Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Headache Pain ; 25(1): 80, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755568

ABSTRACT

BACKGROUND: Migraine lacks biomarkers that can trace the biological pathways of the disease and predict the effectiveness of treatments. Monoclonal antibodies targeting calcitonin gene-related peptide pathway - including erenumab - offer the opportunity of investigating potential migraine biomarkers due to their specific mechanism of action in preventing both episodic (EM) and chronic (CM) migraine. Our study aims at evaluating the expression levels of circulating microRNAs (miRNAs) according to migraine type, before and after treatment with erenumab and based on treatment response, in order to identify miRNAs with potential role as epigenetic biomarkers. METHODS: The study included women aged 25-50 years with EM or CM treated with erenumab according to clinical indications. MiRNAs expression levels were assessed before (baseline) and after a 16-week treatment with erenumab, 140 mg every four weeks (post-treatment). An extensive miRNAs profiling was performed by qRT-PCR in small, pooled groups of ≤ 8 women each, classified according to migraine frequency (EM and CM) and the degree of response to erenumab. The expression levels of selected miRNAs were also validated using single miRNA assays in each woman with EM and CM. RESULTS: During the study, 36 women with migraine (19 with EM and 17 with CM) out of 40 who were initially screened, performed the assessment of miRNA expression at baseline and post-treatment, Erenumab treatment significantly improved migraine burden in both EM and CM. MiRNA profiling revealed differential expression levels of a wide set of miRNAs (hsa-let-7d-3p, hsa-miR-106b-3p, hsa-miR-122-5p, hsa-miR-143-3p, hsa-miR-144-3p, hsa-miR-16-5p, hsa-miR-181a-5p, hsa-miR-221-3p, hsa-miR-25-3p, hsa-miR-29b-2-5p, hsa-miR-326, miR-363-3p, hsa-miR-424-5p, hsa-miR-485-3p, hsa-miR-532-5p, hsa-miR-543, hsa-miR-629-5p, hsa-miR-660-5p, hsa-miR-92a-3p) depending on treatment response. Among them, single miRNA assays confirmed the progressive decrease of hsa-miR-143-3p expression levels in relation to increasing response to erenumab in women with EM (7 with low, 6 with medium, and 6 with high response; p = 0.02). Additionally, single assays showed higher hsa-miR-34a-5p and hsa-miR-382-5p expression levels at baseline in women with CM compared with those with EM (p = 0.0002 and p = 0.0007, respectively), as well as their expression level decrease in women with CM from baseline to follow-up (p = 0.04 and p = 0.02, respectively). CONCLUSIONS: Our study suggests that targeting the CGRP pathway in migraine changes the expression levels of certain miRNAs. These miRNA levels are linked to the levels of response to CGRP receptor blockage. Future research challenges include assigning specific functions to the modulated miRNAs to unravel pathways modulated by the disease and the treatment. TRIAL REGISTRATION: The study was registered in clinicaltrials.gov with code NCT04659226 and in the Novartis database with code CAMG334AIT05T.


Subject(s)
Antibodies, Monoclonal, Humanized , MicroRNAs , Migraine Disorders , Adult , Female , Humans , Middle Aged , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Calcitonin Gene-Related Peptide/blood , Calcitonin Gene-Related Peptide/genetics , Calcitonin Gene-Related Peptide Receptor Antagonists/pharmacology , Calcitonin Gene-Related Peptide Receptor Antagonists/administration & dosage , Calcitonin Gene-Related Peptide Receptor Antagonists/therapeutic use , Gene Expression Profiling , MicroRNAs/genetics , MicroRNAs/drug effects , MicroRNAs/blood , Migraine Disorders/drug therapy , Migraine Disorders/genetics , Migraine Disorders/blood
2.
Pharmaceutics ; 16(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38794272

ABSTRACT

Deer antlers are the fastest growing tissue. Because they are based on proto-oncogenes, to avoid the risk of cancer, antlers evolved strong anticancer mechanisms, and thus their extract (DVA) is effective also against the few human tumours studied so far. We assessed whether DVA is a general anticancer compound by testing the direct effects in cells of different tumours: glioblastoma (GBM; lines U87MG and U251), colorectal (CRC; lines DLD-1, HT-29, SW480, and SW620), breast cancer (BRCA; lines MCF7, SKBR3, and PA00), and leukaemia (THP-1). DVA reduced the viability of tumours but not healthy cells (NHC; lines 293T and HaCaT). Mobility decreased at least for the longest test (72 h). Intraperitoneal/oral 200 mg DVA/kg administration in GBM xenograft mice for 28 d reduced tumour weight by 66.3% and 61.4% respectively, and it also reduced spleen weight (43.8%). In addition, tumours treated with DVA showed symptoms of liquefactive necrosis. Serum cytokines showed DVA up-regulated factors related to tumour fighting and down-regulated those related to inducing immune tolerance to the tumour. DVA shows general anticancer effects in the lines tested and, in GBM mice, also strong indirect effects apparently mediated by the immune system. DVA may contain a future anticancer medicine without secondary effects.

3.
Biology (Basel) ; 13(3)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38534441

ABSTRACT

Pituitary neuroendocrine tumors (PitNETs) are generally benign but comprise an aggressive, invasive, therapy-resistant, metastatic subset, underpinning a need for novel therapeutic targets. PitNETs exhibit low mutation rates but are associated with conditions linked to alternative splicing, an alternative oncogene pathway activation mechanism. PitNETs express the neurotrophin receptor TrkA, which exhibits oncogenic alternative TrkAIII splicing in other neuroendocrine tumors. We, therefore, assessed whether TrkAIII splicing represents a potential oncogenic participant in PitNETs. TrkAIII splicing was RT-PCR assessed in 53 PitNETs and TrkA isoform(s) expression and activation were assessed by confocal immunofluorescence. TrkAIII splicing was also compared to HIF1α, HIF2α, SF3B1, SRSF2, U2AF1, and JCPyV large T antigen mRNA expression, Xbp1 splicing, and SF3B1 mutation. TrkAIII splicing was detected in all invasive and most non-invasive PitNETs and was significantly elevated in invasive cases. In PitNET lineages, TrkAIII splicing was significantly elevated in invasive PIT1 PitNETs and high in invasive and non-invasive SF1 and TPIT lineages. Immunoreactivity consistent with TrkAIII activation characterized PitNET expressing TrkAIII mRNA, and invasive Pit1 PitNETs exhibited elevated HIF2α expression. TrkAIII splicing did not associate with SF3B1 mutations, altered SF3B1, SRSF2, and U2AF1 or JCPyV large T antigen expression, or Xbp1 splicing. Therefore, TrkAIII splicing is common in PitNETs, is elevated in invasive, especially PIT1 tumors, can result in intracellular TrkAIII activation, and may involve hypoxia. The data support a role for TrkAIII splicing in PitNET pathogenesis and progression and identify TrkAIII as a novel potential target in refractory PitNETs.

4.
NAR Genom Bioinform ; 6(2): lqae033, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38633426

ABSTRACT

In the rapidly evolving field of genomics, understanding the genetic basis of complex diseases like breast cancer, particularly its familial/hereditary forms, is crucial. Current methods often examine genomic variants-such as Single Nucleotide Variants (SNVs), insertions/deletions (Indels), and Copy Number Variations (CNVs)-separately, lacking an integrated approach. Here, we introduced a robust, flexible methodology for a comprehensive variants' analysis using Whole Exome Sequencing (WES) data. Our approach uniquely combines meticulous validation with an effective variant filtering strategy. By reanalyzing two germline WES datasets from BRCA1/2 negative breast cancer patients, we demonstrated our tool's efficiency and adaptability, uncovering both known and novel variants. This contributed new insights for potential diagnostic, preventive, and therapeutic strategies. Our method stands out for its comprehensive inclusion of key genomic variants in a unified analysis, and its practical resolution of technical challenges, offering a pioneering solution in genomic research. This tool presents a breakthrough in providing detailed insights into the genetic alterations in genomes, with significant implications for understanding and managing hereditary breast cancer.

SELECTION OF CITATIONS
SEARCH DETAIL