Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell Biochem Funct ; 42(1): e3919, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38269512

ABSTRACT

Immunotherapy has lately become the most preferred cancer treatment method, and for non-small cell lung cancer (NSCLC) first-line treatment, there are many immunotherapy options. This study aimed to assess the effectiveness and toxicity of paclitaxel (PTX), docetaxel (DTX) chemotherapy, immune checkpoint inhibitor treatment (durvalumab; DVL), and their combination in NSCLC. A-549 cells were treated with DVL in combination with PTX and DTX (a quarter of the IC50 ) to investigate their anticancer effects on these cells. The MTT assay, wound healing tests, and double-staining with Annexin V/PI were used to assess the cell viability, apoptosis, and migration. The results showed that a combination of 0.35 mg/mL DVL with 6.5 µg/mL PTX and 1.75 µg/mL DTX produced a synergistic effect with CI values of 0.88, 0.37, and 0.81, respectively. Moreover, the PTX + DTX + DVL combination led to a significantly increased apoptotic rate up to 88.70 ± 3.39% in the A549 cell line compared to monotherapy (p < .001). In addition, we found that the combination therapy with these agents increased the expression level of Bax, Cas-3, p53, and Bax/Bcl-2 ratio in all experimental groups. In conclusion, the results suggest that combining anti-PD-L1 antibody therapy with chemotherapy may provide a promising approach to enhance treatment outcomes and be a potentially efficacious strategy for treating NSCLC patients. Further research and clinical investigations are needed to elucidate the underlying molecular mechanisms and validate the therapeutic potential of these compounds in vivo.


Subject(s)
Antibodies, Monoclonal , Bridged-Ring Compounds , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , bcl-2-Associated X Protein , Lung Neoplasms/drug therapy , Taxoids/pharmacology , Docetaxel/pharmacology , Paclitaxel/pharmacology
2.
Cancer Cell Int ; 23(1): 265, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37936192

ABSTRACT

V-domain immunoglobulin suppressor of T cell activation (VISTA) is a novel negative checkpoint receptor (NCR) primarily involved in maintaining immune tolerance. It has a role in the pathogenesis of autoimmune disorders and cancer and has shown promising results as a therapeutic target. However, there is still some ambiguity regarding the ligands of VISTA and their interactions with each other. While V-Set and Immunoglobulin domain containing 3 (VSIG-3) and P-selectin glycoprotein ligand-1(PSGL-1) have been extensively studied as ligands for VISTA, the others have received less attention. It seems that investigating VISTA ligands, reviewing their functions and roles, as well as outcomes related to their interactions, may allow an understanding of their full functionality and effects within the cell or the microenvironment. It could also help discover alternative approaches to target the VISTA pathway without causing related side effects. In this regard, we summarize current evidence about VISTA, its related ligands, their interactions and effects, as well as their preclinical and clinical targeting agents.

3.
Mol Biol Rep ; 50(12): 10427-10443, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37874505

ABSTRACT

BACKGROUND: Today, modern lifestyles and disrupted sleep patterns cause circadian clock rhythm impairments that are associated with altered leptin levels, which subsequently affect a wide range of physiological processes and have significant health burdens on societies. Nevertheless, there has been no systematic review of circadian clock genes and proteins, leptin, and related signaling pathways. METHODS: Accordingly, we systematically reviewed circadian clock proteins, leptin, and molecular mechanisms between them by searching Pubmed, Scopus, ProQuest, Web of Sciences, and Google Scholar until September 2022. After considering the inclusion and exclusion criteria, 20 animal studies were selected. The risk of bias was assessed in each study. RESULTS: The results clarified the reciprocal interconnected relationship between circadian clock genes and leptin. Circadian clock genes regulate leptin expression and signaling via different mechanisms, such as CLOCK-BMAL1 heterodimers, which increase the expression of PPARs. PPARs induce the expression of C/EBPα, a key factor in upregulating leptin expression. CLOCK-BMAL1 also induces the expression of Per1 and Rev-erb genes. PER1 activates mTORC1 and mTORC1 enhances the expression of C/EBPα. In addition, REV-ERBs activate the leptin signaling pathway. Also, leptin controls the expression of circadian clock genes by triggering the AMPK and ERK/MAPK signaling pathways, which regulate the activity of PPARs. Moreover, the roles of these molecular mechanisms are elucidated in different physiological processes and organs. CONCLUSIONS: Crosstalk between circadian clock genes and leptin and their affecting elements should be considered in the selection of new therapeutic targets for related disorders, especially obesity and metabolic impairments.


Subject(s)
Circadian Clocks , Circadian Rhythm Signaling Peptides and Proteins , Animals , ARNTL Transcription Factors , Circadian Clocks/genetics , Circadian Rhythm/genetics , Leptin/genetics , Mechanistic Target of Rapamycin Complex 1 , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Peroxisome Proliferator-Activated Receptors , Humans
4.
J Res Med Sci ; 28: 11, 2023.
Article in English | MEDLINE | ID: mdl-36974113

ABSTRACT

Background: Understanding the contributing of influence inflammatory biomarkers in asthmatic patients with metabolic syndrome is more important. Whereby, the present study considering the important association of NADPH oxidase4 (NOX4) and Toll- like receptor4 (TLR4) in the respiratory inflammatory responses in asthmatic patients with metabolic syndrome (AS-MetS) and asthmatic (AS) patients. Materials and Methods: In this case-control study, 30 AS and 34 AS-MetS patients were enrolled. The Peripheral blood mononuclear cells (PBMCs) mRNA and protein levels of TLR4 and NOX4 were measured by qRT-PCR and western blot, respectively. Then their correlation was evaluated. Results: The significant down-regulation of mRNA and protein PBMCs expression levels of TLR4 were observed in the AS-MetS group in comparison to AS one (P=0.03), but the NOX4 expression was non-significant. Additionally, the significant correlation was exhibited between mRNA expression levels of NOX4 and TLR4 in both AS-MetS (r= 0.440, P=0.009) and AS groups (r=0.909, P=0.0001). The association between TLR4 mRNA level and triglyceride in AS-MetS group (r=0.454, P=0.008,) and also white blood cells (WBC) in AS group (r= -0.507, P=0.006,) were significant. Conclusion: The metabolic syndrome can significantly influence the expressions of TLR4 in AS-MetS. This study indicated that TLR4 and NOX4 altogether may provide valuable molecular knowledge of their relation with metabolic syndrome criteria for finding major pathways in different phenotype of asthma.

5.
IUBMB Life ; 73(2): 307-327, 2021 02.
Article in English | MEDLINE | ID: mdl-33369006

ABSTRACT

Long non-coding RNAs (lncRNA) have been emerged as a novel class of molecular regulators in cancer. They are dysregulated in many types of cancer; however, there is not enough knowledge available on their expression and functional profiles. Lung cancer is the leading cause of the cancer deaths worldwide. Generally, lncRNAs may be associated with lung tumor pathogenesis and they may act as biomarkers for the cancer prognosis and diagnosis. Compared to other invasive prognostic and diagnostic methods, detection of lncRNAs might be a user-friendly and noninvasive method. In this review article, we selected 27 tumor-associated lncRNAs by literature reviewing to further discussing in detail for using as diagnostic and prognostic biomarkers in lung cancer. Also, in an in silico target analysis, the "Experimentally supported functional regulation" approach of the LncTarD web tool was used to identifying the target genes and regulatory mechanisms of the selected lncRNAs. The reports on diagnostic and prognostic potential of all selected lncRNAs were discussed. However, the target genes and regulatory mechanisms of the 22 lncRNAs were identified by in silico analysis and we found the pathways that are controlled by each target group of lncRNAs. They use epigenetic mechanisms, ceRNA mechanisms, protein interaction and sponge mechanism. Also, 10, 23, 5, and 28 target genes for each of these mechanisms were identified, respectively. Finally, each group of target genes controls 50, 12, 7, and 2 molecular pathways, respectively. In conclusion, LncRNAs could be used as biomarkers in lung cancer due to their roles in control of several signaling pathways related to lung tumors. Also, it seems that lncRNAs, which use epigenetic mechanisms for modulating a large number of pathways, could be considered as important subjects for lung cancer-related diagnostic and prognostic biomarkers.


Subject(s)
Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Lung Neoplasms/diagnosis , RNA, Long Noncoding/genetics , Humans , Lung Neoplasms/therapy , Prognosis
6.
Infection ; 49(6): 1133-1147, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34160789

ABSTRACT

The escalating prevalence of coronavirus disease 2019 (COVID-19) worldwide, with an increased rate of morbidity and mortality, highlights an urgent need to develop more effective therapeutic interventions. Despite the authorized treatment against COVID-19 by the European Union (EU), the safety and effectiveness of this therapeutic strategy for a wide variety of patients have remained a significant challenge. In this respect, micronutrients such as vitamins and minerals, as essential factors, can be considered for improving the function of the immune system and accelerating the treatment procedure. Dietary supplements can attenuate vascular and inflammatory manifestations related to infectious diseases in large part due to their anti-inflammatory and antioxidant properties. Recently, it has been revealed that poor nutritional status may be one of the notable risk factors in severe COVID-19 infections. In the current review, we focus on the micronutrient therapy of COVID-19 patients and provide a comprehensive insight into the essential vitamins/minerals and their role in controlling the severity of the COVID-19 infection. We also discuss the recent advancements, challenges, negative and positive outcomes in relevance to this approach.


Subject(s)
COVID-19 , Micronutrients , Dietary Supplements , Humans , SARS-CoV-2 , Vitamins/therapeutic use
7.
Biol Res ; 53(1): 52, 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33187557

ABSTRACT

BACKGROUND: Chinese hamster ovary (CHO) cells are the most commonly used mammalian host cell in the commercial-scale production of biopharmaceutical proteins. Modification of genes involved in apoptosis may improve the productivity of CHO cells. Executive caspases, including caspases 3 and 7, play critical roles in apoptosis. The effects of the ablation of the caspase 7 gene on proliferation and viability of CHO cells remains unknown. In this study, we applied clustered regularly interspaced short palindromic repeat (CRISPR/Cas9) to target caspase 7 gene of CHO K1 cell via all in one and homology targeted integration strategies. Consequently, the effect of caspase 7 deficiency on cell proliferation, viability, and apoptosis was studied by MTT assay and flow cytometry. RESULTS: Findings of gel electrophoresis, western blotting, and sequencing confirmed the caspase 7 gene silencing in CHO cells (CHO-KO). Proliferation assay revealed that caspase 7 deficiency in CHO cells resulted in the reduction of proliferation in various CHO-KO clones. Besides, the disruption of caspase 7 had negative effects on cell viability in exposure with NaBu which confirmed by MTT assay. Results of flow cytometry using Anexin V/PI demonstrated that Nabu treatment (11 mM) declined the percentage of live CHO-K1 and CHO-KO cells to 70.3% and 5.79%. These results verified that the CHO-K1 cells were more resistant to apoptosis than CHO-KO, however most of CHO-KO cells undergone early apoptosis (91.9%) which seems to be a fascinating finding. CONCLUSION: These results reveal that caspase 7 may be involved in the cell cycle progression of CHO cells. Furthermore, it seems that targeting caspase 7 is not the ideal route as it had previously been imagined within the prevention of apoptosis but the relation between caspase 7 deficiency, cell cycle arrest, and the occurrence of early apoptosis will require more investigation.


Subject(s)
Apoptosis , Caspase 7/deficiency , Cell Proliferation , Cell Survival , Animals , CHO Cells , Caspase 7/genetics , Cricetinae , Cricetulus
8.
J Cell Physiol ; 234(2): 1560-1566, 2019 02.
Article in English | MEDLINE | ID: mdl-30132854

ABSTRACT

Lung cancer is a leading cause of cancer-related deaths worldwide, with less than a 5-year survival rate for both men and women. Epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma oncogene (KRAS) signaling pathways play a critical role in the proliferation and progression of various cancers, including lung cancer. Genetic studies have shown that amplification, over-expression, or mutation of EGFR is an early and major molecular event in many human tumors. KRAS mutation is a negative factor in various cancer, including non-small-cell lung cancer, and complicates therapeutic approaches with adjuvant chemotherapy and anti-EGFR directed therapies. This article is dedicated to evaluating the synergistic effect of a novel EGFR inhibitor AZD8931 and KRAS small interfering RNA (siRNA) on the proliferation and apoptosis of lung adenocarcinoma cancer cells. A549 lung cancer cells were treated with KRAS siRNA and the EGFR inhibitor alone or in combination. The cytotoxic effects of KRAS siRNA and te EGFR inhibitor were determined usingMTT assay, and induction of apoptosis was determined by FACS analysis. Suppression of KRAS, Her-2, and EGFR expression by treatments was measured by qRT-PCR and western blotting. KRAS siRNA and the EGFR inhibitor significantly reduced the proliferation of A549 cells as well as KRAS and EGFR mRNA levels 24 hr after treatment. The results also indicated that the silencing of KRAS and EGFR has synergistic effects on the induction of apoptosis on the A549 cells. These results indicated that KRAS and EGFR might play important roles in the progression of lung cancer and could be potential therapeutic targets for treatment of lung cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Lung Neoplasms/therapy , Proto-Oncogene Proteins p21(ras)/genetics , Quinazolines/pharmacology , RNA, Small Interfering/genetics , RNAi Therapeutics , A549 Cells , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/metabolism , RNA, Small Interfering/metabolism , Signal Transduction
9.
J Cell Physiol ; 234(3): 2134-2142, 2019 03.
Article in English | MEDLINE | ID: mdl-30317611

ABSTRACT

Ovarian cancer (OC) is the fifth leading cause of cancer-related death among women. The high mortality rate is due to lack of early symptoms, late diagnosis, limited treatment options, and also emerging of drug resistance. Todays, molecular markers have become promising in tumor-targeted therapy. Several molecular markers have been known in OC immunotherapy. Identification of the specific molecular markers with prognostic significance is interested. CD24 is a small sialoglycoprotein which is localized in lipid rafts through its glycosylphosphatidylinositol (GPI) anchor. It has been reported that CD24 is overexpressed in many cancers including OC. Also, CD24 is identified as a cancer stem cell marker in OC. The CD24 expression is associated with the development, invasion, and metastasis of cancer cells. The exact role of CD24 in cancer cells is not clearly understood. Recently, CD24 has been identified as an independent prognostic marker of survival in patients with OC. In this study, we reviewed the molecular targets in OC immune-targeted therapy and also presented an overview of the new molecular marker CD24 and its association with the OC by reviewing the recent literature.


Subject(s)
Biomarkers, Tumor/genetics , CD24 Antigen/genetics , Ovarian Neoplasms/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Ovarian Neoplasms/pathology , Prognosis , Survival
10.
J Cell Biochem ; 120(10): 16379-16392, 2019 10.
Article in English | MEDLINE | ID: mdl-31219653

ABSTRACT

Genome engineering technology is of great interest for biomedical research that enables scientists to make specific manipulation in the DNA sequence. Early methods for introducing double-stranded DNA breaks relies on protein-based systems. These platforms have enabled fascinating advances, but all are costly and time-consuming to engineer, preventing these from gaining high-throughput applications. The CRISPR-Cas9 system, co-opted from bacteria, has generated considerable excitement in gene targeting. In this review, we describe gene targeting techniques with an emphasis on recent strategies to improve the specificities of CRISPR-Cas systems for nuclease and non-nuclease applications.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , Humans
11.
J Cell Biochem ; 120(6): 10670-10677, 2019 06.
Article in English | MEDLINE | ID: mdl-30656741

ABSTRACT

BACKGROUND: Lung cancer is the leading cause of cancer-related death with less than 5-year survival rate for both men and women worldwide. KRAS (Kirsten rat sarcoma), nuclear factor-κB (NF-κB), and mitogen-activated protein kinase (MAPK) signaling pathways have a critical role in the proliferation and progression of various cancers, including lung cancer. The p38 MAPK plays a different role in various tissue hence show a tissue-dependent behavior. It acts as an oncogene in some tissues while plays as a tumor suppressor in some other tissues. Also, KRAS and NF-κB act as an oncogene in various cancer. This study was dedicated to analyzing the combined effect of NF-κB inhibitor, specific KRAS, and p38α small interfering RNA (siRNA) in A549 cell line. MATERIALS AND METHODS: The cytotoxic effects of p38α siRNA, KRAS siRNA, and NF-κB inhibitor were determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) assay. Relative p38α, KRAS, and NF-κB messenger RNA (mRNA) levels were measured by quantitative reverse-transcription polymerase chain reaction. Induction of apoptosis by treatments was measured by fluorescence-activated cell sorting (FACS) analysis. RESULTS: The expression of mRNA related to p38α and KRAS genes was reduced to 23.4% and 26.7%, respectively, after treatment with specific siRNAs. Also, MTT assay showed that the cell viability after treatment with p38α siRNA, KRAS siRNA, NF-κB inhibitor and their combination was reduced. FACS results indicated that p38α siRNA, KRAS siRNA, and NF-κB inhibitor, and their combination, reduced the population of live cells in comparison with the population of untreated control cells (99.5%). The results are expressed as mean ± SD (n = 3); *P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001 vs control group. CONCLUSION: The results of this study indicated that p38α, KRAS, and NF-κB signaling pathways might play an important role in the development and growth of lung cancer and might be a potential therapeutic target for treatment of lung cancer.


Subject(s)
Gene Expression Regulation, Neoplastic , Mitogen-Activated Protein Kinase 14/genetics , NF-kappa B/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Sulfhydryl Compounds/pharmacology , A549 Cells , Apoptosis/drug effects , Cell Survival/drug effects , Humans , Inhibitory Concentration 50 , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Mitogen-Activated Protein Kinase 14/metabolism , Molecular Targeted Therapy/methods , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Oxazines/pharmacology , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/metabolism , Pyridines/pharmacology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction
12.
Cancer Invest ; 36(1): 37-58, 2018 Jan 02.
Article in English | MEDLINE | ID: mdl-29336624

ABSTRACT

Lung cancer is the leading cause of cancer-related mortality with about 1.6 million deaths every year worldwide. Gene mutations and overexpression of oncogenes play a central role in malignant transformation in NSCLC. Conventional approaches for treatments of NSCLC have shown low levels of success while showing severe side effects. Target therapy using siRNA has recently emerged as a new strategy for cancer treatment by specific targeting of genes involved in the development and metastasis of cancer. This article dedicated to an update review of molecular targets could potentially be used for target therapy of lung cancer using SiRNA technology.


Subject(s)
Lung Neoplasms/genetics , RNA, Small Interfering/genetics , Animals , Humans , Molecular Targeted Therapy/methods , Mutation/genetics , Neoplasm Metastasis/genetics
13.
Immunopharmacol Immunotoxicol ; 40(3): 201-211, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29473438

ABSTRACT

INTRODUCTION: Rheumatoid arthritis (RA), as one of the most disabling autoimmune diseases, is a common health problem that progressively reduces the life quality of patients. Although various biologics have been introduced for RA, attempts to establish an efficient long-term therapies failed due to the heterogeneity of this disease. METHODS: In the last decade, immunomodulatory approaches such as T cell adoptive therapy have been developed for controlling autoimmunity. Regulatory T cells (Tregs), the major self-tolerance mediator, are crucial for down-regulation of aberrant immune stimulations. Hence, recruiting ex vivo Tregs emerged as a promising therapy for a variety of autoimmune diseases. RESULTS: The major bottleneck of the Treg adoptive therapy is maintaining the in vivo stability and plasticity of these fascinating cells. Recent progress in genome editing technology clustered regularly interspaced short palindromic repeats (CRISPR) in combination with CRISPR-associated (Cas) 9 system provided a new solution for this bottleneck. CONCLUSIONS: The present paper discusses RA pathogenesis and the potential application of new developments in CRISPR-mediated Treg genome editing in personalized therapy of RA.


Subject(s)
Arthritis, Rheumatoid , CRISPR-Cas Systems , Cell- and Tissue-Based Therapy/methods , T-Lymphocytes, Regulatory/immunology , Animals , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/therapy , Humans
15.
Cell Biochem Biophys ; 82(1): 107-118, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37870699

ABSTRACT

A tumor represents a highly intricate tissue entity, characterized by an exceptionally complex microenvironment that starkly contrasts with the typical physiological surroundings of healthy tissues. Within this tumor microenvironment (TME), every component and factor assume paramount importance in the progression of malignancy and exerts a pivotal influence on a patient's clinical outcome. One of the remarkable aspects of the TME is its remarkable heterogeneity, not only across different types of cancers but even within the same histological category of tumors. In-depth research has illuminated the intricate interplay between specific immune cells and molecules and the dynamic characteristics of the TME. Recent investigations have yielded compelling evidence that several mutations harbored by tumor cells possess the capacity to instigate substantial alterations in the TME. These mutations, often acting as drivers of tumorigenesis, can orchestrate a cascade of events that remodel the TME, thereby influencing crucial aspects of cancer behavior, including its invasiveness, immune evasion, and response to therapies. It is within this nuanced context that the present study endeavors to provide a concise yet comprehensive summary of how specific mutations, within the genetic landscape of cancer cells, can instigate profound changes in TME features. By elucidating the intricate relationship between genetic mutations and the TME, this research aims to contribute to a deeper understanding of cancer biology. Ultimately, the knowledge gained from this study holds the potential to inform the development of more targeted and effective treatments, thereby offering new hope to patients grappling with the complexities of cancer.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics , Carcinogenesis , Biology , Contrast Media , Mutation , Tumor Microenvironment/genetics
16.
Asian Pac J Cancer Prev ; 25(6): 1953-1958, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38918656

ABSTRACT

OBJECTIVE: Gastric cancer is a prevalent cancer type worldwide, and significant research efforts are focused on finding effective treatments. Recent studies have highlighted the importance of plasma membrane carriers, particularly solute carriers, in cancer progression. The SLC16A family, notably the SLC16A13 gene, plays a critical role in cancer development and tumor growth. This study aims to explore the impact of reducing SLC16A13 expression in gastric cancer cells on their survival, proliferation, and metastatic potential. METHODS: Gastric cancer cells (KATO2) were cultured in RPMI medium supplemented with 10% fetal bovine serum. The cells were then transfected with SLC16A13 si-RNA to lower gene expression. The effects of this si-RNA on cell death and apoptosis were assessed using MTT and flow cytometry assays. Cell migration capabilities were evaluated using the scratch test. Western blot and Real-Time PCR were employed to measure SLC16A13 expression levels and protein detection. Additionally, RT-PCR was used to analyze changes in genes related to apoptosis and cell migration. RESULTS: The reduction of SLC16A13 expression following si-RNA transfection significantly increased apoptosis and cell death in the KATO2 cell line after 72 hours (P < 0.0001). Furthermore, the study revealed that decreased SLC16A13 expression did not impact cancer cell migration. Cell viability, assessed by MTT assay, showed a significant decrease at 48 and 72 hours post-transfection (P < 0.0001). CONCLUSION: The findings indicate that targeting SLC16A13 can effectively increase cell death and apoptosis in gastric cancer cells, making it a viable therapeutic target.


Subject(s)
Apoptosis , Biomarkers, Tumor , Cell Movement , Cell Proliferation , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Tumor Cells, Cultured , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , RNA, Small Interfering/genetics
17.
Rep Biochem Mol Biol ; 12(4): 540-549, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39086590

ABSTRACT

Background: MicroRNAs (miRNAs) play pivotal roles in post-transcriptional regulation of gene expression and have emerged as crucial regulators in cancer development, progression, and metastasis. This study aimed to assess the expression profiles of miR-23, miR-223, miR-1246, and miR-150 in serum samples obtained from colorectal cancer (CRC) patients before and three months after surgery, in comparison to a healthy control group, to explore their biomarker potential. Methods: A total of 50 blood samples were collected from patients with CRC (pre- and post-surgery), along with 50 samples from healthy controls. The relative expression levels of miR-23, miR-223, miR-1246, and miR-150 in the serum were quantified using quantitative real-time PCR. Results: Our findings revealed upregulated expression levels of miR-23, miR-1246, and miR-223, while miR-150 exhibited significant downregulation in the serum of CRC subjects compared to healthy controls. Receiver operating characteristic (ROC) analysis indicated that miR-23 and miR-150 could distinguish CRC cases from controls with relatively high accuracy. Moreover, three months post-surgery, miR-23, miR-1246, and miR-223 serum levels were downregulated, and miR-150 was significantly upregulated. However, no significant correlations were observed between serum levels of the studied genes and the clinical features of our patients. Conclusions: The serum levels of miR-23 and miR-150 hold promise as potential biomarkers for the diagnosis and prognosis of CRC.

18.
Breast Dis ; 42(1): 437-445, 2023.
Article in English | MEDLINE | ID: mdl-38143331

ABSTRACT

AIM: In the present study, we sought to explore potential differences in the expression and promoter methylation of mitogen-activated protein kinase 1 (MAPK1) between tumor and marginal cells of breast cancer lesions. METHODS: A total of 50 randomly selected patients with breast cancer (BCa) undergoing needle biopsy were enrolled. Clinical specimens containing both tumor and marginal cells were collected and preserved. After DNA extraction using specific primers, MAPK1 mRNA and promoter methylation were measured with spectrophotometry at 260/280 nm absorption wavelengths. To deliver a comparative analysis, data from The Cancer Genome Atlas (TCGA) program regarding breast cancer (BRCA), were downloaded from Xena Functional Genomics Explorer and separately analyzed. The suitability of MAPK1 expression and promoter methylation as biomarkers for BCa was analyzed with receiver operating characteristic (ROC) curves. RESULTS: We found a positive correlation between tumor stage and MAPK1 expression (P-value: 0.029) in BCa. Likewise, MAPK1 expression was significantly associated with lymph node metastasis (P-value: 0.018). There was a significant difference in the expression of MAPK1 mRNA between tumor and marginal cells of BCa and BRCA (P-value < 0.001). However, we did not find any statistically significant difference in MAPK1 promoter methylation between tumor and marginal cells of both BCa and BRCA. With an area under the curve (AUC) of 0.71, the diagnostic accuracy of MAPK1 expression in BCa and BRCA was validated. However, MAPK1 promoter methylation was not found to be a suitable biomarker. CONCLUSION: Our findings suggest that while MAPK1 expression, might be a promising biomarker for evaluating oncogenic activity in patients suspected of BCa. We were not able to detect a prognostic/diagnostic role for MAPK1 promoter methylation.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , DNA Methylation , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Biomarkers , RNA, Messenger/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
19.
Curr Mol Med ; 23(7): 648-667, 2023 05 30.
Article in English | MEDLINE | ID: mdl-35619321

ABSTRACT

INTRODUCTION: MicroRNAs (miRNAs) are a group of small noncoding RNAs (ncRNAs) that post-transcriptionally control the expression of genes by binding and degrading their target mRNAs. miRNAs can function as possible tumor suppressors or oncogenes in various cancers. Lately, miRNAs application as a biomarker (prognosis and diagnosis) for different diseases has gained much attention. miRNAs exist in a stable form in several biological materials, including tissue, plasma, and serum. The noninvasive and easy screening of miRNAs in serum, blood, tissue, and other body fluids and acceptable stability make microRNA a noticeable factor as biomarkers in human malignancies. MATERIALS AND METHODS: In this review, we searched some online databases like Web of Science, Embase, and PubMed to find eligible manuscripts up to the end of 2021. RESULTS: Abnormal expressions of these molecules are associated with the incidence of many illnesses like cancer. Therefore, they are candidates as a molecular tool for noninvasive tumor prognosis and diagnosis. In the current study, we introduce important miRNAs that may be used as prognostic and diagnostic markers in lung cancer patients. CONCLUSION: We summarized the latest reports about critical miRNAs related to the diagnosis and prognosis in lung patients.


Subject(s)
Lung Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , RNA, Messenger , Gene Expression Regulation, Neoplastic
20.
Sci Total Environ ; 877: 162726, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36914132

ABSTRACT

The detrimental effects of atmospheric fine particulate matter (PM2.5) on human health are of major global concern. PM2.5-bound metals are toxic compounds that contribute to cellular damage. To investigate the toxic effects of water-soluble metals on human lung epithelial cells and their bioaccessibility to lung fluid, PM2.5 samples were collected from both urban and industrial areas in the metropolitan city of Tabriz, Iran. Oxidative stress indices, including proline content, total antioxidant capacity (TAC), cytotoxicity, and DNA damage levels of water-soluble components of PM2.5, were evaluated. Furthermore, an in vitro test was conducted to assess the bioaccessibility of various PM2.5-bound metals to the respiratory system using simulated lung fluid. PM2.5 average concentrations in urban and industrial areas were 83.11 and 97.71 µg/m3, respectively. The cytotoxicity effects of PM2.5 water-soluble constituents from urban areas were significantly higher than in industrial areas and the IC50 was found to be 96.76 ± 3.34 and 201.31 ± 5.96 µg/mL for urban and industrial PM2.5 samples, respectively. In addition, higher PM2.5 concentrations increased the proline content in a concentration-dependent manner in A549 cells, which plays a protective role against oxidative stress and prevents PM2.5-induced DNA damage. Also, the partial least squares regression revealed that Be, Cd, Co, Ni, and Cr, were significantly correlated with DNA damage and proline accumulation, which caused cell damage through oxidative stress. The results of this study showed that PM2.5-bound metals in highly polluted metropolitan city caused substantial changes in the cellular proline content, DNA damage levels and cytotoxicity in human lung A549 cells.


Subject(s)
Air Pollutants , Humans , Air Pollutants/toxicity , Air Pollutants/analysis , A549 Cells , Seasons , Environmental Monitoring/methods , Particulate Matter/toxicity , Particulate Matter/analysis , Metals/toxicity , Oxidative Stress , Water
SELECTION OF CITATIONS
SEARCH DETAIL