Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.880
Filter
Add more filters

Publication year range
1.
Cell ; 187(6): 1527-1546.e25, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38412860

ABSTRACT

G protein-coupled receptors (GPCRs) are the largest family of druggable proteins encoded in the human genome, but progress in understanding and targeting them is hindered by the lack of tools to reliably measure their nuanced behavior in physiologically relevant contexts. Here, we developed a collection of compact ONE vector G-protein Optical (ONE-GO) biosensor constructs as a scalable platform that can be conveniently deployed to measure G-protein activation by virtually any GPCR with high fidelity even when expressed endogenously in primary cells. By characterizing dozens of GPCRs across many cell types like primary cardiovascular cells or neurons, we revealed insights into the molecular basis for G-protein coupling selectivity of GPCRs, pharmacogenomic profiles of anti-psychotics on naturally occurring GPCR variants, and G-protein subtype signaling bias by endogenous GPCRs depending on cell type or upon inducing disease-like states. In summary, this open-source platform makes the direct interrogation of context-dependent GPCR activity broadly accessible.


Subject(s)
Biosensing Techniques , Signal Transduction , Humans , Receptors, G-Protein-Coupled/metabolism , GTP-Binding Proteins/metabolism
2.
Cell ; 177(6): 1583-1599.e16, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31150624

ABSTRACT

T and B cells are the two known lineages of adaptive immune cells. Here, we describe a previously unknown lymphocyte that is a dual expresser (DE) of TCR and BCR and key lineage markers of both B and T cells. In type 1 diabetes (T1D), DEs are predominated by one clonotype that encodes a potent CD4 T cell autoantigen in its antigen binding site. Molecular dynamics simulations revealed that this peptide has an optimal binding register for diabetogenic HLA-DQ8. In concordance, a synthetic version of the peptide forms stable DQ8 complexes and potently stimulates autoreactive CD4 T cells from T1D patients, but not healthy controls. Moreover, mAbs bearing this clonotype are autoreactive against CD4 T cells and inhibit insulin tetramer binding to CD4 T cells. Thus, compartmentalization of adaptive immune cells into T and B cells is not absolute, and violators of this paradigm are likely key drivers of autoimmune diseases.


Subject(s)
B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Diabetes Mellitus, Type 1/immunology , Adolescent , Adult , Autoantigens/immunology , Child , Child, Preschool , Diabetes Mellitus, Type 1/metabolism , Epitopes/immunology , Female , HEK293 Cells , HLA-DQ Antigens/immunology , HLA-DQ Antigens/ultrastructure , Humans , Lymphocyte Activation/immunology , Lymphocytes/immunology , Lymphocytes/metabolism , Male , Middle Aged , Molecular Dynamics Simulation , Peptides , Protein Binding/immunology
3.
Nat Immunol ; 22(9): 1127-1139, 2021 09.
Article in English | MEDLINE | ID: mdl-34413521

ABSTRACT

Follicular helper T (TFH) cells are a specialized subset of CD4+ T cells that essentially support germinal center responses where high-affinity and long-lived humoral immunity is generated. The regulation of TFH cell survival remains unclear. Here we report that TFH cells show intensified lipid peroxidation and altered mitochondrial morphology, resembling the features of ferroptosis, a form of programmed cell death that is driven by iron-dependent accumulation of lipid peroxidation. Glutathione peroxidase 4 (GPX4) is the major lipid peroxidation scavenger and is necessary for TFH cell survival. The deletion of GPX4 in T cells selectively abrogated TFH cells and germinal center responses in immunized mice. Selenium supplementation enhanced GPX4 expression in T cells, increased TFH cell numbers and promoted antibody responses in immunized mice and young adults after influenza vaccination. Our findings reveal the central role of the selenium-GPX4-ferroptosis axis in regulating TFH homeostasis, which can be targeted to enhance TFH cell function in infection and following vaccination.


Subject(s)
Ferroptosis/physiology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Selenium/pharmacology , T Follicular Helper Cells/physiology , Adolescent , Adult , Animals , Cell Survival/immunology , Child , Female , Germinal Center/cytology , Germinal Center/immunology , Homeostasis/drug effects , Homeostasis/genetics , Humans , Immunity, Humoral/immunology , Influenza Vaccines/immunology , Lipid Peroxidation/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/physiology , Ovalbumin , T Follicular Helper Cells/immunology , Vaccination , Young Adult
4.
Immunity ; 56(12): 2773-2789.e8, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37992711

ABSTRACT

Although the gut microbiota can influence central nervous system (CNS) autoimmune diseases, the contribution of the intestinal epithelium to CNS autoimmunity is less clear. Here, we showed that intestinal epithelial dopamine D2 receptors (IEC DRD2) promoted sex-specific disease progression in an animal model of multiple sclerosis. Female mice lacking Drd2 selectively in intestinal epithelial cells showed a blunted inflammatory response in the CNS and reduced disease progression. In contrast, overexpression or activation of IEC DRD2 by phenylethylamine administration exacerbated disease severity. This was accompanied by altered lysozyme expression and gut microbiota composition, including reduced abundance of Lactobacillus species. Furthermore, treatment with N2-acetyl-L-lysine, a metabolite derived from Lactobacillus, suppressed microglial activation and neurodegeneration. Taken together, our study indicates that IEC DRD2 hyperactivity impacts gut microbial abundances and increases susceptibility to CNS autoimmune diseases in a female-biased manner, opening up future avenues for sex-specific interventions of CNS autoimmune diseases.


Subject(s)
Autoimmune Diseases of the Nervous System , Multiple Sclerosis , Male , Female , Mice , Animals , Multiple Sclerosis/metabolism , Disease Models, Animal , Signal Transduction , Disease Progression , Receptors, Dopamine
7.
Cell ; 152(1-2): 304-15, 2013 Jan 17.
Article in English | MEDLINE | ID: mdl-23332762

ABSTRACT

The IκB kinase complex (IKK) is a key regulator of immune responses, inflammation, cell survival, and tumorigenesis. The prosurvival function of IKK centers on activation of the transcription factor NF-κB, whose target gene products inhibit caspases and prevent prolonged JNK activation. Here, we report that inactivation of the BH3-only protein BAD by IKK independently of NF-κB activation suppresses TNFα-induced apoptosis. TNFα-treated Ikkß(-/-) mouse embryonic fibroblasts (MEFs) undergo apoptosis significantly faster than MEFs deficient in both RelA and cRel due to lack of inhibition of BAD by IKK. IKK phosphorylates BAD at serine-26 (Ser26) and primes it for inactivation. Elimination of Ser26 phosphorylation promotes BAD proapoptotic activity, thereby accelerating TNFα-induced apoptosis in cultured cells and increasing mortality in animals. Our results reveal that IKK inhibits TNFα-induced apoptosis through two distinct but cooperative mechanisms: activation of the survival factor NF-κB and inactivation of the proapoptotic BH3-only BAD protein.


Subject(s)
Apoptosis , I-kappa B Kinase/metabolism , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , bcl-Associated Death Protein/metabolism , Animals , Fibroblasts/cytology , I-kappa B Kinase/genetics , Mice , Mice, Knockout , Phosphorylation , Serine/metabolism , bcl-Associated Death Protein/chemistry , bcl-Associated Death Protein/genetics , bcl-X Protein/metabolism
8.
Nature ; 612(7941): 725-731, 2022 12.
Article in English | MEDLINE | ID: mdl-36517592

ABSTRACT

Ribosomes are highly sophisticated translation machines that have been demonstrated to be heterogeneous in the regulation of protein synthesis1,2. Male germ cell development involves complex translational regulation during sperm formation3. However, it remains unclear whether translation during sperm formation is performed by a specific ribosome. Here we report a ribosome with a specialized nascent polypeptide exit tunnel, RibosomeST, that is assembled with the male germ-cell-specific protein RPL39L, the paralogue of core ribosome (RibosomeCore) protein RPL39. Deletion of RibosomeST in mice causes defective sperm formation, resulting in substantially reduced fertility. Our comparison of single-particle cryo-electron microscopy structures of ribosomes from mouse kidneys and testes indicates that RibosomeST features a ribosomal polypeptide exit tunnel of distinct size and charge states compared with RibosomeCore. RibosomeST predominantly cotranslationally regulates the folding of a subset of male germ-cell-specific proteins that are essential for the formation of sperm. Moreover, we found that specialized functions of RibosomeST were not replaceable by RibosomeCore. Taken together, identification of this sperm-specific ribosome should greatly expand our understanding of ribosome function and tissue-specific regulation of protein expression pattern in mammals.


Subject(s)
Fertility , Ribosomes , Spermatozoa , Animals , Male , Mice , Cryoelectron Microscopy/methods , Peptides/chemistry , Peptides/metabolism , Protein Biosynthesis , Protein Folding , Ribosomes/metabolism , Spermatozoa/cytology , Spermatozoa/metabolism , Fertility/physiology , Organ Specificity , Ribosomal Proteins , Kidney/cytology , Testis/cytology
9.
Nature ; 610(7933): 656-660, 2022 10.
Article in English | MEDLINE | ID: mdl-36289385

ABSTRACT

Proposed mechanisms for the production of calcium in the first stars (population III stars)-primordial stars that formed out of the matter of the Big Bang-are at odds with observations1. Advanced nuclear burning and supernovae were thought to be the dominant source of the calcium production seen in all stars2. Here we suggest a qualitatively different path to calcium production through breakout from the 'warm' carbon-nitrogen-oxygen (CNO) cycle through a direct experimental measurement of the 19F(p, γ)20Ne breakout reaction down to a very low energy point of 186 kiloelectronvolts, reporting a key resonance at 225 kiloelectronvolts. In the domain of astrophysical interest2, at around 0.1 gigakelvin, this thermonuclear 19F(p, γ)20Ne rate is up to a factor of 7.4 larger than the previous recommended rate3. Our stellar models show a stronger breakout during stellar hydrogen burning than previously thought1,4,5, and may reveal the nature of calcium production in population III stars imprinted on the oldest known ultra-iron-poor star, SMSS0313-67086. Our experimental result was obtained in the China JinPing Underground Laboratory7, which offers an environment with an extremely low cosmic-ray-induced background8. Our rate showcases the effect that faint population III star supernovae can have on the nucleosynthesis observed in the oldest known stars and first galaxies, which are key mission targets of the James Webb Space Telescope9.

10.
Mol Cell ; 80(3): 525-540.e9, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33068521

ABSTRACT

Well-balanced and timed metabolism is essential for making a high-quality egg. However, the metabolic framework that supports oocyte development remains poorly understood. Here, we obtained the temporal metabolome profiles of mouse oocytes during in vivo maturation by isolating large number of cells at key stages. In parallel, quantitative proteomic analyses were conducted to bolster the metabolomic data, synergistically depicting the global metabolic patterns in oocytes. In particular, we discovered the metabolic features during meiotic maturation, such as the fall in polyunsaturated fatty acids (PUFAs) level and the active serine-glycine-one-carbon (SGOC) pathway. Using functional approaches, we further identified the key targets mediating the action of PUFA arachidonic acid (ARA) on meiotic maturation and demonstrated the control of epigenetic marks in maturing oocytes by SGOC network. Our data serve as a broad resource on the dynamics occurring in metabolome and proteome during oocyte maturation.


Subject(s)
Meiosis/physiology , Oocytes/metabolism , Animals , Epigenesis, Genetic/genetics , Fatty Acids, Unsaturated/metabolism , Female , Metabolome/physiology , Mice , Mice, Inbred C57BL , Oogenesis/genetics , Oogenesis/physiology , Proteome/metabolism , Proteomics
11.
Plant Cell ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39293039

ABSTRACT

The endosperm in cereal grains is instrumental in determining grain yield and seed quality, as it controls starch and seed storage protein (SSP) production. In this study, we identified a specific nuclear factor-Y (NF-Y) trimeric complex in wheat (Triticum aestivum L.), consisting of TaNF-YA3-D, TaNF-YB7-B, and TaNF-YC6-B, and exhibiting robust expression within the endosperm during grain filling. Knockdown of either TaNF-YA3 or TaNF-YC6 led to reduced starch but increased gluten protein levels. TaNF-Y indirectly boosted starch biosynthesis genes by repressing TaNAC019, a repressor of cytosolic small ADP-glucose pyrophosphorylase 1a (TacAGPS1a), sucrose synthase 2 (TaSuS2), and other genes involved in starch biosynthesis. Conversely, TaNF-Y directly inhibited the expression of Gliadin-γ-700 (TaGli-γ-700) and low molecular weight-400 (TaLMW-400). Furthermore, TaNF-Y components interacted with SWINGER (TaSWN), the histone methyltransferase subunit of Polycomb repressive complex 2 (PRC2), to repress TaNAC019, TaGli-γ-700, and TaLMW-400 expression through trimethylation of histone H3 at lysine 27 (H3K27me3) modification. Notably, weak mutation of FERTILIZATION INDEPENDENT ENDOSPERM (TaFIE), a core PRC2 subunit, reduced starch but elevated gliadin and LMW-GS contents. Intriguingly, sequence variation within the TaNF-YB7-B coding region was linked to differences in starch and SSP content. Distinct TaNF-YB7-B haplotypes affect its interaction with TaSWN-B, influencing the repression of targets like TaNAC019 and TaGli-γ-700. Our findings illuminate the intricate molecular mechanisms governing TaNF-Y-PRC2-mediated epigenetic regulation for wheat endosperm development. Manipulating the TaNF-Y complex holds potential for optimizing grain yield and enhancing grain quality.

12.
Proc Natl Acad Sci U S A ; 121(2): e2311930121, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38175861

ABSTRACT

When making contact with an undercooled target, a drop freezes. The colder the target is, the more rapid the freezing is supposed to be. In this research, we explore the impact of droplets on cold granular material. As the undercooling degree increases, the bulk freezing of the droplet is delayed by at least an order of magnitude. The postponement of the overall solidification is accompanied by substantial changes in dynamics, including the spreading-retraction process, satellite drop generation, and cratering in the target. The solidification of the wetted pores in the granular target primarily causes these effects. The freezing process over the pore dimension occurs rapidly enough to match the characteristic timescales of impact dynamics at moderate undercooling degrees. As a result, the hydrophilic impact appears "hydrophobic," and the dimension of the solidified droplet shrinks. A monolayer of cold grains on a surface can reproduce these consequences. Our research presents a potential approach to regulate solidified morphology for subfreezing drop impacts. It additionally sheds light on the impact scenario of strong coupling between the dynamics and solidification.

13.
Proc Natl Acad Sci U S A ; 121(19): e2400903121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683992

ABSTRACT

The IL-17 pathway displays remarkably diverse functional modes between different subphyla, classes, and even orders, yet its driving factors remains elusive. Here, we demonstrate that the IL-17 pathway originated through domain shuffling between a Toll-like receptor (TLR)/IL-1R pathway and a neurotrophin-RTK (receptor-tyrosine-kinase) pathway (a Trunk-Torso pathway). Unlike other new pathways that evolve independently, the IL-17 pathway remains intertwined with its donor pathways throughout later evolution. This intertwining not only influenced the gains and losses of domains and components in the pathway but also drove the diversification of the pathway's functional modes among animal lineages. For instance, we reveal that the crustacean female sex hormone, a neurotrophin inducing sex differentiation, could interact with IL-17Rs and thus be classified as true IL-17s. Additionally, the insect prothoracicotropic hormone, a neurotrophin initiating ecdysis in Drosophila by binding to Torso, could bind to IL-17Rs in other insects. Furthermore, IL-17R and TLR/IL-1R pathways maintain crosstalk in amphioxus and zebrafish. Moreover, the loss of the Death domain in the pathway adaptor connection to IκB kinase and stress-activated protein kinase (CIKSs) dramatically reduced their abilities to activate nuclear factor-kappaB (NF-κB) and activator protein 1 (AP-1) in amphioxus and zebrafish. Reinstating this Death domain not only enhanced NF-κB/AP-1 activation but also strengthened anti-bacterial immunity in zebrafish larvae. This could explain why the mammalian IL-17 pathway, whose CIKS also lacks Death, is considered a weak signaling activator, relying on synergies with other pathways. Our findings provide insights into the functional diversity of the IL-17 pathway and unveil evolutionary principles that could govern the pathway and be used to redesign and manipulate it.


Subject(s)
Interleukin-17 , Signal Transduction , Toll-Like Receptors , Animals , Interleukin-17/metabolism , Toll-Like Receptors/metabolism , Nerve Growth Factors/metabolism , Nerve Growth Factors/genetics , Receptors, Interleukin-1/metabolism , Receptors, Interleukin-1/genetics , Evolution, Molecular , Receptors, Interleukin-17/metabolism , Receptors, Interleukin-17/genetics
14.
Proc Natl Acad Sci U S A ; 121(10): e2313981121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38412129

ABSTRACT

Real-time characterization of microresonator dynamics is important for many applications. In particular, it is critical for near-field sensing and understanding light-matter interactions. Here, we report camera-facilitated imaging and analysis of standing wave patterns in optical ring resonators. The standing wave pattern is generated through bidirectional pumping of a microresonator, and the scattered light from the microresonator is collected by a short-wave infrared (SWIR) camera. The recorded scattering patterns are wavelength dependent, and the scattered intensity exhibits a linear relation with the circulating power within the microresonator. By modulating the relative phase between the two pump waves, we can control the generated standing waves' movements and characterize the resonator with the SWIR camera. The visualized standing wave enables subwavelength distance measurements of scattering targets with nanometer-level accuracy. This work opens broad avenues for applications in on-chip near-field (bio)sensing, real-time characterization of photonic integrated circuits, and backscattering control in telecom systems.

15.
Proc Natl Acad Sci U S A ; 121(39): e2403222121, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39302967

ABSTRACT

Algae mostly occur either as unicellular (microalgae) or multicellular (macroalgae) species, both being uninucleate. There are important exceptions, however, as some unicellular algae are multinucleate and macroscopic, some of which inhabit tropical seas and contribute to biocalcification and coral reef robustness. The evolutionary mechanisms and ecological significance of multinucleation and associated traits (e.g., rapid wound healing) are poorly understood. Here, we report the genome of Halimeda opuntia, a giant multinucleate unicellular chlorophyte characterized by interutricular calcification. We achieve a high-quality genome assembly that shows segregation into four subgenomes, with evidence for polyploidization concomitant with historical sea level and climate changes. We further find myosin VIII missing in H. opuntia and three other unicellular multinucleate chlorophytes, suggesting a potential mechanism that may underpin multinucleation. Genome analysis provides clues about how the unicellular alga could survive fragmentation and regenerate, as well as potential signatures for extracellular calcification and the coupling of calcification with photosynthesis. In addition, proteomic alkalinity shifts were found to potentially confer plasticity of H. opuntia to ocean acidification (OA). Our study provides crucial genetic information necessary for understanding multinucleation, cell regeneration, plasticity to OA, and different modes of calcification in algae and other organisms, which has important implications in reef conservation and bioengineering.


Subject(s)
Calcification, Physiologic , Calcification, Physiologic/genetics , Chlorophyta/genetics , Chlorophyta/metabolism , Phylogeny , Genome, Plant , Photosynthesis/genetics
16.
Proc Natl Acad Sci U S A ; 121(27): e2406884121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38935562

ABSTRACT

Degeneracy and symmetry have a profound relation in quantum systems. Here, we report gate-tunable subband degeneracy in PbTe nanowires with a nearly symmetric cross-sectional shape. The degeneracy is revealed in electron transport by the absence of a quantized plateau. Utilizing a dual gate design, we can apply an electric field to lift the degeneracy, reflected as emergence of the plateau. This degeneracy and its tunable lifting were challenging to observe in previous nanowire experiments, possibly due to disorder. Numerical simulations can qualitatively capture our observation, shedding light on device parameters for future applications.

17.
Proc Natl Acad Sci U S A ; 121(30): e2404164121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39012823

ABSTRACT

The development of advanced neural modulation techniques is crucial to neuroscience research and neuroengineering applications. Recently, optical-based, nongenetic modulation approaches have been actively investigated to remotely interrogate the nervous system with high precision. Here, we show that a thin-film, silicon (Si)-based diode device is capable to bidirectionally regulate in vitro and in vivo neural activities upon adjusted illumination. When exposed to high-power and short-pulsed light, the Si diode generates photothermal effects, evoking neuron depolarization and enhancing intracellular calcium dynamics. Conversely, low-power and long-pulsed light on the Si diode hyperpolarizes neurons and reduces calcium activities. Furthermore, the Si diode film mounted on the brain of living mice can activate or suppress cortical activities under varied irradiation conditions. The presented material and device strategies reveal an innovated optoelectronic interface for precise neural modulations.


Subject(s)
Neurons , Optogenetics , Silicon , Animals , Silicon/chemistry , Neurons/physiology , Mice , Optogenetics/methods , Calcium/metabolism , Light , Brain/physiology
18.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38920342

ABSTRACT

Effective molecular representation learning is very important for Artificial Intelligence-driven Drug Design because it affects the accuracy and efficiency of molecular property prediction and other molecular modeling relevant tasks. However, previous molecular representation learning studies often suffer from limitations, such as over-reliance on a single molecular representation, failure to fully capture both local and global information in molecular structure, and ineffective integration of multiscale features from different molecular representations. These limitations restrict the complete and accurate representation of molecular structure and properties, ultimately impacting the accuracy of predicting molecular properties. To this end, we propose a novel multi-view molecular representation learning method called MvMRL, which can incorporate feature information from multiple molecular representations and capture both local and global information from different views well, thus improving molecular property prediction. Specifically, MvMRL consists of four parts: a multiscale CNN-SE Simplified Molecular Input Line Entry System (SMILES) learning component and a multiscale Graph Neural Network encoder to extract local feature information and global feature information from the SMILES view and the molecular graph view, respectively; a Multi-Layer Perceptron network to capture complex non-linear relationship features from the molecular fingerprint view; and a dual cross-attention component to fuse feature information on the multi-views deeply for predicting molecular properties. We evaluate the performance of MvMRL on 11 benchmark datasets, and experimental results show that MvMRL outperforms state-of-the-art methods, indicating its rationality and effectiveness in molecular property prediction. The source code of MvMRL was released in https://github.com/jedison-github/MvMRL.


Subject(s)
Neural Networks, Computer , Algorithms , Machine Learning , Models, Molecular , Drug Design , Software , Molecular Structure , Artificial Intelligence
19.
PLoS Pathog ; 20(9): e1012541, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39250508

ABSTRACT

Inflammatory bowel disease (IBD) is an immune system disorder primarily characterized by colitis, the exact etiology of which remains unclear. Traditional treatment approaches currently yield limited efficacy and are associated with significant side effects. Extensive research has indicated the potent therapeutic effects of probiotics, particularly Lactobacillus strains, in managing colitis. However, the mechanisms through which Lactobacillus strains ameliorate colitis require further exploration. In our study, we selected Lactobacillus gasseri ATCC33323 from the intestinal microbiota to elucidate the specific mechanisms involved in modulation of colitis. Experimental findings in a DSS-induced colitis mouse model revealed that L. gasseri ATCC33323 significantly improved physiological damage in colitic mice, reduced the severity of colonic inflammation, decreased the production of inflammatory factors, and preserved the integrity of the intestinal epithelial structure and function. It also maintained the expression and localization of adhesive proteins while improving intestinal barrier permeability and restoring dysbiosis in the gut microbiota. E-cadherin, a critical adhesive protein, plays a pivotal role in this protective mechanism. Knocking down E-cadherin expression within the mouse intestinal tract significantly attenuated the ability of L. gasseri ATCC33323 to regulate colitis, thus confirming its protective role through E-cadherin. Finally, transcriptional analysis and in vitro experiments revealed that L. gasseri ATCC33323 regulates CDH1 transcription by affecting NR1I3, thereby promoting E-cadherin expression. These findings contribute to a better understanding of the specific mechanisms by which Lactobacillus strains alleviate colitis, offering new insights for the potential use of L. gasseri as an alternative therapy for IBD, particularly in dietary supplementation.


Subject(s)
Cadherins , Colitis , Dextran Sulfate , Intestinal Mucosa , Lactobacillus gasseri , Probiotics , Animals , Colitis/chemically induced , Colitis/microbiology , Colitis/metabolism , Colitis/therapy , Cadherins/metabolism , Mice , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Dextran Sulfate/toxicity , Probiotics/pharmacology , Lactobacillus gasseri/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Gastrointestinal Microbiome , Humans
20.
Plant Cell ; 35(9): 3544-3565, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37306489

ABSTRACT

Self-incompatibility (SI) is a widespread genetically determined system in flowering plants that prevents self-fertilization to promote gene flow and limit inbreeding. S-RNase-based SI is characterized by the arrest of pollen tube growth through the pistil. Arrested pollen tubes show disrupted polarized growth and swollen tips, but the underlying molecular mechanism is largely unknown. Here, we demonstrate that the swelling at the tips of incompatible pollen tubes in pear (Pyrus bretschneideri [Pbr]) is mediated by the SI-induced acetylation of the soluble inorganic pyrophosphatase (PPA) PbrPPA5. Acetylation at Lys-42 of PbrPPA5 by the acetyltransferase GCN5-related N-acetyltransferase 1 (GNAT1) drives accumulation of PbrPPA5 in the nucleus, where it binds to the transcription factor PbrbZIP77, forming a transcriptional repression complex that inhibits the expression of the pectin methylesterase (PME) gene PbrPME44. The function of PbrPPA5 as a transcriptional repressor does not require its PPA activity. Downregulating PbrPME44 resulted in increased levels of methyl-esterified pectins in growing pollen tubes, leading to swelling at their tips. These observations suggest a mechanism for PbrPPA5-driven swelling at the tips of pollen tubes during the SI response. The targets of PbrPPA5 include genes encoding cell wall-modifying enzymes, which are essential for building a continuous sustainable mechanical structure for pollen tube growth.


Subject(s)
Pollen Tube , Pyrus , Ribonucleases/metabolism , Inorganic Pyrophosphatase/genetics , Inorganic Pyrophosphatase/metabolism , Acetylation , Pyrus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL