ABSTRACT
BACKGROUND SOX7 exerts a repressing effect against tumors and imposes vital influences on malignancies. Our research discussed the importance of SOX7 in breast cancer prognoses. MATERIAL AND METHODS SOX7 mRNA expression in breast cancer tissues samples and matched adjacent normal controls of breast cancer patients was measured by quantitative real-time-polymerase chain reaction (qRT-PCR). The relationship of SOX7 with clinicopathological characteristics were analyzed via chi-square test. The association of SOX7 levels with clinical outcomes was evaluated adopting the Kaplan-Meier method and multivariate Cox proportional hazards regression model. RESULTS SOX7 mRNA degree of expression exhibited a declining tendency in breast cancer tissue compared to paired bordering normal tissue specimens (P<0.001). In addition, the reduced SOX7 degree of expression had a strong correlation to larger cancer mass dimension (P=0.006) and lymph node metastasis (P=0.001). Survival analysis revealed that the overall survival (OS) time was much shorter among cases harboring low SOX7 degree of expression compared to high degree of expression (P=0.005). Moreover, SOX7 expression alone could predict OS among breast cancer patients (hazard ratio=3.956, 95% confidence interval=1.330-11.772, P=0.013). CONCLUSIONS SOX7 expression was downregulated in breast cancer tissues, and it could function as a useful prognostic marker in breast cancer.
Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Real-Time Polymerase Chain Reaction/methods , SOXF Transcription Factors/metabolism , Biomarkers, Tumor/genetics , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Down-Regulation , Female , Gene Expression Profiling , Humans , Lymphatic Metastasis , Prognosis , Proportional Hazards Models , SOXF Transcription Factors/genetics , Survival AnalysisABSTRACT
The tung tree (Vernicia fordii), a non-model woody plant belonging to the Euphorbiaceae family, is a promising economic plant due to the high content of a novel high-value oil in its seeds. Many metabolic pathways are active during seed development. Oil (triacylglycerols (TAGs)) accumulates in oil bodies distributed in the endosperm cells of tung tree seeds. The relationship between oil bodies and oil content during tung tree seed development was analyzed using ultrastructural observations, which confirmed that oil accumulation was correlated with the volumes and numbers of oil bodies in the endosperm cells during three different developmental stages. For a deeper understanding of seed development, we carried out proteomic analyses. At least 144 proteins were differentially expressed during three different developmental stages. A total of 76 proteins were successfully identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry/mass spectrometry (MALDI-TOF/MS/MS). These proteins were grouped into 11 classes according to their functions. The major groups of differentially expressed proteins were associated with energy metabolism (25%), fatty acid metabolism (15.79%) and defense (14.47%). These results strongly suggested that a very high percentage of gene expression in seed development is dedicated to the synthesis and accumulation of TAGs.
Subject(s)
Aleurites/growth & development , Plant Proteins/metabolism , Proteomics/methods , Seeds/growth & development , Aleurites/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Lipid Droplets/metabolism , Metabolic Networks and Pathways , Plant Oils/chemistry , Seeds/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry , Triglycerides/metabolismABSTRACT
We present a custom CMOS IC with a buried double junction (BDJ) photodiode to detect and process the optical signal, eliminating the need for any off-chip optical filters. The on-chip signal processing circuitry improves the desired signal extraction from the optical background noise. Since the IC is manufactured using standard commercial fabrication processes with no post-processing necessary, the system can ultimately be low cost to fabricate. Additionally, because of the CMOS integration, it will consume little power when operating, and even less during stand-by.
ABSTRACT
Recent efforts to genetically engineer plants that contain fatty acid desaturases to produce valuable fatty acids have made only modest progress. Diacylglycerol acyltransferase 2 (DGAT2), which catalyzes the final step in triacylglycerol (TAG) assembly, might potentially regulate the biosynthesis of desired fatty acids in TAGs. To study the effects of tung tree (Vernicia fordii) vfDGAT2 in channeling the desired fatty acids into TAG, vfDGAT2 combined with the tung tree fatty acid desaturase-2 (vfFAD2) gene was co-introduced into Aspergillus fumigatus, an endophytic fungus isolated from healthy tung oilseed. Two transformants coexpressing vfFAD2 and vfDGAT2 showed a more than 6-fold increase in linoleic acid production compared to the original A. fumigatus strain, while a nearly 2-fold increase was found in the transformant expressing only vfFAD2. Our data suggest that vfDGAT2 plays a pivotal role in promoting linoleic acid accumulation in TAGs. This holds great promise for further genetic engineering aimed at producing valuable fatty acids.
Subject(s)
Aspergillus fumigatus/genetics , Diacylglycerol O-Acyltransferase/genetics , Fatty Acid Desaturases/genetics , Genes, Fungal , Plant Oils , Seeds/microbiology , Aspergillus fumigatus/isolation & purification , Base Sequence , Chromatography, Gas , DNA Primers , Polymerase Chain ReactionABSTRACT
Litsea cubeba (Lour.) Pers. is a promising industrial crop with fruits rich in essential oils. The chemical composition of essential oils of L. cubeba (EOLC) were determined for fruits harvested from eight regions in China. The overall essential oil content, obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS), ranged from 3.04% to 4.56%. In total, 59 compounds were identified, the dominant components being monoterpenes (94.4-98.4%), represented mainly by neral and geranial (78.7-87.4%). D-Limonene was unexpectedly a lesser constituent (0.7-5.3%) in fruits, which differed from previous reports (6.0-14.6%). Several components were only detected in certain regions and compounds such as o-cymene and eremophilene have never before been reported in EOLC. These results demonstrate significant regional variation in the chemical composition of EOLC. This investigation provides important information with regard to the bioactivity, breeding work and industrial applications of L. cubeba.
Subject(s)
Litsea/chemistry , Oils, Volatile/chemistry , China , Environment , Gas Chromatography-Mass SpectrometryABSTRACT
Aims: This study aimed to determine the expression of asparagine synthetase (ASNS) in breast cancer (BC) tissues and estimate its prognostic value for BC patients. Besides, the roles of ASNS in the proliferation of BC cells were also examined in the study. Methods: Quantitative real-time PCR was conducted to detect the expression of ASNS mRNA in BC tissues and normal controls. The relationship between ASNS expression and clinical characteristics of BC patients was analyzed using χ-square test. MTT assay was performed to explore the effect of ASNS expression on the proliferation of BC cells. Kaplan-Meier curves were plotted to describe the overall survival rate of BC patients. Cox regression analyses were implemented to investigate prognostic factors. Results: ASNS mRNA overexpression was observed in BC tissues (p < 0.05). High expression of ASNS was significantly related to histological grade (p = 0.017), vascular invasion (p = 0.009), and PR status (p = 0.014). The downregulation of ASNS affected the proliferation of BC cells (p < 0.05). Kaplan-Meier survival showed that patients with high ASNS expression lived shorter than those with low expressions (p < 0.001). Finally, Cox regression analyses revealed that ASNS could act as a prognostic marker for BC patients (p < 0.001, HR = 3.293, 95% CI = 1.790-6.058). Conclusion: Taken together, ASNS is a valuable prognostic biomarker for BC patients.
Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/mortality , Breast/pathology , Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor/metabolism , Adult , Biomarkers, Tumor/analysis , Breast/surgery , Breast Neoplasms/pathology , Breast Neoplasms/surgery , Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor/analysis , Cell Proliferation , China/epidemiology , Female , Follow-Up Studies , Humans , Kaplan-Meier Estimate , MCF-7 Cells , Mastectomy , Middle Aged , Prognosis , Survival Rate , Treatment Outcome , Up-RegulationABSTRACT
We report a complementary metal oxide semiconductor integrated circuit (CMOS IC) with a buried double junction (BDJ) photodiode that (i) provides a real-time output signal that is related to the intensity ratio at two emission wavelengths and (ii) simultaneously eliminates the need for an optical filter to block Rayleigh scatter. We demonstrate the BDJ platform performance for gaseous NH3 and aqueous pH detection. We also compare the BDJ performance to parallel results obtained by using a slew scanned fluorimeter (SSF). The BDJ results are functionally equivalent to the SSF results without the need for any wavelength filtering or monochromators and the BDJ platform is not prone to errors associated with source intensity fluctuations or sensor signal drift.
Subject(s)
Chemistry Techniques, Analytical/instrumentation , Semiconductors , Ammonia/analysis , Equipment Design , Fluorometry/instrumentation , Fluorometry/methods , Hydrogen-Ion Concentration , Metals , Naphthols/chemistry , Oxides , Photobleaching , Rhodamines/chemistryABSTRACT
Quantitative real-time PCR (RT-qPCR) has become an accurate and widely used technique to analyze expression levels of selected genes. It is very necessary to select appropriate reference genes for gene expression normalization. In the present study, we assessed the expression stability of 11 reference genes including eight traditional housekeeping genes and three novel genes in different tissues/organs and developing seeds from four cultivars of tung tree. All 11 reference genes showed a wide range of Ct values in all samples, indicating that they differently expressed. Three softwares--geNorm, NormFinder and BestKeeper--were used to determine the stability of these references except for ALB (2S albumin), which presented a little divergence. The results from the three softwares showed that ACT7 (Actin7a), UBQ (Ubiquitin), GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and EF1α (elongation factor 1-α) were the most stable reference genes across all of the tested tung samples and tung developing seeds, while ALB (2S albumin) was unsuitable as internal controls. ACT7, EF1ß (elongation factor1-beta), GAPDH and TEF1 (transcription elongation factor 1) were the top four choices for different tissues/organs whereas LCR69 did not favor normalization of RT-qPCR in these tissues/organs. Meanwhile, the expression profiles of FAD2 and FADX were realized using stable reference genes. The relative quantification of the FAD2 and FADX genes varied according to the internal controls and the number of internal controls. The results further proved the importance of the choice of reference genes in the tung tree. These stable reference genes will be employed in normalization and quantification of transcript levels in future expression studies of tung genes.