Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Environ Toxicol Pharmacol ; 72: 103270, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31586870

ABSTRACT

Cleft palate(CP) is a widely studied congenital malformation. However, its etiology and pathogenesis still remain unclear. Proteins are fundamental molecules that participate in every biological process within cells. In this study, we established CP mouse models induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and retinoic acid (RA), using proteomics technology isobaric tags for relative and absolute quantitation (iTRAQ) to investigate the key proteins in the formation of CP. Pregnant mice were given a gavage of TCDD 28µg/kg or retinoic acid 80mg/kg of body weight or equivalent corn oil at gestational day 10.5(GD10.5) and sacrificed at GD 17.5. Foetal mice were recorded and collected for further detection. Western blot was performed to verify the iTRAQ results. Eventually, we obtained 18 common differentially expressed proteins in TCDD group and RA group compared with normal control, 17 up-regulated and 1 down-regulated. 14-3-3sigma and Annexin A1 were up-regulated in experimental groups at GD17.5, which was consistent with Western blot. We speculated that the common differentially expressed proteins might be one of the molecular mechanisms in the formation of cleft palate.


Subject(s)
Cleft Palate/chemically induced , Cleft Palate/metabolism , Polychlorinated Dibenzodioxins , Tretinoin , 14-3-3 Proteins/metabolism , Animals , Annexin A1/metabolism , Disease Models, Animal , Female , Male , Mice, Inbred C57BL , Proteomics
2.
J Craniomaxillofac Surg ; 45(5): 678-684, 2017 May.
Article in English | MEDLINE | ID: mdl-28336320

ABSTRACT

2,3,7,8-Tetrachlrodibenzo-p-dioxin (TCDD) has been shown to induce cleft palate through growth factor and receptor expression changes during palatogenesis. DNA methylation is an important epigenetic modification that can regulate gene expressions and may be involved in TCDD-induced cleft palate. In this study, we investigated the effects of TCDD on the global and CpG DNA methylation status and the expression levels of DNA methyltransferases (Dnmts) in palate tissue of fetal mice. Pregnant C57BL/6J mice were administered with corn oil or TCDD 28 µg/kg at gestation day 10.5(GD10.5), and sacrificed at GD13.5, 14.5, 15.5. Fetal palates were collected for molecular analysis. Global DNA methylation status was detected by Methylamp™ Global DNA Methylation Quantification Ultra Kit. The expression of DNA methyltransferases were examined by quantitative real-time PCR(q-PCR). Methylation Specific PCR (MSP) was performed to analyze CpG methylation status of Dnmts. We found that the global DNA methylation level and the expression of Dnmt3a were higher at GD13.5 in the TCDD group. The methylation level of CpG site 2 in the promoter region of Dnmt3a in the control group was higher than that of the TCDD group at GD13.5. The low CpG methylation level of Dnmt3a at GD13.5 which causes the up-expression of Dnmt3a may induce global hypermethylation in fetal palate tissue. The aberrant global methylation status at GD13.5 may be the cause of palate malformation in fetal mice induced by TCDD.


Subject(s)
Cleft Palate/chemically induced , DNA Methylation/drug effects , Palate/embryology , Polychlorinated Dibenzodioxins/toxicity , Animals , DNA Modification Methylases/metabolism , Female , Gene Expression/drug effects , Mice , Mice, Inbred C57BL , Palate/drug effects , Palate/metabolism , Pregnancy , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL