Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Med Sci Monit ; 30: e944157, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38794788

ABSTRACT

BACKGROUND Micro-needle knife (MNK) therapy releases the superficial fascia to alleviate pain and improve joint function in patients with acute ankle sprains (AAS). We aimed to evaluate the efficacy and safety of MNK therapy vs that of acupuncture. MATERIAL AND METHODS This blinded assessor, randomized controlled trial allocated 80 patients with AAS to 2 parallel groups in a 1: 1 ratio. The experimental group received MNK therapy; the control group underwent conventional acupuncture treatment at specified acupoints. Clinical efficacy differences between the 2 groups before (time-point 1 [TP1]) and after treatment (TP2) were evaluated using the visual analogue scale (VAS) and Kofoed ankle score. Safety records and evaluations of adverse events were documented. One-month follow-up after treatment (TP3) was conducted to assess the intervention scheme's reliability. RESULTS VAS and Kofoed ankle scores significantly improved in both groups. No patients dropped due to adverse events. At TP1, there were no significant differences between the 2 groups in terms of VAS and Kofoed scores (P>0.05). However, at TP2, efficacy of MNK therapy in releasing the superficial fascia was significantly superior to that of acupuncture treatment (P<0.001). At TP3, no significant differences in scores existed between the groups (P>0.05). CONCLUSIONS This study demonstrates that 6 sessions of MNK therapy to release the superficial fascia safely and effectively alleviated pain and enhanced ankle joint function in patients with AAS, surpassing the efficacy of conventional acupuncture treatment. Future studies should increase the sample size and introduce additional control groups to further validate the superior clinical efficacy of this intervention.


Subject(s)
Acupuncture Therapy , Ankle Injuries , Sprains and Strains , Humans , Male , Female , Ankle Injuries/therapy , Acupuncture Therapy/methods , Adult , Treatment Outcome , Sprains and Strains/therapy , Middle Aged , Pain Measurement , Acupuncture Points , Needles
2.
BMC Cancer ; 23(1): 1139, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37996814

ABSTRACT

BACKGROUND: Calcification is a common phenomenon in both benign and malignant thyroid nodules. However, the clinical significance of calcification remains unclear. Therefore, we explored a more objective method for distinguishing between benign and malignant thyroid calcified nodules. METHODS: This retrospective study, conducted at two centers, involved a total of 631 thyroid nodules, all of which were pathologically confirmed. Ultrasound image sets were employed for analysis. The primary evaluation index was the area under the receiver-operator characteristic curve (AUROC). We compared the diagnostic performance of deep learning (DL) methods with that of radiologists and determined whether DL could enhance the diagnostic capabilities of radiologists. RESULTS: The Xception classification model exhibited the highest performance, achieving an AUROC of up to 0.970, followed by the DenseNet169 model, which attained an AUROC of up to 0.959. Notably, both DL models outperformed radiologists (P < 0.05). The success of the Xception model can be attributed to its incorporation of deep separable convolution, which effectively reduces the model's parameter count. This feature enables the model to capture features more effectively during the feature extraction process, resulting in superior performance, particularly when dealing with limited data. CONCLUSIONS: This study conclusively demonstrated that DL outperformed radiologists in differentiating between benign and malignant calcified thyroid nodules. Additionally, the diagnostic capabilities of radiologists could be enhanced with the aid of DL.


Subject(s)
Calcinosis , Deep Learning , Thyroid Nodule , Humans , Thyroid Nodule/diagnostic imaging , Retrospective Studies , ROC Curve , Calcinosis/diagnostic imaging , Ultrasonography/methods
3.
Natl Sci Rev ; 11(6): nwae089, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38933601

ABSTRACT

Plate tectonics plays an essential role in the redistribution of life-essential volatile elements between Earth's interior and surface, whereby our planet has been well tuned to maintain enduring habitability over much of its history. Here we present an overview of deep carbon recycling in the regime of modern plate tectonics, with a special focus on convergent plate margins for assessing global carbon mass balance. The up-to-date flux compilation implies an approximate balance between deep carbon outflux and subduction carbon influx within uncertainty but remarkably limited return of carbon to convecting mantle. If correct, carbon would gradually accumulate in the lithosphere over time by (i) massive subsurface carbon storage occurring primarily in continental lithosphere from convergent margins to continental interior and (ii) persistent surface carbon sinks to seafloors sustained by high-flux deep CO2 emissions to the atmosphere. Further assessment of global carbon mass balance requires updates on fluxes of subduction-driven carbon recycling paths and reduction in uncertainty of deep carbon outflux. From a global plate tectonics point of view, we particularly emphasize that continental reworking is an important mechanism for remobilizing geologically sequestered carbon in continental crust and sub-continental lithospheric mantle. In light of recent advances, future research is suggested to focus on a better understanding of the reservoirs, fluxes, mechanisms, and climatic effects of deep carbon recycling following an integrated methodology of observation, experiment, and numerical modeling, with the aim of decoding the self-regulating Earth system and its habitability from the deep carbon recycling perspective.

4.
Front Oncol ; 13: 1157949, 2023.
Article in English | MEDLINE | ID: mdl-37260984

ABSTRACT

Objective: To establish machine learning (ML) prediction models for prostate cancer (PCa) using transrectal ultrasound videos and multi-parametric magnetic resonance imaging (mpMRI) and compare their diagnostic performance. Materials and methods: We systematically collated the data of 383 patients, including 187 with PCa and 196 with benign lesions. Of them, 307 patients (150 with PCa and 157 with benign lesions) were randomly selected to train and validate the ML models, 76 patients were used as test set. B-Ultrasound videos (BUS), mpMRI T2 sequence (T2), and ADC sequence (ADC) were obtained from all patients. We extracted 851 features of each patient in the BUS, T2, and ADC groups and used a t-test, the Mann-Whitney U test, and LASSO regression to screen the features. Support vector machine (SVM), random forest (RF), adaptive boosting (ADB), and gradient boosting machine (GBM) models were used to establish radiomics models. In addition, we fused the features screened via LASSO regression from three groups as new features and rebuilt ML models. The performance of the ML models in diagnosing PCa in the BUS, T2, ADC, and fusion groups was compared using the area under the ROC curve (AUC), sensitivity, specificity, and accuracy. Results: In the test cohort, the AUC of each model in the ADC group was higher than that of in the.BUS and T2 groups. Among the models, the RF model had the best diagnostic performance, with an AUC of 0.85, sensitivity of 0.78 (0.61-0.89), specificity of 0.84 (0.69-0.94), and accuracy of 0.83 (0.66-0.93). The SVM model in both the BUS and T2 groups performed best. Based on the features screened in the BUS, T2, and ADC groups fused to construct the models, the SVM model was found to perform best, with an AUC of 0.87, sensitivity of 0.73 (0.56-0.86), specificity of 0.79 (0.63-0.90), and accuracy of 0.77 (0.59-0.89). The difference in the results was statistically significant (p<0.05). Conclusion: The ML prediction models had a good diagnostic ability for PCa. Among them, the SVM model in the fusion group showed the best performance in diagnosing PCa. These prediction models can help radiologists make better diagnoses.

5.
Front Endocrinol (Lausanne) ; 14: 1137322, 2023.
Article in English | MEDLINE | ID: mdl-36967794

ABSTRACT

Objective: To investigate the effect of transrectal multimodal ultrasound combined with serum prostate-specific antigen (PSA)-related indicators and machine learning for the diagnosis of clinically significant prostate cancer. Methods: Based on Gleason score of postoperative pathological results, the subjects were divided into clinically significant prostate cancer groups(GS>6)and non-clinically significant prostate cancer groups(GS ≤ 6). The independent risk factors were obtained by univariate logistic analysis. Artificial neural network (ANN), logistic regression (LR), support vector machine (SVM), decision tree (DT), random forest (RF), and K-nearest neighbor (KNN) machine learning models were combined with clinically significant prostate cancer risk factors to establish the machine learning model, calculate the model evaluation indicators, construct the receiver operating characteristic curve (ROC), and calculate the area under the curve (AUC). Results: Independent risk factor items (P< 0.05) were entered into the machine learning model. A comparison of the evaluation indicators of the model and the area under the ROC curve showed the ANN model to be best at predicting clinically significant prostate cancer, with a sensitivity of 80%, specificity of 88.6%, F1 score of 0.897, and the AUC was 0.855. Conclusion: Establishing a machine learning model by rectal multimodal ultrasound and combining it with PSA-related indicators has definite application value in predicting clinically significant prostate cancer.


Subject(s)
Prostate-Specific Antigen , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/diagnostic imaging , ROC Curve , Neural Networks, Computer , Machine Learning
6.
Eur J Radiol ; 167: 111033, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37595399

ABSTRACT

OBJECTIVE: The aim of this study is to develop AI-assisted software incorporating a deep learning (DL) model based on static ultrasound images. The software aims to aid physicians in distinguishing between malignant and benign thyroid nodules with echogenic foci and to investigate how the AI-assisted DL model can enhance radiologists' diagnostic performance. METHODS: For this retrospective study, a total of 2724 ultrasound (US) scans were collected from two independent institutions, encompassing 1038 echogenic foci nodules. All echogenic foci were confirmed by pathology. Three DL segmentation models (DeepLabV3+, U-Net, and PSPNet) were developed, with each model using two different backbones to extract features from the nodular regions with echogenic foci. Evaluation indexes such as Mean Intersection over Union (MIoU), Mean Pixel Accuracy (MPA), and Dice coefficients were employed to assess the performance of the segmentation model. The model demonstrating the best performance was selected to develop the AI-assisted diagnostic software, enabling radiologists to benefit from AI-assisted diagnosis. The diagnostic performance of radiologists with varying levels of seniority and beginner radiologists in assessing high-echo nodules was then compared, both with and without the use of auxiliary strategies. The area under the receiver operating characteristic curve (AUROC) was used as the primary evaluation index, both with and without the use of auxiliary strategies. RESULTS: In the analysis of Institution 2, the DeepLabV3+ (backbone is MobileNetV2 exhibited optimal segmentation performance, with MIoU = 0.891, MPA = 0.945, and Dice = 0.919. The combined AUROC (0.693 [95% CI 0.595-0.791]) of radiology beginners using AI-assisted strategies was significantly higher than those without such strategies (0.551 [0.445-0.657]). Additionally, the combined AUROC of junior physicians employing adjuvant strategies improved from 0.674 [0.574-0.774] to 0.757 [0.666-0.848]. Similarly, the combined AUROC of senior physicians increased slightly, rising from 0.745 [0.652-0.838] to 0.813 [0.730-0.896]. With the implementation of AI-assisted strategies, the accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of both senior physicians and beginners in the radiology department underwent varying degrees of improvement. CONCLUSIONS: This study demonstrates that the DL-based auxiliary diagnosis model using US static images can improve the performance of radiologists and radiology students in identifying thyroid echogenic foci.


Subject(s)
Deep Learning , Thyroid Nodule , Humans , Thyroid Nodule/diagnostic imaging , Thyroid Nodule/pathology , Retrospective Studies , ROC Curve
7.
Front Oncol ; 12: 948662, 2022.
Article in English | MEDLINE | ID: mdl-36091110

ABSTRACT

Objective: To build a machine learning (ML) prediction model for prostate cancer (PCa) from transrectal ultrasound video clips of the whole prostate gland, diagnostic performance was compared with magnetic resonance imaging (MRI). Methods: We systematically collated data from 501 patients-276 with prostate cancer and 225 with benign lesions. From a final selection of 231 patients (118 with prostate cancer and 113 with benign lesions), we randomly chose 170 for the purpose of training and validating a machine learning model, while using the remaining 61 to test a derived model. We extracted 851 features from ultrasound video clips. After dimensionality reduction with the least absolute shrinkage and selection operator (LASSO) regression, 14 features were finally selected and the support vector machine (SVM) and random forest (RF) algorithms were used to establish radiomics models based on those features. In addition, we creatively proposed a machine learning models aided diagnosis algorithm (MLAD) composed of SVM, RF, and radiologists' diagnosis based on MRI to evaluate the performance of ML models in computer-aided diagnosis (CAD). We evaluated the area under the curve (AUC) as well as the sensitivity, specificity, and precision of the ML models and radiologists' diagnosis based on MRI by employing receiver operator characteristic curve (ROC) analysis. Results: The AUC, sensitivity, specificity, and precision of the SVM in the diagnosis of PCa in the validation set and the test set were 0.78, 63%, 80%; 0.75, 65%, and 67%, respectively. Additionally, the SVM model was found to be superior to senior radiologists' (SR, more than 10 years of experience) diagnosis based on MRI (AUC, 0.78 vs. 0.75 in the validation set and 0.75 vs. 0.72 in the test set), and the difference was statistically significant (p< 0.05). Conclusion: The prediction model constructed by the ML algorithm has good diagnostic efficiency for prostate cancer. The SVM model's diagnostic efficiency is superior to that of MRI, as it has a more focused application value. Overall, these prediction models can aid radiologists in making better diagnoses.

8.
Nat Commun ; 12(1): 4157, 2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34230487

ABSTRACT

The episodic growth of high-elevation orogenic plateaux is controlled by a series of geodynamic processes. However, determining the underlying mechanisms that drive plateau growth dynamics over geological history and constraining the depths at which growth originates, remains challenging. Here we present He-CO2-N2 systematics of hydrothermal fluids that reveal the existence of a lithospheric-scale fault system in the southeastern Tibetan Plateau, whereby multi-stage plateau growth occurred in the geological past and continues to the present. He isotopes provide unambiguous evidence for the involvement of mantle-scale dynamics in lateral expansion and localized surface uplift of the Tibetan Plateau. The excellent correlation between 3He/4He values and strain rates, along the strike of Indian indentation into Asia, suggests non-uniform distribution of stresses between the plateau boundary and interior, which modulate southeastward growth of the Tibetan Plateau within the context of India-Asia convergence. Our results demonstrate that deeply-sourced volatile geochemistry can be used to constrain deep dynamic processes involved in orogenic plateau growth.

SELECTION OF CITATIONS
SEARCH DETAIL