Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Oncol Lett ; 27(5): 224, 2024 May.
Article in English | MEDLINE | ID: mdl-38586212

ABSTRACT

Anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKIs) have transformed the treatment paradigm for patients with ALK-positive non-small cell lung cancer (NSCLC). Yet the differential efficacy between alectinib and crizotinib in treating patients with NSCLC and central nervous system (CNS) metastases has been insufficiently studied. A retrospective analysis was conducted of clinical outcomes of patients with ALK-positive NSCLC and CNS metastases treated at the Shandong Cancer Centre. Based on their initial ALK-TKI treatment, patients were categorised into either the crizotinib group or the alectinib group. Efficacy, progression-free survival (PFS), intracranial PFS and overall survival (OS) were evaluated. A total of 46 eligible patients were enrolled in the present study: 33 patients received crizotinib and 13 patients received alectinib. The median OS of the entire group was 66.8 months (95% CI: 48.5-85.1). Compared with the patients in the crizotinib group, the patients in the alectinib group showed a significant improvement in both median (m)PFS (27.5 vs. 9.5 months; P=0.003) and intracranial mPFS (36.0 vs. 10.8 months; P<0.001). However, there was no significant difference in OS between the alectinib and crizotinib groups (not reached vs. 58.7 months; P=0.149). Furthermore, there were no significant differences between patients receiving TKI combined with radiotherapy (RT) vs. TKI alone with respect to mPFS (11.0 vs. 11.7 months, P=0.863) as well as intracranial mPFS (12.5 vs. 16.9 months, P=0.721). In the present study, alectinib exhibited superior efficacy to crizotinib for treating patients with ALK-positive NSCLC and CNS metastases, especially in terms of delaying disease progression and preventing CNS recurrence. Moreover, the results demonstrated that it might be beneficial to delay local RT for patients with ALK-positive NSCL and CNS metastases.

2.
J Cancer Res Clin Oncol ; 150(2): 42, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38280966

ABSTRACT

BACKGROUND: Non-small cell lung cancers (NSCLC) harboring Human Epidermal Growth Factor Receptor 2 (HER2) mutations represent a distinct subset with unique therapeutic challenges. Although immune checkpoint inhibitors (ICIs) have been transformative in lung cancer treatment, the efficacy of ICIs in HER2-mutated NSCLC remains to be established. METHODS: We systematically searched for real-world studies investigating the use of ICIs in treating HER2-mutated NSCLC, sourced from the PubMed, Cochrane Library, and Embase databases. Outcomes including objective response rate (ORR), disease control rate (DCR), and progression-free survival (PFS) were extracted for further analysis. RESULTS: Twelve studies involving 260 patients were enrolled in this meta-analysis. Pooled data revealed an ORR of 0.26 (95% CI 0.17-0.34), a DCR of 0.68 (95% CI 0.55-0.81), and a median PFS (mPFS) of 5.36 months (95% CI 3.50-7.21). Notably, in the subgroup receiving combined immune and chemotherapy, the ORR increased to 0.37 (95% CI 0.26-0.49), the DCR to 0.79 (95% CI 0.70-0.87), and the mPFS to 7.10 months (95% CI 5.21-8.99). CONCLUSIONS: ICIs demonstrate promising anti-tumor activity and safety in patients with HER2-mutated NSCLC. Furthermore, the combined regimen of ICIs and chemotherapy may provide a significant therapeutic option for this patient population.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Immunotherapy , Databases, Factual , Immune Checkpoint Inhibitors
3.
Eur J Med Chem ; 268: 116265, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38430854

ABSTRACT

Our previous studies have demonstrated that BML284 is a colchicine-site tubulin degradation agent. To improve its antiproliferative properties, 45 derivatives or analogs of BML284 were designed and synthesized based on the cocrystal structure of BML284 and tubulin. Among them, 5i was the most potent derivative, with IC50 values ranging from 0.02 to 0.05 µM against the five tested tumor cell lines. Structure-activity relationship studies verified that the N1 atom of the pyrimidine ring was the key functional group for its tubulin degradation ability. The 5i-tubulin cocrystal complex revealed that the binding pattern of 5i to tubulin is similar to that of BML284. However, replacing the benzodioxole ring with an indole ring strengthened the hydrogen bond formed by the 2-amino group with E198, which improved the antiproliferative activity of 5i. Compound 5i effectively suppressed tumor growth at an intravenous dose of 40 mg/kg (every 2 days) in paclitaxel sensitive A2780S and paclitaxel resistant A2780T ovarian xenograft models, with tumor growth inhibition values of 79.4% and 82.0%, respectively, without apparent side effects, showing its potential to overcome multidrug resistance. This study provided a successful example of crystal structure-guided discovery of 5i as a colchicine-targeted tubulin degradation agent, expanding the scope of targeted protein degradation.


Subject(s)
Antineoplastic Agents , Colchicine , Humans , Colchicine/pharmacology , Tubulin/metabolism , Tubulin Modulators/chemistry , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Paclitaxel/pharmacology , Cell Line, Tumor , Cell Proliferation , Drug Screening Assays, Antitumor , Binding Sites
4.
Eur J Med Chem ; 265: 116076, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38171150

ABSTRACT

Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is an important regulatory factor in the necroptosis signaling pathway, and is considered an attractive therapeutic target for treating multiple inflammatory diseases. Herein, we describe the design, synthesis, and structure-activity relationships of 4-amino-1,6-dihydro-7H-pyrrolo [2,3-d]pyridazin-7-one derivatives as RIPK1 inhibitors. Among them, 13c showed favorable RIPK1 kinase inhibition activity with an IC50 value of 59.8 nM, and high RIPK1 binding affinity compared with other regulatory kinases of necroptosis (RIPK1 Kd = 3.5 nM, RIPK3 Kd = 1700 nM, and MLKL Kd > 30,000 nM). 13c efficiently blocked TNFα-induced necroptosis in both human and murine cells (EC50 = 1.06-4.58 nM), and inhibited TSZ-induced phosphorylation of the RIPK1/RIPK3/MLKL pathway. In liver microsomal assay studies, the clearance rate and half-life of 13c were 18.40 mL/min/g and 75.33 min, respectively. 13c displayed acceptable pharmacokinetic characteristics, with oral bioavailability of 59.55%. In TNFα-induced systemic inflammatory response syndrome, pretreatment with 13c could effectively protect mice from loss of body temperature and death. Overall, these compounds are promising candidates for future optimization studies.


Subject(s)
Protein Kinases , Tumor Necrosis Factor-alpha , Mice , Humans , Animals , Protein Kinases/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Phosphorylation , Threonine/pharmacology , Serine/pharmacology , Apoptosis
5.
Eur J Med Chem ; 268: 116240, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38422698

ABSTRACT

Traf2-and Nck-interacting protein kinase (TNIK) plays an important role in regulating signal transduction of the Wnt/ß-catenin pathway and is considered an important target for the treatment of colorectal cancer. Inhibiting TNIK has potential to block abnormal Wnt/ß-catenin signal transduction caused by colorectal cancer mutations. We discovered a series of 6-(1-methyl-1H-imidazole-5-yl) quinoline derivatives as TNIK inhibitors through Deep Fragment Growth and virtual screening. Among them, 35b exhibited excellent TNIK kinase and HCT116 cell inhibitory activity with IC50 values of 6 nM and 2.11 µM, respectively. 35b also shown excellent kinase selectivity, PK profiles, and oral bioavailability (84.64%). At a p. o. dosage of 50 mg/kg twice daily 35b suppressed tumor growth on the HCT116 xenograft model. Taken together, 35b is a promising lead compound of TNIK inhibitors, which merits further investigation.


Subject(s)
Colorectal Neoplasms , beta Catenin , Humans , beta Catenin/metabolism , Cell Line, Tumor , Wnt Signaling Pathway , Cell Proliferation , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism
6.
J Med Chem ; 67(1): 245-271, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38117951

ABSTRACT

Given the multifaceted biological functions of DNA-PK encompassing DNA repair pathways and beyond, coupled with the susceptibility of DNA-PK-deficient cells to DNA-damaging agents, significant strides have been made in the pursuit of clinical potential for DNA-PK inhibitors as synergistic adjuncts to chemo- or radiotherapy. Nevertheless, although substantial progress has been made with the discovery of potent inhibitors of DNA-PK, the clinical trial landscape requires even more potent and selective molecules. This necessitates further endeavors to expand the repertoire of clinically accessible DNA-PK inhibitors for the ultimate benefit of patients. Described herein are the obstacles that were encountered and the solutions that were found, which eventually led to the identification of compound 31t. This compound exhibited a remarkable combination of robust potency and exceptional selectivity along with favorable in vivo profiles as substantiated by pharmacokinetic studies in rats and pharmacodynamic assessments in H460, BT474, and A549 xenograft models.


Subject(s)
Antineoplastic Agents , Humans , Rats , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL