Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters

Publication year range
1.
Nat Mater ; 20(4): 495-502, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33398118

ABSTRACT

Simultaneous manipulation of multiple boundary conditions in nanoscale heterostructures offers a versatile route to stabilizing unusual structures and emergent phases. Here, we show that a stable supercrystal phase comprising a three-dimensional ordering of nanoscale domains with tailored periodicities can be engineered in PbTiO3-SrRuO3 ferroelectric-metal superlattices. A combination of laboratory and synchrotron X-ray diffraction, piezoresponse force microscopy, scanning transmission electron microscopy and phase-field simulations reveals a complex hierarchical domain structure that forms to minimize the elastic and electrostatic energy. Large local deformations of the ferroelectric lattice are accommodated by periodic lattice modulations of the metallic SrRuO3 layers with curvatures up to 107 m-1. Our results show that multidomain ferroelectric systems can be exploited as versatile templates to induce large curvatures in correlated materials, and present a route for engineering correlated materials with modulated structural and electronic properties that can be controlled using electric fields.

2.
Chemphyschem ; 23(6): e202200120, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35244957

ABSTRACT

The front cover artwork is provided by Prof. Masahiro Yamashita's group at Tohoku University and designed by Dr. Laurent Guérin at University of Rennes 1. The image illustrates that the atomic structure of a 2D charge density wave can be revealed although the planes associated to this local 2D order are randomly stacked preventing the use of conventional structure determination techniques. Read the full text of the Research Article at 10.1002/cphc.202100857.

3.
Chemphyschem ; 23(6): e202100857, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35083834

ABSTRACT

Many solids, particularly low-dimensional systems, exhibit charge density waves (CDWs). In one dimension, charge density waves are well understood, but in two dimensions, their structure and their origin are difficult to reveal. Herein, the 2D charge-density-wave atomic structure and stabilization mechanism in the bromide-bridged Pd compound [Pd(cptn)2 Br]Br2 (cptn=1R,2R-diaminocyclopentane) is investigated by means of single-crystal X-ray diffraction employing the 3D-Δpair distribution function (3D-ΔPDF) method. Analysis of the diffuse scattering using 3D-ΔPDF shows that a 2D-CDW is stabilized by a hydrogen-bonding network between Br- counteranion and the amine (NH2 ) group of the cptn in-plane ligand, and that 3D ordering is prevented due to a weak plane to plane correlation. We extract the effective displacements of the atoms describing the atomic structure quantitatively and discuss the stabilization mechanism of the 2D-CDW. Our study provides a method to identify and measure the key interaction responsible for the dimensionality and stability of the CDW that can help further progress of rational design.

4.
Phys Rev Lett ; 120(3): 037602, 2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29400523

ABSTRACT

Ferroelectric domains in PbTiO_{3}/SrTiO_{3} superlattices are studied using synchrotron x-ray diffraction. Macroscopic measurements reveal a change in the preferential domain wall orientation from {100} to {110} crystallographic planes with increasing temperature. The temperature range of this reorientation depends on the ferroelectric layer thickness and domain period. Using a nanofocused beam, local changes in the domain wall orientation within the buried ferroelectric layers are imaged, both in structurally uniform regions of the sample and near defect sites and argon ion-etched patterns. Domain walls are found to exhibit a preferential alignment with the straight edges of the etched patterns as well as with structural features associated with defect sites. The distribution of out-of-plane lattice parameters is mapped around one such feature, showing that it is accompanied by inhomogeneous strain and large strain gradients.

5.
ACS Appl Mater Interfaces ; 15(51): 59319-59328, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38085792

ABSTRACT

Li-ion battery cathode active materials obtained from different sources or preparation methods often exhibit broadly divergent performance and stability despite no obvious differences in morphology, purity, and crystallinity. We show how state-of-the-art, commercial, nominally single crystalline LiNi0.6Mn0.2Co0.2O2 (NMC-622) particles possess extensive internal nanostructure even in the pristine state. Scanning X-ray diffraction microscopy reveals the presence of interlayer strain gradients, and crystal bending is attributed to oxygen vacancies. Phase contrast X-ray nano-tomography reveals two different kinds of particles, welded/aggregated, and single crystal like, and emphasizes the intra- and interparticle heterogeneities from the nano- to the microscale. It also detects within the imaging resolution (100 nm) substantial quantities of nanovoids hidden inside the bulk of two-thirds of the overall studied particles (around 3000), with an average value of 12.5%v per particle and a mean size of 148 nm. The powerful combination of both techniques helps prescreening and quantifying the defective nature of cathode material and thus anticipating their performance in electrode assembly/battery testing.

6.
Nat Commun ; 14(1): 6975, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37914690

ABSTRACT

Lithiation dynamics and phase transition mechanisms in most battery cathode materials remain poorly understood, because of the challenge in differentiating inter- and intra-particle heterogeneity. In this work, the structural evolution inside Li1-xMn1.5Ni0.5O4 single crystals during electrochemical delithiation is directly resolved with operando X-ray nanodiffraction microscopy. Metastable domains of solid-solution intermediates do not appear associated with the reaction front between the lithiated and delithiated phases, as predicted by current phase transition theory. Instead, unusually persistent strain gradients inside the single crystals suggest that the shape and size of solid solution domains are instead templated by lattice defects, which guide the entire delithiation process. Morphology, strain distributions, and tilt boundaries reveal that the (Ni2+/Ni3+) and (Ni3+/Ni4+) phase transitions proceed through different mechanisms, offering solutions for reducing structural degradation in high voltage spinel active materials towards commercially useful durability. Dynamic lattice domain reorientation during cycling are found to be the cause for formation of permanent tilt boundaries with their angular deviation increasing during continuous cycling.

7.
ACS Appl Mater Interfaces ; 15(2): 3119-3130, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36598897

ABSTRACT

A strained Ge quantum well, grown on a SiGe/Si virtual substrate and hosting two electrostatically defined hole spin qubits, is nondestructively investigated by synchrotron-based scanning X-ray diffraction microscopy to determine all its Bravais lattice parameters. This allows rendering the three-dimensional spatial dependence of the six strain tensor components with a lateral resolution of approximately 50 nm. Two different spatial scales governing the strain field fluctuations in proximity of the qubits are observed at <100 nm and >1 µm, respectively. The short-ranged fluctuations have a typical bandwidth of 2 × 10-4 and can be quantitatively linked to the compressive stressing action of the metal electrodes defining the qubits. By finite element mechanical simulations, it is estimated that this strain fluctuation is increased up to 6 × 10-4 at cryogenic temperature. The longer-ranged fluctuations are of the 10-3 order and are associated with misfit dislocations in the plastically relaxed virtual substrate. From this, energy variations of the light and heavy-hole energy maxima of the order of several 100 µeV and 1 meV are calculated for electrodes and dislocations, respectively. These insights over material-related inhomogeneities may feed into further modeling for optimization and design of large-scale quantum processors manufactured using the mainstream Si-based microelectronics technology.

8.
J Appl Crystallogr ; 55(Pt 4): 1045-1054, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35974722

ABSTRACT

Bragg coherent X-ray diffraction is a nondestructive method for probing material structure in three dimensions at the nanoscale, with unprecedented resolution in displacement and strain fields. This work presents Gwaihir, a user-friendly and open-source tool to process and analyze Bragg coherent X-ray diffraction data. It integrates the functionalities of the existing packages bcdi and PyNX in the same toolbox, creating a natural workflow and promoting data reproducibility. Its graphical interface, based on Jupyter Notebook widgets, combines an interactive approach for data analysis with a powerful environment designed to link large-scale facilities and scientists.

9.
Adv Mater ; 34(15): e2106826, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35064954

ABSTRACT

The combination of strain and electrostatic engineering in epitaxial heterostructures of ferroelectric oxides offers many possibilities for inducing new phases, complex polar topologies, and enhanced electrical properties. However, the dominant effect of substrate clamping can also limit the electromechanical response and often leaves electrostatics to play a secondary role. Releasing the mechanical constraint imposed by the substrate can not only dramatically alter the balance between elastic and electrostatic forces, enabling them to compete on par with each other, but also activates new mechanical degrees of freedom, such as the macroscopic curvature of the heterostructure. In this work, an electrostatically driven transition from a predominantly out-of-plane polarized to an in-plane polarized state is observed when a PbTiO3 /SrTiO3 superlattice with a SrRuO3 bottom electrode is released from its substrate. In turn, this polarization rotation modifies the lattice parameter mismatch between the superlattice and the thin SrRuO3 layer, causing the heterostructure to curl up into microtubes. Through a combination of synchrotron-based scanning X-ray diffraction imaging, Raman scattering, piezoresponse force microscopy, and scanning transmission electron microscopy, the crystalline structure and domain patterns of the curved superlattices are investigated, revealing a strong anisotropy in the domain structure and a complex mechanism for strain accommodation.

10.
Materials (Basel) ; 14(16)2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34443022

ABSTRACT

Electrical aging in lead zirconate titanate (PbZrxTi1-xO3) thin films has been intensively studied from a macroscopic perspective. However, structural origins and consequences of such degradation are less documented. In this study, we have used synchrotron radiation to evaluate the behavior of ferroelectric domains by X-ray diffraction (XRD). The sample was loaded with an AC triangular bias waveform between ±10 V with a number of cycle varying from one up to 108. At each step of the aging procedure, XRD spectra had been collected in situ during the application of an electric field on a capacitor. The fine analysis of the (200) pseudo-cubic peak structure allows to separate the evolution of the volume of a/c tetragonal and rhombohedral domains along the electrical biasing. Throughout the aging, both intrinsic and extrinsic responses of tetra and rhombohedral domains are altered, the behavior depending on the observed phase. This methodology opens up new perspectives in the comprehension of the aging effect in ferroelectric thin film.

SELECTION OF CITATIONS
SEARCH DETAIL