Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Chemosphere ; 364: 143173, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39182728

ABSTRACT

Transition metals exhibit high reactivity for Fenton-like catalysis in environmental remediation, but how to save consumption and reduce pollution is of great interest. In this study, rationally designed defect-engineered Fe@MoS2 (Fe@D-MoS2) was prepared by incorporating reactive iron onto structural defects generated from the chemical acid-etching, aiming to improve the energetic consumption of the catalyst in Fenton-like applications. Morphological and structural properties were elucidated in details, the Fenton-like reactivity was evaluated with five phenolic contaminants for oxidant activation, radical generation and environmental remediation. Compared to Fe@MoS2, Fe@D-MoS2 exhibited a 18.9-fold increase in phenol degradation (0.09 versus 1.79 min-1). Quenching experiments, electron paramagnetic resonance tests and electrochemical measurements revealed the dominant sulfate and superoxide radicals. Rendered by strong metal-substrate surface and electronic interactions from regulated chemical environment and coordination structure, the inert ≡ Fe(III) was reduced to the reactive ≡ Fe(II) accompanied by the ≡ Mo(IV) oxidation to ≡ Mo(V) in MoS2 lattice, with adjacent sulfur serving as the key electron transfer bridge. Therefore, this work shows that the incorporation of reactive centers is able to boost two-dimensional sulfide materials for environmental catalysis applications.


Subject(s)
Disulfides , Iron , Molybdenum , Oxidation-Reduction , Superoxides , Water Purification , Catalysis , Iron/chemistry , Molybdenum/chemistry , Water Purification/methods , Disulfides/chemistry , Superoxides/chemistry , Hydrogen Peroxide/chemistry , Water Pollutants, Chemical/chemistry , Environmental Restoration and Remediation/methods , Metals/chemistry
2.
World J Gastroenterol ; 29(31): 4706-4735, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37664153

ABSTRACT

Hepatocellular carcinoma (HCC) is a malignancy with a high incidence and fatality rate worldwide. Hepatitis B virus (HBV) infection is one of the most important risk factors for its occurrence and development. Early detection of HBV-associated HCC (HBV-HCC) can improve clinical decision-making and patient outcomes. Biomarkers are extremely helpful, not only for early diagnosis, but also for the development of therapeutics. MicroRNAs (miRNAs), a subset of non-coding RNAs approximately 22 nucleotides in length, have increasingly attracted scientists' attention due to their potential utility as biomarkers for cancer detection and therapy. HBV profoundly impacts the expression of miRNAs potentially involved in the development of hepatocarcinogenesis. In this review, we summarize the current progress on the role of miRNAs in the diagnosis and treatment of HBV-HCC. From a molecular standpoint, we discuss the mechanism by which HBV regulates miRNAs and investigate the exact effect of miRNAs on the promotion of HCC. In the near future, miRNA-based diagnostic, prognostic, and therapeutic applications will make their way into the clinical routine.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B , Liver Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Hepatitis B virus/genetics , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Prognosis , Biomarkers , Hepatitis B/complications , Hepatitis B/diagnosis
3.
Ann Transl Med ; 10(2): 78, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35282045

ABSTRACT

Background: After peripheral nerve injury, Schwann cells proliferate and migrate to the injured site, thereby promoting peripheral nerve regeneration. The process is regulated by various factors. Endothelial cells participate in the process via angiogenesis. However, the effects of endothelial cells on Schwann cells are not yet known. The present study sought to evaluate whether endothelial cells accelerate Schwann cell proliferation and migration. Methods: We established a co-culture model of rat Schwann cells (RSC96s) and rat aortic endothelial cells (RAOECs), and studied the effects of endothelial cells on Schwann cells by evaluating changes in Schwann cell proliferation and migration and related multiple genes and their protein expressions in the co-culture model. Results: The results showed that increasing the proportion of endothelial cells in the co-culture model enhanced the proliferation. At days 1 and 3 following the co-culturing, the relative growth rates of the co-cultured cells were 122.87% and 127.37%, respectively, which showed a significant increase in the viability compared to that of the RSC96s (P<0.05). In this process, the expression of Ki67 increased. The migration ability of Schwann cells was also enhanced. The migration capacity of Schwann cells was detected by wound-healing and Transwell assays. The results of the group with 15% of endothelial cells was significantly higher than the results of the other groups (P<0.0001 and P<0.05, respectively). Further, neuregulin 1 and glial fibrillary acidic protein increased the process of Schwann cell migration. Conclusions: The results showed that endothelial cells can promote the proliferation and migration of Schwann cells and participate in peripheral nerve regeneration.

SELECTION OF CITATIONS
SEARCH DETAIL