Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Heliyon ; 10(2): e24427, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38293340

ABSTRACT

The discovery of graphene ignites a great deal of interest in the research and advancement of two-dimensional (2D) layered materials. Within it, semiconducting transition metal dichalcogenides (TMDCs) are highly regarded due to their exceptional electrical and optoelectronic properties. Tungsten disulfide (WS2) is a TMDC with intriguing properties, such as biocompatibility, tunable bandgap, and outstanding photoelectric characteristics. These features make it a potential candidate for chemical sensing, biosensing, and tumor therapy. Despite the numerous reviews on the synthesis and application of TMDCs in the biomedical field, no comprehensive study still summarizes and unifies the research trends of WS2 from synthesis to biomedical applications. Therefore, this review aims to present a complete and thorough analysis of the current research trends in WS2 across several biomedical domains, including biosensing and nanomedicine, covering antibacterial applications, tissue engineering, drug delivery, and anticancer treatments. Finally, this review also discusses the potential opportunities and obstacles associated with WS2 to deliver a new outlook for advancing its progress in biomedical research.

2.
ACS Appl Bio Mater ; 7(6): 4051-4061, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38790078

ABSTRACT

Hyperlipidemia has been a huge challenge to global health, leading to the cardiovascular disease, hypertension, and diabetes. Atorvastatin calcium (AC), a widely prescribed drug for hyperlipidemia, faces huge challenges with oral administration due to poor water solubility and hepatic first-pass effects, resulting in low therapeutic efficacy. In this work, we designed and developed a hybrid microneedle (MN) patch system constructed with soluble poly(vinyl alcohol) (PVA) and AC-loaded polymeric micelles (AC@PMs) for transdermal delivery of AC to enhance the hyperlipidemia therapy. We first prepared various AC@PM formulations self-assembled from mPEG-PLA and mPEG-PLA-PEG block copolymers using a dialysis method and evaluated the physicochemical properties in combination with experiment skills and dissipative particle dynamics (DPD) simulations. Then, we encapsulated the AC@PMs into the PVA MN patch using a micromold filling method, followed by characterizing the performances, especially the structural stability, mechanical performance, and biosafety. After conducting in vivo experiments using a hyperlipidemic rat model, our findings revealed that the hybrid microneedle-mediated administration exhibited superior therapeutic efficacy when compared to oral delivery methods. In summary, we have successfully developed a hybrid microneedle (MN) patch system that holds promising potential for the efficient transdermal delivery of hydrophobic drugs.


Subject(s)
Administration, Cutaneous , Atorvastatin , Hyperlipidemias , Micelles , Needles , Hyperlipidemias/drug therapy , Animals , Atorvastatin/chemistry , Atorvastatin/administration & dosage , Atorvastatin/pharmacology , Rats , Particle Size , Biocompatible Materials/chemistry , Polymers/chemistry , Materials Testing , Rats, Sprague-Dawley , Drug Delivery Systems , Male
3.
Adv Mater ; : e2407129, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073194

ABSTRACT

As a natural "binder," lignin fixes cellulose in plants to foster growth and longevity. However, isolated lignin has a poor binding ability, which limits its biomedical applications. In this study, inspired by mussel adhesive proteins, acidic/basic amino acids (AAs) are introduced in alkali lignin (AL) to form ionic-π/spatial correlation interactions, followed by demethylation to create catechol residues for enhanced adhesion activity. Atomic force microscopy reveals that catechol residues are the primary adhesion structures, with basic AAs exhibiting superior synergistic effects compared to acidic AAs. Demethylated lysine-grafted AL exhibits the strongest adhesion force toward skin tissue. Molecular dynamic simulation and density functional theory calculations indicate that adhesion against skin tissue mainly results from hydrogen bonds and cation-π interactions, with the adhesion mechanism being based on the Gibbs free energy of the Schiff base reaction. In summary, a biomimetic electrode based on lignin inspired by mussel adhesive proteins is prepared; the presented method offers a straightforward strategy for the development of biomimetic adhesives. Furthermore, this mussel-inspired adhesive can be used as a wearable bioelectrode in biomedical applications.

4.
Life Sci ; : 122861, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925222

ABSTRACT

SARS-CoV-2 is a highly contagious pathogen that predominantly caused the COVID-19 pandemic. The persistent effects of COVID-19 are defined as an inflammatory or host response to the virus that begins four weeks after initial infection and persists for an undetermined length of time. Chronic effects are more harmful than acute ones thus, this review explored the long-term effects of the virus on various human organs, including the pulmonary, cardiovascular, and neurological, reproductive, gastrointestinal, musculoskeletal, endocrine, and lymphoid systems and found that SARS-CoV-2 adversely affects these organs of older adults. Regarding diagnosis, the RT-PCR is a gold standard method of diagnosing COVID-19; however, it requires specialized equipment and personnel for performing assays and a long time for results production. Therefore, to overcome these limitations, artificial intelligence employed in imaging and microfluidics technologies is the most promising in diagnosing COVID-19. Pharmacological and non-pharmacological strategies are the most effective treatment for reducing the persistent impacts of COVID-19 by providing immunity to post-COVID-19 patients by reducing cytokine release syndrome, improving the T cell response, and increasing the circulation of activated natural killer and CD8 T cells in blood and tissues, which ultimately reduces fever, nausea, fatigue, and muscle weakness and pain. Vaccines such as inactivated viral, live attenuated viral, protein subunit, viral vectored, mRNA, DNA, or nanoparticle vaccines significantly reduce the adverse long-term virus effects in post-COVID-19 patients; however, no vaccine was reported to provide lifetime protection against COVID-19; consequently, protective measures such as physical separation, mask use, and hand cleansing are promising strategies. This review provides a comprehensive knowledge of the persistent effects of COVID-19 on people of varying ages, as well as diagnosis, treatment, vaccination, and future preventative measures against the spread of SARS-CoV-2.

5.
Sci Adv ; 10(30): eado7438, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39047093

ABSTRACT

Designing highly efficient orally administrated nanotherapeutics with specific inflammatory site-targeting functions in the gastrointestinal tract for ulcerative colitis (UC) management is a noteworthy challenge. Here, we focused on exploring a specific targeting oral nanotherapy, serving as "one stone," for the directed localization of inflammation and the regulation of redox homeostasis, thereby achieving effects against "two birds" for UC treatment. Our designed nanotherapeutic agent OPNs@LMWH (oxidation-sensitive ε-polylysine nanoparticles at low-molecular weight heparin) exhibited specific active targeting effects and therapeutic efficacy simultaneously. Our results indicate that OPNs@LMWH had high integrin αM-mediated immune cellular uptake efficiency and preferentially accumulated in inflamed tissues. We also confirmed its effectiveness in the treatment experiment of colitis in mice by ameliorating oxidative stress and inhibiting the activation of inflammation-associated signaling pathways while simultaneously bolstering the protective mechanisms of the colonic epithelium. Overall, these findings underscore the compelling dual functionalities of OPNs@LMWH, which enable effective oral delivery to inflamed sites, thereby facilitating precise UC management.


Subject(s)
Colitis, Ulcerative , Homeostasis , Integrins , Nanoparticles , Oxidation-Reduction , Animals , Mice , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Nanoparticles/chemistry , Administration, Oral , Integrins/metabolism , Oxidative Stress/drug effects , Humans , Disease Models, Animal , Drug Delivery Systems
SELECTION OF CITATIONS
SEARCH DETAIL