Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Ther ; 31(6): 1722-1738, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-36110046

ABSTRACT

Autophagy plays a crucial role in the development and progression of ischemic acute kidney injury (AKI). However, the function and mechanism of circular RNAs (circRNAs) in the regulation of autophagy in ischemic AKI remain unexplored. Herein, we find that circ-ZNF609, originating from the ZNF609 locus, is highly expressed in the kidney after ischemia/reperfusion injury, and urinary circ-ZNF609 is a moderate predictor for AKI in heart disease patients. Overexpression of circ-ZNF609 can activate AKT3/mTOR signaling and induce autophagy flux impairment and cell apoptosis while inhibiting proliferation in HK-2 cells, which is blocked by silencing circ-ZNF609. Mechanistically, circ-ZNF609 encodes a functional protein consisting of 250 amino acids (aa), termed ZNF609-250aa, the overexpression of which can activate AKT3/mTOR signaling and induce autophagy flux impairment and cell apoptosis in HK-2 cells in vitro and in AKI kidneys in vivo. The blockade of AKT and mTOR signaling with pharmacological inhibitors is capable of reversing ZNF609-250aa-induced autophagy flux impairment and cell apoptosis in HK-2 cells. The present study demonstrates that highly expressed circ-ZNF609-encoded ZNF609-250aa induces cell apoptosis and AKI by impairing the autophagy flux via an AKT/mTOR-dependent mechanism. These findings imply that targeting circ-ZNF609 may be a novel therapy for ischemic AKI.


Subject(s)
Acute Kidney Injury , RNA, Circular , Humans , Acute Kidney Injury/genetics , Apoptosis/genetics , Autophagy/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
2.
Reprod Biol Endocrinol ; 21(1): 103, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37907924

ABSTRACT

BACKGROUND: With advanced maternal age, abnormalities during oocyte meiosis increase significantly. Aneuploidy is an important reason for the reduction in the quality of aged oocytes. However, the molecular mechanism of aneuploidy in aged oocytes is far from understood. Histone acetyltransferase 1 (HAT1) has been reported to be essential for mammalian development and genome stability, and involved in multiple organ aging. Whether HAT1 is involved in ovarian aging and the detailed mechanisms remain to be elucidated. METHODS: The level of HAT1 in aged mice ovaries was detected by immunohistochemical and immunoblotting. To explore the function of HAT1 in the process of mouse oocyte maturation, we used Anacardic Acid (AA) and small interfering RNAs (siRNA) to culture cumulus-oocyte complexes (COCs) from ICR female mice in vitro and gathered statistics of germinal vesicle breakdown (GVBD), the first polar body extrusion (PBE), meiotic defects, aneuploidy, 2-cell embryos formation, and blastocyst formation rate. Moreover, the human granulosa cell (GC)-like line KGN cells were used to investigate the mechanisms of HAT1 in this progress. RESULTS: HAT1 was highly expressed in ovarian granulosa cells (GCs) from young mice and the expression of HAT1 was significantly decreased in aged GCs. AA and siRNAs mediated inhibition of HAT1 in GCs decreased the PBE rate, and increased meiotic defects and aneuploidy in oocytes. Further studies showed that HAT1 could acetylate Forkhead box transcription factor O1 (FoxO1), leading to the translocation of FoxO1 into the nucleus. Resultantly, the translocation of acetylated FoxO1 increased the expression of amphiregulin (AREG) in GCs, which plays a significant role in oocyte meiosis. CONCLUSION: The present study suggests that decreased expression of HAT1 in GCs is a potential reason corresponding to oocyte age-related meiotic defects and provides a potential therapeutic target for clinical intervention to reduce aneuploid oocytes.


Subject(s)
Granulosa Cells , Oocytes , Animals , Female , Humans , Mice , Aneuploidy , Granulosa Cells/metabolism , Histone Acetyltransferases/metabolism , Mammals , Meiosis/genetics , Mice, Inbred ICR , Oocytes/metabolism
3.
BMC Nephrol ; 23(1): 42, 2022 01 22.
Article in English | MEDLINE | ID: mdl-35065624

ABSTRACT

BACKGROUND: Without sufficient evidence in postoperative acute kidney injury (AKI) in critically ill patients undergoing emergency surgery, it is meaningful to explore the incidence, risk factors, and prognosis of postoperative AKI. METHODS: A prospective observational study was conducted in the general intensive care units (ICUs) from January 2014 to March 2018. Variables about preoperation, intraoperation and postoperation were collected. AKI was diagnosed using the Kidney Disease: Improving Global Outcomes criteria. RESULTS: Among 383 critically ill patients undergoing emergency surgery, 151 (39.4%) patients developed postoperative AKI. Postoperative reoperation, postoperative Acute Physiology and Chronic Health Evaluation (APACHE II) score, and postoperative serum lactic acid (LAC) were independent risk factors for postoperative AKI, with the adjusted odds ratio (ORadj) of 1.854 (95% confidence interval [CI], 1.091-3.152), 1.059 (95%CI, 1.018-1.102), and 1.239 (95%CI, 1.047-1.467), respectively. Compared with the non-AKI group, duration of mechanical ventilation, renal replacement therapy, ICU and hospital mortality, ICU and hospital length of stay, total ICU and hospital costs were higher in the AKI group. CONCLUSIONS: Postoperative reoperation, postoperative APACHE II score, and postoperative LAC were independent risk factors of postoperative AKI in critically ill patients undergoing emergency surgery.


Subject(s)
Acute Kidney Injury/epidemiology , Acute Kidney Injury/surgery , Aged , Critical Illness , Emergency Treatment , Female , Humans , Incidence , Male , Middle Aged , Prospective Studies , Risk Factors , Treatment Outcome
4.
J Clin Lab Anal ; 35(7): e23831, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34028085

ABSTRACT

BACKGROUND: Negative regulatory T cells (Tregs) not only deplete effector T cells but also inhibit the clearance of HIV during infection, which may allow Tregs to be used as informative diagnostic markers. To facilitate both diagnosis and treatment, a thorough understanding of these regulators by characterizing them on temporal and spatial scales is strongly required. METHODS: Hundred HIV-infected/AIDS patients, including 87 males, with an average age of 35.8 years, as well as 20 healthy controls, were enrolled. Flow cytometry was used to analyze CD3+T cells, CD4+T cells, and CD8+T cells to evaluate the immune status of the participants. Then, a group of representative negative regulatory T cells, including CD4+PD-1+T cells, CD4+PD-1high T cells, CD8+PD-1+T cells, and CD4+CD25high Tregs was also analyzed to explore their effects on disease progression and intercorrelation. RESULTS: The percentages of CD4+ PD-1+ T cells and CD4+ CD25high Tregs increased in patients with the same ultrahigh significance. Temporally, the patients with both intermediate-stage and late-stage disease had higher percentages of CD4+ PD-1+ T cells; however, the percentage of CD4+ CD25high Tregs only increased in the patients with late-stage disease. In addition, CD4+ PD-1+ T cells but not CD4+ CD25high Tregs were negatively correlated with the absolute CD4+ T cell count. Spatially, no correlations between CD4+ PD-1+ T cells and CD4+ CD25high Tregs were observed, which suggests these Tregs function differently during immunosuppression. CONCLUSIONS: This study characterized negative regulatory T cells in HIV-infected/AIDS patients at both temporal and spatial scales and found that CD4+ CD25+ Tregs and CD4+ PD-1+ T cells could be used as potential diagnostic markers for identifying different disease stages and monitoring disease progression.


Subject(s)
Acquired Immunodeficiency Syndrome/diagnosis , Acquired Immunodeficiency Syndrome/immunology , Biomarkers/metabolism , T-Lymphocytes, Regulatory/immunology , Acquired Immunodeficiency Syndrome/therapy , Adolescent , Adult , Aged , CD4 Antigens/metabolism , Female , Humans , Interleukin-2 Receptor alpha Subunit/metabolism , Lymphocyte Subsets/immunology , Male , Middle Aged , Time Factors , Young Adult
5.
World J Microbiol Biotechnol ; 37(1): 4, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33392832

ABSTRACT

Arachidonic acid (ARA, 5, 8, 11, 14-cis-eicosatetraenoic acid) is a relevant ω-6 polyunsaturated fatty acid, which plays essential roles in human immune, cardiovascular, and nervous systems. It is widely used in medicine, cosmetics, nutrition, and other fields. Traditionally, ARA is obtained from animal tissues. However, due to the limitation and unsustainability of existing resources, microorganisms are a potential alternative resource for ARA production. In this regard, major efforts have been made on algae and filamentous fungi, among which Mortierella alpina is the most effective strain for industrial ARA production. In this review, we summarized the recent progress in enhancing M. alpina production by optimization of culture medium and fermentation process and genetic modification. In addition, we provided perspectives in synthetic biology methods and technologies to further increase ARA production.


Subject(s)
Arachidonic Acid/biosynthesis , Arachidonic Acid/genetics , Fermentation , Gene Editing , Mortierella/genetics , Mortierella/metabolism , Bioreactors , Biosynthetic Pathways/genetics , Culture Media , Humans , Metabolic Engineering/methods , Oxygen/metabolism
6.
BMC Nephrol ; 21(1): 519, 2020 11 27.
Article in English | MEDLINE | ID: mdl-33246435

ABSTRACT

BACKGROUND: Glucocorticoids may impact the accuracy of serum cystatin C (sCysC) in reflecting renal function. We aimed to assess the effect of glucocorticoids on the performance of sCysC in detecting acute kidney injury (AKI) in critically ill patients. METHODS: A prospective observational cohort study was performed in a general intensive care unit (ICU). Using propensity score matching, we successfully matched 240 glucocorticoid users with 960 non-users among 2716 patients. Serum creatinine (SCr) and sCysC were measured for all patients at ICU admission. Patients were divided into four groups based on cumulative doses of glucocorticoids within 5 days before ICU admission (Group I: non-users; Group II: 0 mg < prednisone ≤50 mg; Group III: 50 mg < prednisone ≤150 mg; Group IV: prednisone > 150 mg). We compared the performance of sCysC for diagnosing and predicting AKI in different groups using the area under the receiver operator characteristic curve (AUC). RESULTS: A total of 240 patients received glucocorticoid medication within 5 days before ICU admission. Before and after matching, the differences of sCysC levels between glucocorticoid users and non-users were both significant (P <  0.001). The multiple linear regression analysis revealed that glucocorticoids were independently associated with sCysC (P <  0.001). After matching, the group I had significantly lower sCysC levels than the group III and group IV (P <  0.05), but there were no significant differences in sCysC levels within different glucocorticoids recipient groups (P > 0.05). Simultaneously, we did not find significant differences in the AUC between any two groups in the matched cohort (P > 0.05). CONCLUSIONS: Glucocorticoids did not impact the performance of sCysC in identifying AKI in critically ill patients.


Subject(s)
Acute Kidney Injury/diagnosis , Cystatin C/blood , Glucocorticoids/pharmacology , Acute Kidney Injury/blood , Acute Kidney Injury/drug therapy , Adult , Aged , Biomarkers/blood , Cohort Studies , Creatinine/blood , Critical Illness , Female , Glucocorticoids/therapeutic use , Humans , Intensive Care Units , Male , Middle Aged , Propensity Score , ROC Curve
7.
BMC Anesthesiol ; 20(1): 292, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33225902

ABSTRACT

BACKGROUND: It is not clear whether there are valuable inflammatory markers for prognosis judgment in the intensive care unit (ICU). We therefore conducted a multicenter, prospective, observational study to evaluate the prognostic role of inflammatory markers. METHODS: The clinical and laboratory data of patients at admission, including C-reactive protein (CRP), were collected in four general ICUs from September 1, 2018, to August 1, 2019. Multivariate logistic regression was used to identify factors independently associated with nonsurvival. The area under the receiver operating characteristic curve (AUC-ROC), net reclassification improvement (NRI), and integrated discrimination improvement (IDI) were used to evaluate the effect size of different factors in predicting mortality during ICU stay. 3 -knots were used to assess whether alternative cut points for these biomarkers were more appropriate. RESULTS: A total of 813 patients were recruited, among whom 121 patients (14.88%) died during the ICU stay. The AUC-ROC values of PCT and CRP for discriminating ICU mortality were 0.696 (95% confidence interval [CI], 0.650-0.743) and 0.684 (95% CI, 0.633-0.735), respectively. In the multivariable analysis, only APACHE II score (odds ratio, 1.166; 95% CI, 1.129-1.203; P = 0.000) and CRP concentration > 62.8 mg/L (odds ratio, 2.145; 95% CI, 1.343-3.427; P = 0.001), were significantly associated with an increased risk of ICU mortality. Moreover, the combination of APACHE II score and CRP > 62.8 mg/L significantly improved risk reclassification over the APACHE II score alone, with NRI (0.556) and IDI (0.013). Restricted cubic spline analysis confirmed that CRP concentration > 62.8 mg/L was the optimal cut-off value for differentiating between surviving and nonsurviving patients. CONCLUSION: CRP markedly improved risk reclassification for prognosis prediction.


Subject(s)
C-Reactive Protein/analysis , Hospital Mortality , Inflammation/blood , Inflammation/mortality , Intensive Care Units , Adult , Aged , China/epidemiology , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Prospective Studies , Risk Assessment
8.
Proc Natl Acad Sci U S A ; 114(5): 1123-1128, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28096363

ABSTRACT

Circulating tumor cells (CTCs) are shed into the bloodstream by invasive cancers, but the difficulty inherent in identifying these rare cells by microscopy has precluded their routine use in monitoring or screening for cancer. We recently described a high-throughput microfluidic CTC-iChip, which efficiently depletes hematopoietic cells from blood specimens and enriches for CTCs with well-preserved RNA. Application of RNA-based digital PCR to detect CTC-derived signatures may thus enable highly accurate tissue lineage-based cancer detection in blood specimens. As proof of principle, we examined hepatocellular carcinoma (HCC), a cancer that is derived from liver cells bearing a unique gene expression profile. After identifying a digital signature of 10 liver-specific transcripts, we used a cross-validated logistic regression model to identify the presence of HCC-derived CTCs in nine of 16 (56%) untreated patients with HCC versus one of 31 (3%) patients with nonmalignant liver disease at risk for developing HCC (P < 0.0001). Positive CTC scores declined in treated patients: Nine of 32 (28%) patients receiving therapy and only one of 15 (7%) patients who had undergone curative-intent ablation, surgery, or liver transplantation were positive. RNA-based digital CTC scoring was not correlated with the standard HCC serum protein marker alpha fetoprotein (P = 0.57). Modeling the sequential use of these two orthogonal markers for liver cancer screening in patients with high-risk cirrhosis generates positive and negative predictive values of 80% and 86%, respectively. Thus, digital RNA quantitation constitutes a sensitive and specific CTC readout, enabling high-throughput clinical applications, such as noninvasive screening for HCC in populations where viral hepatitis and cirrhosis are prevalent.


Subject(s)
Biomarkers, Tumor/blood , Carcinoma, Hepatocellular/diagnosis , Cell Separation/methods , Early Detection of Cancer/methods , High-Throughput Screening Assays , Liver Neoplasms/diagnosis , Neoplastic Cells, Circulating , RNA, Messenger/blood , RNA, Neoplasm/blood , Transcriptome , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/therapy , Cell Lineage , Cell Separation/instrumentation , Hep G2 Cells , Hepatitis B, Chronic/blood , High-Throughput Nucleotide Sequencing/instrumentation , High-Throughput Nucleotide Sequencing/methods , Humans , Lab-On-A-Chip Devices , Liver Cirrhosis/blood , Liver Neoplasms/blood , Liver Neoplasms/pathology , Liver Neoplasms/therapy , Logistic Models , Precancerous Conditions/blood , Predictive Value of Tests , Sequence Analysis, RNA/instrumentation , Sequence Analysis, RNA/methods , Single-Cell Analysis
9.
Molecules ; 25(23)2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33297583

ABSTRACT

Inhibition of the glycolytic pathway is a critical strategy in anticancer therapy because of the role of aerobic glycolysis in cancer cells. The glycolytic inhibitor 2-Deoxy-d-glucose (2-DG) has shown potential in combination with other anticancer agents. Buforin IIb is an effective antimicrobial peptide (AMP) with broad-spectrum anticancer activity and selectivity. The efficacy of combination treatment with 2-DG and buforin IIb in prostate cancer remains unknown. Here, we tested the efficacy of buforin IIb as a mitochondria-targeting AMP in the androgen-independent human prostate cancer cell line DU145. Combining 2-DG with buforin IIb had a synergistic toxic effect on DU145 cells and mouse xenograft tumors. Combination treatment with 2-DG and buforin IIb caused stronger proliferation inhibition, greater G1 cell cycle arrest, and higher apoptosis than either treatment alone. Combination treatment dramatically decreased L-lactate production and intracellular ATP levels, indicating severe inhibition of glycolysis and ATP production. Flow cytometry and confocal laser scanning microscopy results indicate that 2-DG may increase buforin IIb uptake by DU145 cells, thereby increasing the mitochondria-targeting capacity of buforin IIb. This may partly explain the effect of combination treatment on enhancing buforin IIb-induced apoptosis. Consistently, 2-DG increased mitochondrial dysfunction and upregulated Bax/Bcl-2, promoting cytochrome c release to initiate procaspase 3 cleavage induced by buforin IIb. These results suggest that 2-DG sensitizes prostate cancer DU145 cells to buforin IIb. Moreover, combination treatment caused minimal hemolysis and cytotoxicity to normal WPMY-1 cells. Collectively, the current study demonstrates that dual targeting of glycolysis and mitochondria by 2-DG and buforin IIb may be an effective anticancer strategy for the treatment of some advanced prostate cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Deoxyglucose/pharmacology , Proteins/pharmacology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Models, Animal , Drug Synergism , Energy Metabolism/drug effects , G1 Phase Cell Cycle Checkpoints/drug effects , Glycolysis/drug effects , Humans , Male , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Xenograft Model Antitumor Assays
10.
Mol Biol Evol ; 35(10): 2390-2400, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29955873

ABSTRACT

Viral evolutionary pathways are determined by the fitness landscape, which maps viral genotype to fitness. However, a quantitative description of the landscape and the evolutionary forces on it remain elusive. Here, we apply a biophysical fitness model based on capsid folding stability and antibody binding affinity to predict the evolutionary pathway of norovirus escaping a neutralizing antibody. The model is validated by experimental evolution in bulk culture and in a drop-based microfluidics that propagates millions of independent small viral subpopulations. We demonstrate that along the axis of binding affinity, selection for escape variants and drift due to random mutations have the same direction, an atypical case in evolution. However, along folding stability, selection and drift are opposing forces whose balance is tuned by viral population size. Our results demonstrate that predictable epistatic tradeoffs between molecular traits of viral proteins shape viral evolution.


Subject(s)
Antibody Affinity , Biological Evolution , Genetic Fitness , Models, Genetic , Norovirus/genetics , Animals , Antibodies, Neutralizing , Capsid Proteins/physiology , Epistasis, Genetic , Mice , Protein Folding , Protein Stability , Selection, Genetic
11.
BMC Biotechnol ; 18(1): 23, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29716562

ABSTRACT

BACKGROUND: Arachidonic acid (ARA), which is a ω-6 polyunsaturated fatty acid, has a wide range of biological activities and is an essential component of cellular membranes in some human tissues. Mortierella alpina is the best strain for industrial production of ARA. To increase its yield of arachidonic acid, heavy ion beam irradiation mutagenesis of Mortierella alpina was carried out in combination with triclosan and octyl gallate treatment. RESULTS: The obtained mutant strain F-23 ultimately achieved an ARA yield of 5.26 g L- 1, which is 3.24 times higher than that of the wild-type strain. In addition, quantitative real-time PCR confirmed that the expression levels of fatty acid synthase (FAS), Δ5-desaturase, Δ6-desaturase, and Δ9-desaturase were all significantly up-regulated in the mutant F-23 strain, especially Δ6- and Δ9-desaturase, which were up-regulated 3- and 2-fold, respectively. CONCLUSIONS: This study confirmed a feasible mutagenesis breeding strategy for improving ARA production and provided a mutant of Mortierella alpina with high ARA yield.


Subject(s)
Arachidonic Acid/biosynthesis , Mortierella/drug effects , Mortierella/radiation effects , Bioreactors , Fatty Acid Desaturases/biosynthesis , Fatty Acid Synthases/biosynthesis , Fermentation , Gallic Acid/analogs & derivatives , Gallic Acid/pharmacology , Heavy Ions , Mortierella/genetics , Mortierella/metabolism , Mutagenesis , Triclosan/pharmacology
13.
BMC Biotechnol ; 17(1): 68, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28854910

ABSTRACT

BACKGROUND: Arachidonic acid (ARA, C20:4, n-6), which belongs to the omega-6 series of polyunsaturated fatty acids and has a variety of biological activities, is commercially produced in Mortierella alpina. Dissolved oxygen or oxygen utilization efficiency is a critical factor for Mortierella alpina growth and arachidonic acid production in large-scale fermentation. Overexpression of the Vitreoscilla hemoglobin gene is thought to significantly increase the oxygen utilization efficiency of the cells. RESULTS: An optimized Vitreoscilla hemoglobin (VHb) gene was introduced into Mortierella alpina via Agrobacterium tumefaciens-mediated transformation. Compared with the parent strain, the VHb-expressing strain, termed VHb-20, grew faster under both limiting and non-limiting oxygen conditions and exhibited dramatic changes in cell morphology. Furthermore, VHb-20 produced 4- and 8-fold higher total lipid and ARA yields than those of the wild-type strain under a microaerobic environment. Furthermore, ARA production of VHb-20 was also 1.6-fold higher than that of the wild type under normal conditions. The results demonstrated that DO utilization was significantly increased by expressing the VHb gene in Mortierella alpina. CONCLUSIONS: The expression of VHb enhances ARA and lipid production under both lower and normal dissolved oxygen conditions. This study provides a novel strategy and an engineered strain for the cost-efficient production of ARA.


Subject(s)
Arachidonic Acid/metabolism , Bacterial Proteins/genetics , Industrial Microbiology/methods , Mortierella/metabolism , Truncated Hemoglobins/genetics , Arachidonic Acid/genetics , Bacterial Proteins/metabolism , Bioreactors , Fatty Acids/genetics , Fatty Acids/metabolism , Fermentation , Industrial Microbiology/instrumentation , Lipid Metabolism , Mortierella/genetics , Mortierella/growth & development , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Truncated Hemoglobins/metabolism
14.
J Virol ; 89(15): 7722-34, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25972549

ABSTRACT

UNLABELLED: Human noroviruses (HuNoVs) are positive-sense RNA viruses that can cause severe, highly infectious gastroenteritis. HuNoV outbreaks are frequently associated with recombination between circulating strains. Strain genotyping and phylogenetic analyses show that noroviruses often recombine in a highly conserved region near the junction of the viral polyprotein (open reading frame 1 [ORF1]) and capsid (ORF2) genes and occasionally within the RNA-dependent RNA polymerase (RdRP) gene. Although genotyping methods are useful for tracking changes in circulating viral populations, they report only the dominant recombinant strains and do not elucidate the frequency or range of recombination events. Furthermore, the relatively low frequency of recombination in RNA viruses has limited studies to cell culture or in vitro systems, which do not reflect the complexities and selective pressures present in an infected organism. Using two murine norovirus (MNV) strains to model coinfection, we developed a microfluidic platform to amplify, detect, and recover individual recombinants following in vitro and in vivo coinfection. One-step reverse transcriptase PCR (RT-PCR) was performed in picoliter drops with primers that identified the wild-type and recombinant progenies and scanned for recombination breakpoints at ∼1-kb intervals. We detected recombination between MNV strains at multiple loci spanning the viral protease, RdRP, and capsid ORFs and isolated individual recombinant RNA genomes that were present at a frequency of 1/300,000 or higher. This study is the first to examine norovirus recombination following coinfection of an animal and suggests that the exchange of RNA among viral genomes in an infected host occurs in multiple locations and is an important driver of genetic diversity. IMPORTANCE: RNA viruses increase diversity and escape host immune barriers by genomic recombination. Studies using a number of viral systems indicate that recombination occurs via template switching by the virus-encoded RNA-dependent RNA polymerase (RdRP). However, factors that govern the frequency and positions of recombination in an infected organism remain largely unknown. This work leverages advances in the applied physics of drop-based microfluidics to isolate and sequence rare recombinants arising from the coinfection of mice with two distinct strains of murine norovirus. This study is the first to detect and analyze norovirus recombination in an animal model.


Subject(s)
Caliciviridae Infections/virology , Norovirus/genetics , Norovirus/isolation & purification , Recombination, Genetic , Animals , Genetic Variation , Genotype , Humans , Mice , Microfluidics , Molecular Sequence Data , Norovirus/classification , Phylogeny
15.
Chembiochem ; 16(15): 2167-71, 2015 Oct 12.
Article in English | MEDLINE | ID: mdl-26247541

ABSTRACT

Recombination is an important driver in the evolution of viruses and thus is key to understanding viral epidemics and improving strategies to prevent future outbreaks. Characterization of rare recombinant subpopulations remains technically challenging because of artifacts such as artificial recombinants, known as chimeras, and amplification bias. To overcome this, we have developed a high-throughput microfluidic technique with a second verification step in order to amplify and sequence single recombinant viruses with high fidelity in picoliter drops. We obtained the first artifact-free estimate of in vitro recombination rate between murine norovirus strains MNV-1 and WU20 co-infecting a cell (P(rec) = 3.3 × 10(-4) ± 2 × 10(-5) ) for a 1205 nt region. Our approach represents a time- and cost-effective improvement over current methods, and can be adapted for genomic studies requiring artifact- and bias-free selective amplification, such as microbial pathogens, or rare cancer cells.


Subject(s)
Microfluidics/methods , Recombination, Genetic/genetics , Sequence Analysis/methods , Viruses/genetics , Animals , Artifacts , Cells, Cultured , Fluorescent Dyes , High-Throughput Screening Assays , Mice , Particle Size , Reverse Transcriptase Polymerase Chain Reaction , Virus Replication/genetics
16.
Lab Chip ; 24(5): 1135-1153, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38165829

ABSTRACT

Over the past two decades, advances in droplet-based microfluidics have facilitated new approaches to process and analyze samples with unprecedented levels of precision and throughput. A wide variety of applications has been inspired across multiple disciplines ranging from materials science to biology. Understanding the dynamics of droplets enables optimization of microfluidic operations and design of new techniques tailored to emerging demands. In this review, we discuss the underlying physics behind high-throughput generation and manipulation of droplets. We also summarize the applications in droplet-derived materials and droplet-based lab-on-a-chip biotechnology. In addition, we offer perspectives on future directions to realize wider use of droplet microfluidics in industrial production and biomedical analyses.

17.
Acta Ophthalmol ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38516719

ABSTRACT

PURPOSE: To develop and validate an effective nomogram for predicting poor response to orthokeratology. METHODS: Myopic children (aged 8-15 years) treated with orthokeratology between February 2018 and January 2022 were screened in four hospitals of different tiers (i.e. municipal and provincial) in China. Potential predictors included 32 baseline clinical variables. Nomogram for the outcome (1-year axial elongation ≥0.20 mm: poor response; <0.20 mm: good response) was computed from a logistic regression model with the least absolute shrinkage and selection operator. The data from the First Affiliated Hospital of Chengdu Medical College were randomly assigned (7:3) to the training and validation cohorts. An external cohort from three independent multicentre was used for the model test. Model performance was assessed by discrimination (the area under curve, AUC), calibration (calibration plots) and utility (decision curve analysis). RESULTS: Between January 2022 and March 2023, 1183 eligible subjects were screened from the First Affiliated Hospital of Chengdu Medical College, then randomly divided into training (n = 831) and validation (n = 352) cohorts. A total of 405 eligible subjects were screened in the external cohort. Predictors included in the nomogram were baseline age, spherical equivalent, axial length, pupil diameter, surface asymmetry index and parental myopia (p < 0.05). This nomogram demonstrated excellent calibration, clinical net benefit and discrimination, with the AUC of 0.871 (95% CI 0.847-0.894), 0.863 (0.826-0.901) and 0.817 (0.777-0.857) in the training, validation and external cohorts, respectively. An online calculator was generated for free access (http://39.96.75.172:8182/#/nomogram). CONCLUSION: The nomogram provides accurate individual prediction of poor response to overnight orthokeratology in Chinese myopic children.

18.
Int J Ophthalmol ; 17(2): 324-330, 2024.
Article in English | MEDLINE | ID: mdl-38371262

ABSTRACT

AIM: To present the 1-year results of a prospective cohort study investigating the efficacy, potential mechanism, and safety of orthokeratology (ortho-k) with different back optic zone diameters (BOZD) for myopia control in children. METHODS: This randomized clinical study was performed between Dec. 2020 and Dec. 2021. Participants were randomly assigned to three groups wearing ortho-k: 5 mm BOZD (5-MM group), 5.5 mm BOZD (5.5-MM group), and 6 mm BOZD (6-MM group). The 1-year data were recorded, including axial length, relative peripheral refraction (RPR, measured by multispectral refractive topography, MRT), and visual quality. The contrast sensitivity (CS) was evaluated by CSV-1000 instrument with spatial frequencies of 3, 6, 12, and 18 cycles/degree (c/d); the corneal higher-order aberrations (HOAs) were measured by iTrace aberration analyzer. The one-way ANOVA was performed to assess the differences between the three groups. The correlation between the change in AL and RPR was calculated by Pearson's correlation coefficient. RESULTS: The 1-year results of 20, 21, and 21 subjects in the 5-MM, 5.5-MM, and 6-MM groups, respectively, were presented. There were no statistical differences in baseline age, sex, or ocular parameters between the three groups (all P>0.05). At the 1-year visit, the 5-MM group had lower axial elongation than the 6-MM group (0.07±0.09 vs 0.18±0.11 mm, P=0.001). The 5-MM group had more myopic total RPR (TRPR, P=0.014), with RPR in the 15°-30° (RPR 15-30, P=0.015), 30°-45° (RPR 30-45, P=0.011), temporal (RPR-T, P=0.008), and nasal area (RPR-N, P<0.001) than the 6-MM group. RPR 15-30 in the 5.5-MM group was more myopic than that in the 6-MM group (P=0.002), and RPR-N in the 5-MM group was more myopic than that in the 5.5-MM group (P<0.001). There were positive correlations between the axial elongation and the change in TRPR (r=0.756, P<0.001), RPR 15-30 (r=0.364, P=0.004), RPR 30-45 (r=0.306, P=0.016), and RPR-N (r=0.253, P=0.047). The CS decreased at 3 c/d (P<0.001), and the corneal HOAs increased in the 5-MM group (P=0.030). CONCLUSION: Ortho-k with 5 mm BOZD can control myopia progression more effectively. The mechanism may be associated with greater myopic shifts in RPR.

19.
Cell Death Discov ; 10(1): 91, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378646

ABSTRACT

Pyroptosis plays a crucial role in sepsis, and the abnormal handling of myocyte calcium (Ca2+) has been associated with cardiomyocyte pyroptosis. Specifically, the inositol 1,4,5-trisphosphate receptor type 2 (IP3R2) is a Ca2+ release channel in the endoplasmic reticulum (ER). However, the specific role of IP3R2 in sepsis-induced cardiomyopathy (SIC) has not yet been determined. Thus, this study aimed to investigate the underlying mechanism by which IP3R2 channel-mediated Ca2+ signaling contributes to lipopolysaccharide (LPS)-induced cardiac pyroptosis. The SIC model was established in rats by intraperitoneal injection of LPS (10 mg/kg). Cardiac dysfunction was assessed using echocardiography, and the protein expression of relevant signaling pathways was analyzed using ELISA, RT-qPCR, and western blot. Small interfering RNAs (siRNA) and an inhibitor were used to explore the role of IP3R2 in neonatal rat cardiomyocytes (NRCMs) stimulated by LPS in vitro. LPS-induced NLRP3 overexpression and GSDMD-mediated pyroptosis in the rats' heart. Treatment with the NLRP3 inhibitor MCC950 alleviated LPS-induced cardiomyocyte pyroptosis. Furthermore, LPS increased ATP-induced intracellular Ca2+ release and IP3R2 expression in NRCMs. Inhibiting IP3R activity with xestospongin C (XeC) or knocking down IP3R2 reversed LPS-induced intracellular Ca2+ release. Additionally, inhibiting IP3R2 reversed LPS-induced pyroptosis by suppressing the NLRP3/Caspase-1/GSDMD pathway. We also found that ER stress and IP3R2-mediated Ca2+ release mutually regulated each other, contributing to cardiomyocyte pyroptosis. IP3R2 promotes NLRP3-mediated pyroptosis by regulating ER Ca2+ release, and the mutual regulation of IP3R2 and ER stress further promotes LPS-induced pyroptosis in cardiomyocytes.

20.
J Agric Food Chem ; 71(33): 12519-12527, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37561084

ABSTRACT

Arachidonic acid (ARA) is an essential fatty acid in human nutrition. Mortierella alpina, a filamentous fungus, has been widely used for the production of ARA. Here, we report a modular engineering approach that systematically eliminates metabolic bottlenecks in the multigene elongase/desaturase pathway and has led to significant improvements of the ARA titer. The elongase/desaturase pathway in Mortierella alpina was recast into two modules, namely, push and pull modules, based on its function in the ARA synthesis. Combinatorial optimization of these two modules has balanced the production and consumption of intermediate metabolites. A 2A peptide-based facile assembly platform that can achieve multigene expression as a polycistron was first established. The platform was then applied to express the push and pull modules in Mortierella alpina. In the shake-flask fermentation, the lipid and ARA contents of the engineered strain MA5 were increased by 1.2-fold and 77.6%, respectively, resulting in about fivefold increase of the ARA yield. The final ARA titer reached 4.4 g L-1 in shake-flask fermentation. The modular engineering strategies presented in this study demonstrate a generalized approach for the engineering of cell factories in the production of valuable metabolites.


Subject(s)
Metabolic Engineering , Mortierella , Humans , Arachidonic Acid/metabolism , Fatty Acid Elongases/metabolism , Mortierella/genetics , Mortierella/metabolism , Fatty Acid Desaturases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL