Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Mol Imaging ; 23: 15353508241261473, 2024.
Article in English | MEDLINE | ID: mdl-38952401

ABSTRACT

Background: Labeled antibodies are excellent imaging agents in oncology to non-invasively visualize cancer-related antigens expression levels. However, tumor tracer uptake (TTU) of specific antibodies in-vivo may be inferior to non-specific IgG in some cases. Objectives: To explore factors affecting labeled antibody visualization by PD-L1 specific and non-specific imaging of nude mouse tumors. Methods: TTU was observed in RKO model on Cerenkov luminescence (CL) and near-infrared fluorescence (NIRF) imaging of radionuclide 131I or NIRF dyes labeled Atezolizumab and IgG. A mixture of NIRF dyes labeled Atezolizumab and 131I-labeled IgG was injected, and TTU was observed in the RKO and HCT8 model by NIRF/CL dual-modality in-situ imaging. TTU were observed by 131I-labeled Atezolizumab and IgG in-vitro distribution. Results: Labeled IgG concentrated more in tumors than Atezolizumab. NIRF/CL imaging in 24 to 168 h showed that TTU gradually decreased over time, which decreased more slowly on CL imaging compared to NIRF imaging. The distribution data in-vitro showed that TTU of 131I-labeled IgG was higher than that of 131I-labeled Atezolizumab at any time point. Conclusion: Non-specific IgG may not be suitable as a control for Atezolizumab in comparing tumor PD-L1 expression in nude mice via labeled antibody optical imaging under certain circumstances.


Subject(s)
B7-H1 Antigen , Mice, Nude , Animals , B7-H1 Antigen/metabolism , Humans , Mice , Cell Line, Tumor , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/pharmacokinetics , Optical Imaging/methods , Iodine Radioisotopes/chemistry , Neoplasms/diagnostic imaging , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Female , Luminescence
2.
Strahlenther Onkol ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324078

ABSTRACT

BACKGROUND: This study aimed to investigate the clinical benefit of adding concurrent chemotherapy to intensity-modulated radiotherapy (IMRT) for nasopharyngeal carcinoma (NPC) patients with an intermediate risk (stage II and T3N0M0). METHODS: A multicenter phase II randomized trial was conducted in intermediate-risk NPC patients. Enrolled patients were previously untreated and aged ranged from 18 to 70 years without severe coexisting diseases. Patients were randomly assigned to receive IMRT alone or IMRT+concurrent chemotherapy (CC; three cycles of 80 mg/m2 cisplatin every 3 weeks). Primary endpoint was defined as 3­year progression-free survival (PFS). The secondary endpoints were distant metastasis-free survival (DMFS), locoregional relapse-free survival (LRRFS), overall survival (OS), and treatment-associated toxicity. We registered this study with Chinese Clinical Trial Registry (CliCTR1800017132; registered July 13, 2018, study start July 13, 2018). RESULTS: From November 2015 to July 2019, 42 patients with stage II and T3N0M0 NPC were enrolled; 20 patients received IMRT alone while 22 patients received IMRT+CC. After a median of 58 months of follow-up, we estimated the 3­year PFS rates as 90% (IMRT group) and 86.4% (IMRT+CC group; hazard ratio 1.387, 95% confidence interval 0.240-8.014; P = 0.719). The 3­year PFS, OS, and cumulative DMFS and LRRFS showed no significant differences between the two groups (P > 0.05). However, the IMRT group displayed a lower incidence of nausea/vomiting, leucopenia, and dry mouth than the IMRT+CC group. CONCLUSION: Adding CC to IMRT provided no survival benefit but increased treatment-associated toxicities in patients with intermediate-risk NPC.

3.
J Environ Manage ; 351: 119868, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141349

ABSTRACT

Previous researches indicate that the potent toxicity of cadmium hinders the efficacy of the microbial-induced carbonate precipitation (MICP) process for bioremediation of Cd2+ in aqueous environment. Increasing urea and calcium resource doses, introducing synergists, and utilizing urease-producing consortia can improve bio-immobilization performance of MICP. However, such measures may incur cost increases and/or secondary contamination. This study first verifies the substantial biotoxicity of Cd2+ for urease activity and then analyzes the practical limitation of traditional MICP using Bacillus pasteurii for bioremediation of Cd2+ in an aqueous environment containing 1-40 mM Cd2+ by a series tube tests and numerical simulation. Subsequently, a two-step MICP method, which separates urea hydrolysis and heavy metal precipitation, is introduced in this study to eliminate the inhibitory effect of heavy metal on urease activity. The concentrations of ammonium, Cd2+, and pH were monitored over time. The results indicate that the urease expression in B. pasteurii can be significantly inhibited by Cd2+ particularly at the concentration ranging from 10 to 40 mM, leading to pretty low efficacy of traditional MICP for bioremediation of Cd2+ (Cd2+ removal rate as low as 21.55-38.47% when the initial Cd2+ concentration = 40 mM). In contrast, when the two-step MICP method is applied, the Cd2+ can be almost completely immobilized, even though the concentration ratio of urea to Cd2+ is as low as 1.5:1.0, which is close to the theory minimum concentration ratio for the complete precipitation of carbonate to cadmium ions(1.0:1.0). Therefore, the cost-effective, environmentally sustainable, and straightforward two-step MICP method holds great potential for application in the bioremediation of Cd2+-contaminated solutions in high concentration.


Subject(s)
Cadmium , Metals, Heavy , Calcium Carbonate , Urease , Carbonates , Urea , Water , Chemical Precipitation
4.
Opt Express ; 31(25): 41458-41470, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38087544

ABSTRACT

HfO2 films are widely used for optical coatings due to the high refractive index and low absorption, especially in the ultraviolet (UV) band. In this work, HfO2 film samples were prepared with the optimized assistant source power and deposition temperature by dual-ion beam sputtering (DIBS), followed by annealing treatments in vacuum and atmosphere, respectively. For samples with different annealing temperatures from 200 to 450 °C, the microstructure, morphology, film stress and optical properties from 200 to 1000 nm were systematically investigated. A monoclinic phase, a refractive index inhomogeneity along the film thickness and an absorption of shoulder-shape in the 250-300 nm band were found in the as-deposited samples. For samples annealed in vacuum, 400 °C annealing leaded to more oxygen defects, which in turn caused aggravated UV absorption. For samples annealed in atmosphere, the shoulder-shaped absorption weakened obviously above 300 °C annealing, which was suspected due to the reduction of oxygen defects during the crystallization process with sufficient oxygen. Scattering loss was investigated and found negligible for as-deposited and annealed samples. Additionally, film stress varied from compressive state to tensile state with increasing annealing temperature, and the zero-stress temperature is between 300-350 °C, which is due to the obvious crystallization behavior. Production methods and physical mechanisms for low absorption and scattering loss DIBS deposited HfO2 films were proposed and discussed in detail.

5.
Opt Express ; 31(6): 10420-10433, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-37157589

ABSTRACT

People spend about 5-8 hours per day on phones, causing circadian disruption and eye fatigue, thus raising a great need for comfort and health. Most phones have eye protection modes, claiming a potential eye protection effect. To examine the effectiveness, we investigated the color quality, namely gamut area and just noticeable color difference (JNCD), and circadian effect, namely equivalent melanopic lux (EML) and melanopic daylight efficacy ratio (MDER), characteristics of two smartphones: iPhone 13 and HUAWEI P30, in normal and eye protection mode. The results show that the circadian effect is inversely proportional to color quality when the iPhone 13 and HUAWEI P30 changed from normal to eye protection mode. The gamut area changed from 102.51% to 82.5% sRGB and 100.36% to 84.55% sRGB, respectively. The EML and MDER decreased by 13 and 15, and, 0.50 and 0.38, respectively, affected by the eye protection mode and screen luminance. The EML and JNCD results in different modes show that the eye protection mode benefits the nighttime circadian effect at the cost of the image quality. This study provides a way to precisely assess the image quality and circadian effect of displays and elucidates the tradeoff relationship between them.


Subject(s)
Asthenopia , Smartphone , Humans , Circadian Rhythm , Asthenopia/prevention & control
6.
Opt Express ; 31(16): 25477-25489, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37710433

ABSTRACT

Broader spectra, lower reflectivity and higher reliability are the performance requirements for broadband antireflective (BBAR) films. In this work, a BBAR film structure was proposed, which maintains extremely low reflectivity, ultra-wide spectra, low polarization sensitivity and practical reliability. The BBAR film consists of a dense multilayer interference stack on the bottom and a nano-grass-like alumina (NGLA) layer with a gradient low refractive index distribution on the top. The film was deposited by atomic layer deposition, while the NGLA layer was formed by means of a hot water bath on Al2O3 layer. The top NGLA layer has extremely high porosity and ultra-low refractive index, along with extremely fragile structure. To surmount the fragility of NGLA layer, a sub-nano layer of SiO2 was grown by atomic layer deposition to solidify its structure and also to adjust the refractive index with different thicknesses of SiO2. Finally, in the wide wavelength range of 400-1100 nm, the average transmittance of the double-sided coated fused quartz reaches 99.2%. The absorption, light scattering, reliability and polarization characteristics of BBAR films were investigated. An optimized BBAR film with low polarization-sensitivity and improved reliability was realized, which should be potentially promising for application in optical systems.

7.
Phys Chem Chem Phys ; 25(36): 24797-24808, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37671654

ABSTRACT

Biphenylene networks typically exhibit a metallic electronic nature, while hydrogenation can open the band gap changing it to a semiconductor. This property makes hydrogenated biphenylene a promising candidate for use in semiconductor optoelectronic materials and devices. In this work, three representative configurations of hydrogenated biphenylene, denoted by α, ß and γ, were investigated. The structural, mechanical, electronic, and optical properties of these hydrogenated biphenylene configurations were calculated by first-principles calculations. Band gaps with HSE correction were 4.69, 4.42 and 4.39 eV for α, ß, and γ configurations, respectively. Among these three configurations, ß presents the best electronic performance and special elastic properties (negative Poisson's ratio), while γ exhibits the best elastic properties. In addition, we comprehensively analyze the mechanical properties of these configurations and provide evidence that hydrogenated biphenylene possibly exhibits a negative-Poisson's-ratio along the zigzag and armchair directions when hydrogen atoms are added to biphenylene in certain ways. Furthermore, although the electronic properties of γ are weaker than those of ß, they are also excellent. In addition, the binding energies of ß and γ are relatively lower, which indicates that ß and γ are more stable. Our findings demonstrate that the hydrogenated biphenylene is a promising material with significant application potential in optoelectronic devices.

8.
Strahlenther Onkol ; 198(9): 828-837, 2022 09.
Article in English | MEDLINE | ID: mdl-35384452

ABSTRACT

OBJECTIVE: To develop and validate a nomogram to predict distant metastasis-free survival of patients with locoregionally advanced nasopharyngeal carcinoma. METHODS: We collected the total clinical data of 820 nasopharyngeal carcinoma (NPC) patients, of whom 482 formed the training cohort from one hospital and 328 made up the validation cohort from another hospital. By analyzing the prognosis of all patients after intensity-modulated radiotherapy by univariate and multivariate Cox regression models, a nomogram related to DMFS was created in the training cohort. The discriminatory and calibration power of the nomogram was successively assessed in the training and validation cohorts by the C­index and calibration curve. The predictive ability for 3­year DMFS was compared between the nomogram and TNM stage using ROC curves. Patients were divided into different risk groups based on scores calculated from the nomogram. RESULTS: Age, lymph node gross tumor volume (GTVnd), and gross tumor volume of the nasopharynx (GTVnx) were the factors included in the nomogram. The C­index of the nomogram was 0.721 in the training cohort and 0.750 in the validation cohort. The calibration curves were satisfactory. Patients in the high-risk group were more likely to develop metastases. CONCLUSION: A nomogram incorporating age, GTVnd, and GTVnx showed good performance for predicting DMFS in patients with locoregionally advanced NPC.


Subject(s)
Nasopharyngeal Neoplasms , Nomograms , Humans , Nasopharyngeal Carcinoma/pathology , Neoplasm Staging , Prognosis
9.
Phys Chem Chem Phys ; 24(26): 16310-16316, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35758594

ABSTRACT

Direct-band silicon materials have been a sought-after material for potential applications in silicon photonics and solar cells. Accordingly, methodologies like nanostructure engineering, alloy engineering and strain engineering have been developed. In this work, the particle swarm optimization (PSO) algorithm is used to design direct-band Si-Ge alloys. The findings of phonon computations demonstrate that all these structures are dynamically stable. In addition, ab initio molecular dynamics and elastic constant calculations are carried out, with results indicating these structures are thermodynamically stable at 300 K, as well as being mechanically stable. All of these materials exhibit semiconductor behavior with band gaps of 1.03, 0.68 and 1.37 eV for α, ß and γ phases, respectively, at the HSE06 level. The results of effective mass and mobility of carriers that are important in applications show that holes are more easily transported in all structures, with higher concentration of holes accompanied by lower carrier mobility. Different concentrations of holes nh lead to different limits in the scattering process. When nh is lower than the value of around 1016 cm-3, deformation potential scattering is dominant, while the ionized impurity scattering process limits overall mobility when nh is higher than such a value. Finally, the absorption spectra shows that both α and ß phases have isotropic optical properties in the X- and Y-directions while strong anisotropy can be seen in the Z-direction. However, the γ phase exhibits no notable isotropy. This investigation finds three direct-band and potentially CMOS compatible materials, a finding which will benefit the development of high efficiency emitters or solar cells.

10.
BMC Pediatr ; 22(1): 347, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35710383

ABSTRACT

BACKGROUND: Overweight and obesity are major public health crises among children and adolescents and contribute to a significant economic burden. We aimed to investigate the relationship between breastfeeding duration and overweight and obesity in children and adolescents in Qingdao, China in 2017. METHODS: This study conducted a survey with 10,753 students (5370 boys and 5383 girls) aged 6 to 16 years from the Shibei District of Qingdao, China in 2017. Anthropometric measurements were taken by well-trained personnel and self-completed questionnaires were used to collect data from students. A variety of statistical methods were used in this study, including univariate and multivariate analyses, as well as linear and nonlinear regression models. RESULTS: The prevalence of overweight and obesity was 15.45% and 19.76%, respectively. There was a significant negative correlation between breastfeeding duration and BMI in children and adolescents (ß = -0.025, 95% CI: -0.033, -0.005, P < 0.01). Among boys, the BMI in children and adolescences of those who have been breastfed for more than 12 months was significantly lower than that of others whose breastfeeding duration was less than 12 months (ß = -0.440, 95%CI -0.655, -0.224, P < 0.01). Breastfeeding has a particularly positive effect on the prevalence of obesity in boys aged 9 to 11 years (OR = 0.978, 95% CI: 0.958,0.999, P < 0.05). CONCLUSION: Breastfeeding can significantly reduce the prevalence of overweight and obesity among children and adolescents aged 6 to 16 years. Those who were breastfed for more than 12 months had a lower risk of developing overweight and obesity, especially boys between the ages of 9 and 11.


Subject(s)
Overweight , Pediatric Obesity , Adolescent , Body Mass Index , Breast Feeding , Child , China/epidemiology , Cross-Sectional Studies , Female , Humans , Male , Overweight/epidemiology , Overweight/etiology , Pediatric Obesity/epidemiology , Pediatric Obesity/etiology , Prevalence
11.
Opt Express ; 29(17): 26444-26455, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34615079

ABSTRACT

A low-refractive-index grating layer with symmetrical triangular/trapezoidal grooves covered with a high-refractive-index Si layer is used to design a broadband guided-mode resonant reflector. Software Rsoft is used to simulate the reflection and transmission spectra as well as the internal electric field distribution at the resonant wavelength. It is discovered that the interaction between resonant modes promotes the formation of a wideband spectrum. The reflector has been proven to provide wideband (Δλ > 450 nm) and high reflectivity (R > 98.4%) spectra over a wide range of base angles from 44° to 72°, and the maximum high reflectivity (R > 99%) spectral range in transverse electric polarization is 458 nm, spanning 1422 to 1880nm. The results not only demonstrate excellent tolerance to the base angle and grating depth but also provide more possibilities for the design of broadband reflectors.

12.
Phys Chem Chem Phys ; 24(1): 357-365, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34889935

ABSTRACT

The electronic structures and optical properties of novel 2D biphenylene and hydrogen-terminated nanoribbons of different widths which are cut from a layer of biphenylene were explored via first-principles calculations. The findings of phonon computations demonstrate that such a biphenylene is dynamically stable and shows metallic properties. The crystal orbital Hamilton population analysis indicates that the tetra-ring local structure results in anisotropic mechanical properties. For 1D nanoribbons, their band gaps shrink, and a direct-indirect transition occurs in the band gap as the width increases, transforming the nanoribbon to endow them with metallic characteristics at a certain width. This is attributed to the weak coupling between the tetra-ring atoms, shrinking the direct band gap at the Y point in the Brillouin zone. Finally, the contribution of interband transitions to the dielectric function in 6-, 9-, and 12-armchair biphenylene nanoribbons (ABNRs) was identified. The lowest peak in the imaginary part of the dielectric function ε2 spectrum was mainly a contribution of a Γ-Γ transition. As the width of ABNR increases, the transitions in the x direction become stronger while the transition strength in the y direction is not significantly altered. This investigation extends the understanding of the electronic and optical properties of 2D biphenylene and 1D nanoribbons, which will benefit the practical applications of these materials in optoelectronics and electronics.

13.
Appl Opt ; 60(6): 1609-1614, 2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33690496

ABSTRACT

We propose an accurate and rapid azimuth calibration method for polarizing elements in ellipsometry. Over 200 calibrations were achieved simultaneously at different wavelength points in a spectral range of 550-650 nm without any calibrated element. The azimuth of the polarizer was determined from the differential spectral analysis on the ellipse azimuth of reflected light. The information of the ellipse azimuth is experimentally acquired in the spectral range by a rotating polarizing element and a spectrometer. The presented method was performed and verified with Si and Au bulk, respectively, showing reliability and feasibility for efficient and reliable calibration in ellipsometry.

14.
Hepatobiliary Pancreat Dis Int ; 20(4): 345-351, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33753000

ABSTRACT

BACKGROUND: Positron emission tomography (PET) imaging is a non-invasive method to visualize and quantify the tumor microenvironment. This study aimed to explore the feasibility of 18F-AIF-NOTA-E[PEG4-c(RGDfk)]2 (denoted as 18F-RGD) PET quantitative parameters to distinguish the angiogenesis in colorectal cancer (CRC) mice which has different metastatic potential. METHODS: Twenty LoVo and twenty LS174T of CRC liver metastases animal models were established by implantation of human CRC cell lines via intrasplenic injection. Radiotracer-based micro-PET imaging of animal model was performed and the uptake of 18F-RGD tracer in the tumor tissues was quantified as tumor-to-liver maximum or mean standardized uptake value (SUVmax or SUVmean) ratio. Pearson correlation was used to analyze the relationship between radioactive parameters and tumor markers. RESULTS: The SUVmax and SUVmean ratios of LoVo model were significantly higher than those of LS174T in both liver metastasis and primary tumor lesions (P < 0.05). A significant difference was observed in both vascular endothelial growth factor (VEGF) and Ki67 expressions between LoVo and LS174T primary tumors (P < 0.05). The tumor-to-liver SUVmax or SUVmean ratio of 18F-RGD showed a moderate correlation with VEGF expression (r = 0.5700, P = 0.001 and r = 0.6657, P < 0.001, respectively), but the SUVmean ration showed a weak correlation with Ki67 expression (r = 0.3706, P < 0.05). The areas under the receiver operating characteristic (ROC) curves of 18F-RGD SUVmean ratio, SUVmax ratio for differentiating LoVo from LS174T tumor were 0.801 and 0.759, respectively. CONCLUSIONS: The tumor-to-liver SUVmean ratio of 18F-RGD was a promising image parameter for the process of monitoring tumor angiogenesis in CRC xenograft mice model.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Animals , Colorectal Neoplasms/diagnostic imaging , Fluorodeoxyglucose F18 , Ki-67 Antigen , Liver Neoplasms/diagnostic imaging , Mice , Neovascularization, Pathologic/diagnostic imaging , Oligopeptides , Positron-Emission Tomography , Radiopharmaceuticals , Tumor Microenvironment , Vascular Endothelial Growth Factor A
15.
J Stroke Cerebrovasc Dis ; 30(1): 105447, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33188953

ABSTRACT

BACKGROUND: Hand motor function is often severely affected in patients with hemorrhagic stroke. The present study aimed to investigate the feasibility of predicting hand function recovery after hypertensive intracerebral hemorrhage using diffusion tensor imaging (DTI). METHODS: A total of 75 patients with hypertensive intracerebral hemorrhage were prospectively included. DTI of the corticospinal tract (CST) connecting the hand knob area of the precentral gyrus and the cerebral peduncle was performed at around 3 weeks after stroke. Integrity of the CST was evaluated as no disruption, partial disruption, and complete disruption. Hand function was compared by the Brunnstrom recovery stage of hand (BRS-H) at post-stroke 3 weeks and 3 months. RESULTS: Degrees of integrity of the corticospinal cord was negatively correlated with the BRS-H at both post-stroke 3 weeks (r = -0.77, p < 0.01) and 3 months (r = -0.75, p < 0.01). Patients with intact CST or completely disrupted CST shown by DTI did not show significant improvement in the BRS-H at post-stroke 3 months. However, those with partially disrupted CST showed significant improvement in the BRS-H at post-stroke 3 months compared to 3 weeks (3.79 ± 1.36 vs 2.53 ± 1.58, p = 0.012). CONCLUSIONS: DTI can be used to visualize the damage to the hand fibers of the CST. Patients with partially disrupted CST may benefit most from rehabilitation therapy for hand function recovery after hypertensive intracerebral hemorrhage.


Subject(s)
Diffusion Tensor Imaging , Hand/innervation , Hemorrhagic Stroke/diagnostic imaging , Motor Activity , Motor Cortex/diagnostic imaging , Pyramidal Tracts/diagnostic imaging , Adult , Aged , Aged, 80 and over , Feasibility Studies , Female , Hemorrhagic Stroke/complications , Hemorrhagic Stroke/physiopathology , Hemorrhagic Stroke/rehabilitation , Humans , Male , Middle Aged , Motor Cortex/physiopathology , Predictive Value of Tests , Prospective Studies , Pyramidal Tracts/physiopathology , Recovery of Function , Stroke Rehabilitation , Time Factors , Treatment Outcome
16.
Opt Express ; 28(22): 32456-32467, 2020 Oct 26.
Article in English | MEDLINE | ID: mdl-33114931

ABSTRACT

In this work, we investigate a gold nanoslits array optical transmission filter with dual dielectric cap layers on top of the metal nanoslits. By integrating a low index of refraction dielectric layer between a high index of refraction dielectric cap layer and the gold nanoslits, a narrow spectral linewidth optical filter with a transmission peak far away from the Rayleigh anomaly wavelength is shown. Furthermore, we propose a figure-of-merit as the ratio of the spectral distance between a transmission peak and the Rayleigh anomaly over the spectral linewidth to characterize the performance of gold nanoslits optical filters. It is shown that dual dielectric cap gold nanoslits array optical filters have significantly larger figure-of-merits than that of traditional single dielectric cap gold nanoslits array optical filters.

17.
Phys Chem Chem Phys ; 22(45): 26383-26389, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33179645

ABSTRACT

Platinum diselenide (PtSe2) has attracted huge attention due to its intriguing physical properties for both fundamental research and promising applications in electronics and optoelectronics. Here, we explored the optical properties of chemical vapor deposition-grown PtSe2 thin films with varied thicknesses via spectroscopic ellipsometry. The dielectric function was extracted by using a Lorentz model over the spectral range of 1.25-6.0 eV. We firstly ascribed the resonant energies, extracted from the Lorentz model, to different interband electronic transitions between valence bands and conduction bands in the Brillouin zone. A predicted exciton is observed at 2.18 eV for the monolayer and the corresponding exciton binding energy is 0.65 eV, in line with previous theoretical calculation and the measured absorption spectra. Additionally, the exciton peak shows a red shift with the increase of thickness, which is the consequence of strong interlayer interaction. These results enrich the fundamental understanding of PtSe2 and are conducive to its potential applications.

18.
BMC Psychiatry ; 20(1): 106, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32143671

ABSTRACT

BACKGROUND: Clozapine has remarkable efficacy on both negative and cognitive symptoms of schizophrenia due to its slight activation of NMDA receptor. In fact, much evidence to the contrary. NMDAR is a complex containing specific binding sites, which are regulated to improve negative symptoms and cognitive deficits associated with individuals affected by schizophrenia. PQQ is a powerful neuroprotectant that specifically binds with NMDA receptors in the brain to produce beneficial physiological and cognitive outcomes. The aim of this study was to enhance NMDAR function and improve cognitive ability in schizophrenia by PQQ combined with clozapine. METHODS: Rats were divided into four groups (n = 5) including control (saline), model (MK-801, 0.5 mg·kg- 1·d- 1), atypical antipsychotic (MK-801 (0.5 mg·kg- 1·d- 1) + Clozapine (1.0 mg·kg- 1·d- 1), and co-agonist NMDA receptor (MK-801 (0.5 mg·kg- 1·d- 1) + Clozapine (0.5 mg·kg- 1·d- 1) + PQQ (1.0 µg·kg- 1·d- 1) group. Each group of rats was injected subcutaneously every day for 6 weeks. Behavior test, including stereotyped behavior, locomotor hyperactivity, learning and memory, was performed. The Western blot assay was performed to analyze the expression of GSK-3ß, Akt, NMDAR1, and MGLUR in rat hippocampus. RESULTS: Results indicated that clozapine and PQQ combination therapy can improve MK801-induced schizophrenia behavior including stereotyped behavior, locomotor hyperactivity and cognitive impairment. Furthermore, we found that modulating NMDA receptors could ameliorate the memory impairments in Mk-801 induced schizophrenia rats by reducing the expression of NMDAR1 and MGLUR3, decreasing hippocampal tau hyperphosphorylation and inhibiting apoptosis through Akt /GSK-3ß signaling pathway. CONCLUSIONS: These findings suggest that combination therapy for enhancing NMDA receptors may be able to rescue cognition deficit in schizophrenia. More studies are needed to better elucidate these mechanisms.


Subject(s)
Antipsychotic Agents , Clozapine , Cognitive Dysfunction , Schizophrenia , Animals , Antipsychotic Agents/therapeutic use , Clozapine/pharmacology , Clozapine/therapeutic use , Cognition , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Dizocilpine Maleate/pharmacology , Dizocilpine Maleate/therapeutic use , Glycogen Synthase Kinase 3 beta , Humans , Rats , Receptors, N-Methyl-D-Aspartate , Schizophrenia/drug therapy
19.
J Cell Biochem ; 120(6): 10239-10247, 2019 06.
Article in English | MEDLINE | ID: mdl-30609118

ABSTRACT

The expression of programmed death ligand-1 (PD-L1) in tumor has been used as a biomarker to predict the anti-PD-L1 immunotherapy response. To develop a noninvasive imaging technique to monitor the dynamic changes in PD-L1 expression in colorectal cancer (CRC), we labeled an anti-PD-L1 monoclonal antibody with near-infrared (NIR) dye and tested the ability of the NIR-PD-L1-mAb probe to monitor the PD-L1 expression in CRC-xenografted mice by performing optical imaging. Consistent with the expression levels of PD-L1 protein in three CRC cell lines in vitro by flow cytometry and Western blot analyses, our in vivo imaging showed the highest fluorescence signal of the xenografted tumors in mice bearing SW620 CRC cells, followed by tumors derived from SW480 and HCT8 cell lines. We detected the highest fluorescent intensity of the tumor at 120 hours after injection of NIR-PD-L1-mAb. The highest fluorescence intensity was seen in the tumor, followed by the spleen and the liver in SW620 xenografted mice. In SW480 and HCT8 xenografted mice, however, the highest fluorescent signals were detected in the spleen, followed by the liver and the tumor. Our findings indicate that SW620 cells express a higher level of PD-L1, and the NIR-PD-L1-mAb binding to PD-L1 on the surface of CRC cells was specific. The technique was safe and could provide valuable information on PD-L1 expression of the tumor for development of a therapeutic strategy of personized targeted immunotherapies as well as treatment response of patients with CRC.


Subject(s)
Antibodies, Monoclonal/immunology , B7-H1 Antigen/immunology , Colorectal Neoplasms/immunology , Heterografts/immunology , Immunoconjugates/immunology , Optical Imaging/methods , Animals , Antibodies, Monoclonal/metabolism , B7-H1 Antigen/metabolism , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Feasibility Studies , Female , Heterografts/metabolism , Humans , Immunoconjugates/metabolism , Mice, Inbred BALB C , Mice, Nude , Reproducibility of Results
20.
Opt Express ; 27(3): 3161-3168, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30732341

ABSTRACT

Sub-bandgap near-infrared silicon (Si) photodetectors are key elements in integrated Si photonics. We demonstrate such a Si photodetector based on a black Si (b-Si)/Ag nanoparticles (Ag-NPs) Schottky junction. This photodetector synergistically employs the mechanisms of inner photoemission, light-trapping, and surface-plasmon-enhanced absorption to efficiently absorb the sub-bandgap light and generate a photocurrent. The b-Si/Ag-NPs sample was prepared by means of wet chemical etching. Compared to those of a planar-Si/Ag thin-film Schottky photodetector, the responsivities of the b-Si/Ag-NPs photodetector were greatly enhanced, being 0.277 and 0.226 mA/W at a reversely biased voltage of 3 V for 1319- and 1550-nm light, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL