Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Virol ; 98(9): e0080524, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39194244

ABSTRACT

Coxsackievirus group B3 (CVB3) belongs to the genus Enteroviruses of the family Picornaviridae and is the main pathogen underlying viral myocarditis (VMC). No specific therapeutic is available for this condition. Argininosuccinate synthase 1 (ASS1) is a key enzyme in the urea cycle that converts citrulline and aspartic acid to argininosuccinate. Here, we found that CVB3 and its capsid protein VP2 inhibit the autophagic degradation of ASS1 and that CVB3 consumes citrulline to upregulate ASS1, triggers urea cycle metabolic reprogramming, and then activates macrophages to develop pro-inflammatory polarization, thereby promoting the occurrence and development of VMC. Conversely, citrulline supplementation to prevent depletion can downregulate ASS1, rescue macrophage polarization, and alleviate the pathogenicity of VMC. These findings provide a new perspective on the occurrence and development of VMC, revealing ASS1 as a potential new target for treating this disease. IMPORTANCE: Viral myocarditis (VMC) is a common and potentially life-threatening myocardial inflammatory disease, most commonly caused by CVB3 infection. So far, the pathogenesis of VMC caused by CVB3 is mainly focused on two aspects: one is the direct myocardial injury caused by a large number of viral replication in the early stage of infection, and the other is the local immune cell infiltration and inflammatory damage of the myocardium in the adaptive immune response stage. There are few studies on the early innate immunity of CVB3 infection in myocardial tissue, but the appearance of macrophages in the early stage of CVB3 infection suggests that they can play a regulatory role as early innate immune response cells in myocardial tissue. Here, we discovered a possible new mechanism of VMC caused by CVB3, revealed new drug targets for anti-CVB3, and discovered the therapeutic potential of citrulline for VMC.


Subject(s)
Argininosuccinate Synthase , Coxsackievirus Infections , Enterovirus B, Human , Macrophages , Myocarditis , Myocarditis/virology , Myocarditis/metabolism , Myocarditis/immunology , Myocarditis/pathology , Enterovirus B, Human/physiology , Animals , Macrophages/virology , Macrophages/metabolism , Macrophages/immunology , Mice , Coxsackievirus Infections/virology , Coxsackievirus Infections/immunology , Coxsackievirus Infections/metabolism , Argininosuccinate Synthase/metabolism , Humans , Male , Inflammation/metabolism , Myocardium/metabolism , Myocardium/pathology , Myocardium/immunology , Capsid Proteins/metabolism , Capsid Proteins/immunology , Metabolic Reprogramming
2.
Virulence ; : 2425773, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39501551

ABSTRACT

Helicobacter pylori (H. pylori) is a gram-negative, spiral-shaped bacterium that colonizes the human stomach, leading to various gastric diseases. The efficacy of traditional treatments, such as bismuth-based triple and quadruple therapies, has reduced due to increasing antibiotic resistance and drug toxicity. As a result, the development of effective vaccines was proposed to control H. pylori-induced infections; however, one of the primary challenges is the lack of potent adjuvants. Although various adjuvants, both toxic (e.g. cholera toxin and Escherichia coli heat-labile toxin) and non-toxic (e.g. aluminium and propolis), have been tested for vaccine development, no clinically favourable adjuvants have been identified due to high toxicity, weak immunostimulatory effects, inability to elicit specific immune responses, or latent side effects. Outer membrane vesicles (OMVs), mainly secreted by gram-negative bacteria, have emerged as promising candidates for H. pylori vaccine adjuvants due to their potential applications. OMVs enhance mucosal immunity and Th1 and Th17 cell responses, which have been recognized to have protective effects and guarantee safety and efficacy. The development of an effective vaccine against H. pylori infection is ongoing, with clinical trials expected in the future.

3.
Virulence ; 15(1): 2367783, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38937901

ABSTRACT

Helicobacter pylori causes globally prevalent infections that are highly related to chronic gastritis and even development of gastric carcinomas. With the increase of antibiotic resistance, scientists have begun to search for better vaccine design strategies to eradicate H. pylori colonization. However, while current strategies prefer to formulate vaccines with a single H. pylori antigen, their potential has not yet been fully realized. Outer membrane vesicles (OMVs) are a potential platform since they could deliver multiple antigens. In this study, we engineered three crucial H. pylori antigen proteins (UreB, CagA, and VacA) onto the surface of OMVs derived from Salmonella enterica serovar Typhimurium (S. Typhimurium) mutant strains using the hemoglobin protease (Hbp) autotransporter system. In various knockout strategies, we found that OMVs isolated from the ΔrfbP ΔfliC ΔfljB ΔompA mutants could cause distinct increases in immunoglobulin G (IgG) and A (IgA) levels and effectively trigger T helper 1- and 17-biased cellular immune responses, which perform a vital role in protecting against H. pylori. Next, OMVs derived from ΔrfbP ΔfliC ΔfljB ΔompA mutants were used as a vector to deliver different combinations of H. pylori antigens. The antibody and cytokine levels and challenge experiments in mice model indicated that co-delivering UreB and CagA could protect against H. pylori and antigen-specific T cell responses. In summary, OMVs derived from the S. Typhimurium ΔrfbP ΔfliC ΔfljB ΔompA mutant strain as the vector while importing H. pylori UreB and CagA as antigenic proteins using the Hbp autotransporter system would greatly benefit controlling H. pylori infection.


Outer membrane vesicles (OMVs), as a novel antigen delivery platform, has been used in vaccine design for various pathogens and even tumors. Salmonella enterica serovar Typhimurium (S. Typhimurium), as a bacterium that is easy to engineer and has both adjuvant efficacy and immune stimulation capacity, has become the preferred bacterial vector for purifying OMVs after Escherichia coli. This study focuses on the design of Helicobacter pylori ;(H. pylori) vaccines, utilizing genetically modified Salmonella OMVs to present several major antigens of H. pylori, including UreB, VacA and CagA. The optimal Salmonella OMV delivery vector and antigen combinations are screened and identified, providing new ideas for the development of H. pylori vaccines and an integrated antigen delivery platform for other difficult to develop vaccines for bacteria, viruses, and even tumors.


Subject(s)
Antigens, Bacterial , Bacterial Proteins , Helicobacter Infections , Helicobacter pylori , Salmonella typhimurium , Animals , Helicobacter Infections/prevention & control , Helicobacter Infections/immunology , Helicobacter Infections/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Helicobacter pylori/immunology , Helicobacter pylori/genetics , Mice , Salmonella typhimurium/immunology , Salmonella typhimurium/genetics , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Bacterial Vaccines/immunology , Bacterial Vaccines/genetics , Female , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Immunoglobulin G , Genetic Engineering , Urease/immunology , Urease/genetics , Disease Models, Animal
4.
FEBS J ; 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36527169

ABSTRACT

The human microbiome, containing bacteria, fungi, and viruses, is a community that coexists peacefully with humans most of the time, but with the potential to cause disease under certain conditions. When the environment changes or certain stimuli are received, microbes may interact with each other, causing or increasing the severity of disease in a host. With the appropriate methods, we can make these microbiota work for us, creating new applications for human health. This review discusses the wide range of interactions between microorganisms that result in an increase in susceptibility to, severity of, and mortality of diseases, and also briefly introduces how microorganisms interact with each other directly or indirectly. The study of microbial interactions and their mechanisms has revealed a new world of treatments for infectious disease. The regulation of the balance between intestinal flora, the correct application of probiotics, and the development of effective drugs by symbiosis all demonstrate the great contributions of the microbiota to human health and its powerful potential value. Consequently, the study of interactions between microorganisms plays an essential role in identifying the causes of diseases and the development of treatments.

SELECTION OF CITATIONS
SEARCH DETAIL