regardless of the OGD and RO conditions, but, in parallel, the metabolic activity of cells decreased with OGD duration. 24 h RO did not recover the metabolic activity fully. Cells subjected to OGD appeared softer than control cells. Cell softening was strongly present in cells after 1 h of OGD and with longer OGD duration, and in RO conditions, cells recovered their mechanical properties. Changes in the nanomechanical properties of cells were attributed to the remodelling of actin filaments, which was related to cofilin-based regulation and impaired metabolic activity of cells. The presented study shows the importance of nanomechanics in research on ischemic-related pathological processes such as stroke.


Subject(s)
Neural Stem Cells , Neuroblastoma , Actin Depolymerizing Factors , Glucose , Humans , Oxygen
10.
Front Physiol ; 12: 735573, 2021.
Article in English | MEDLINE | ID: mdl-34588998

ABSTRACT

The porosity of liver sinusoidal endothelial cells (LSEC) ensures bidirectional passive transport of lipoproteins, drugs and solutes between the liver capillaries and the liver parenchyma. This porosity is realized via fenestrations - transcellular pores with diameters in the range of 50-300 nm - typically grouped together in sieve plates. Aging and several liver disorders severely reduce LSEC porosity, decreasing their filtration properties. Over the years, a variety of drugs, stimulants, and toxins have been investigated in the context of altered diameter or frequency of fenestrations. In fact, any change in the porosity, connected with the change in number and/or size of fenestrations is reflected in the overall liver-vascular system crosstalk. Recently, several commonly used medicines have been proposed to have a beneficial effect on LSEC re-fenestration in aging. These findings may be important for the aging populations of the world. In this review we collate the literature on medicines, recreational drugs, hormones and laboratory tools (including toxins) where the effect LSEC morphology was quantitatively analyzed. Moreover, different experimental models of liver pathology are discussed in the context of fenestrations. The second part of this review covers the cellular mechanisms of action to enable physicians and researchers to predict the effect of newly developed drugs on LSEC porosity. To achieve this, we discuss four existing hypotheses of regulation of fenestrations. Finally, we provide a summary of the cellular mechanisms which are demonstrated to tune the porosity of LSEC.

SELECTION OF CITATIONS
SEARCH DETAIL