Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Pestic Biochem Physiol ; 174: 104811, 2021 May.
Article in English | MEDLINE | ID: mdl-33838713

ABSTRACT

Isoxazole, nicotinic acid and benzoic acid are important components in many natural products and useful synthons to build macrostructures having valuable biological activities. In continuation of our effort to discover 4-hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) inhibitors and search for active fragments from natural products, a series of substituted aryl-formyl piperidinone derivatives with natural product fragments was rationally designed, synthesized and tested for their herbicidal activity. Compound I-9 was considered the most effective candidate with an IC50 value of 0.260 µM. The molecular docking results showed that the triketone group of compound I-9 forms a bidentate complex with a metal ion, and the benzene ring interacted with Phe424 and Phe381 via π-π stacking, which was similar to the mechanisms of mesotrione. The present work indicates that compound I-9 may serve as a potential lead compound for further development of green HPPD inhibitors.


Subject(s)
Herbicides , Enzyme Inhibitors/pharmacology , Herbicides/pharmacology , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
2.
Food Chem ; 428: 136780, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37413833

ABSTRACT

Foodborne illness caused by Staphylococcus aureus (S. aureus) has posed a significant threat to human health. Herein, an integrated multifunctional nanoplatform was developed for fluorescence detection and inactivation of S. aureus based on cascade signal amplification coupled with single strand DNA-template copper nanoparticles (ssDNA-Cu NPs). Benefiting from reasonable design, one-step cascade signal amplification was achieved through strand displacement amplification combined with rolling circle amplification, followed by in-situ generation of copper nanoparticles. S. aureus detection could be performed through naked eye observation and microplate reader measurement of the red fluorescence signal. The multifunctional nanoplatform had satisfactory specificity and sensitivity, achieving 5.2 CFU mL-1 detection limit and successful detection of 7.3 CFU of S. aureus in spiked egg after < 5 h of enrichment. Moreover, ssDNA-Cu NPs could eliminate S. aureus to avoid secondary bacterial contamination without further treatment. Therefore, this multifunctional nanoplatform has potential application in food safety dtection.


Subject(s)
Biosensing Techniques , Staphylococcus aureus , Humans , Staphylococcus aureus/genetics , Copper , Nucleic Acid Amplification Techniques , DNA, Single-Stranded , Limit of Detection
3.
J Agric Food Chem ; 69(43): 12621-12633, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34677970

ABSTRACT

Cinnamic acid, isolated from cinnamon bark, is a natural product with excellent bioactivity, and it effectively binds with cyclohexanedione to form novel 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors. According to the active sub-structure combination principle, a series of novel 3-hydroxy-2-cinnamoyl-2-en-1-one derivatives were designed and synthesized. The title compounds were characterized by infrared, 1H NMR, 13C NMR, and HRMS. The in vitro inhibitory activity of AtHPPD verified that compound II-13 showed the most activity with a half-maximal inhibitory concentration (IC50) value of 0.180 µM, which was superior to that of mesotrione (0.206 µM) in vitro. The preliminary herbicidal activity tests demonstrated that some compounds had good herbicidal activity especially compound II-13 at a concentration of 150 g ai/ha. The binding mode of AtHPPD through molecular docking indicated that two oxygens of compounds II-13 formed bidentate interactions with metal ions, and the benzene ring formed π-π accumulation effects with Phe-381 and Phe-424. The results of molecular dynamics simulations showed that compound II-13 exhibited a more stable binding ability with AtHPPD than mesotrione. This study provided insights into the development of natural and efficient herbicides in the future.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Herbicides , 4-Hydroxyphenylpyruvate Dioxygenase/metabolism , Enzyme Inhibitors/pharmacology , Herbicides/pharmacology , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
4.
Sci Rep ; 10(1): 11463, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32651407

ABSTRACT

A parasitoid's decision to reject or accept a potential host is fundamental to its fitness. Superparasitism, in which more than one egg of a given parasitoid species can deposit in a single host, is usually considered sub-optimal in systems where the host is able to support the development of only a single parasitoid. It follows that selection pressure may drive the capacity for parasitoids to recognize parasitized hosts, especially if there is a fitness cost of superparasitism. Here, we used microsatellite studies of two distinct populations of Cotesia vestalis to demonstrate that an egg laid into a diamondback moth (Plutella xylostella) larva that was parasitized by a conspecific parasitoid 10 min, 2 or 6 h previously was as likely to develop and emerge successfully as was the first-laid egg. Consistent with this, a naive parasitoid encountering its first host was equally likely to accept a healthy larva as one parasitized 10 min prior, though handling time of parasitized hosts was extended. For second and third host encounters, parasitized hosts were less readily accepted than healthy larvae. If 12 h elapsed between parasitism events, the second-laid egg was much less likely to develop. Discrimination between parasitized and healthy hosts was evident when females were allowed physical contact with hosts, and healthy hosts were rendered less acceptable by manual injection of parasitoid venom into their hemolymph. Collectively, these results show a limited capacity to discriminate parasitized from healthy larvae despite a viability cost associated with failing to avoid superparasitism.


Subject(s)
Genetics, Population , Host-Parasite Interactions/genetics , Moths/parasitology , Selection, Genetic/genetics , Animals , Genetic Fitness/genetics , Hymenoptera/genetics , Hymenoptera/pathogenicity , Microsatellite Repeats/genetics , Moths/genetics , Oviposition/genetics , Ovum/parasitology
5.
J Agric Food Chem ; 67(43): 11839-11847, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31589436

ABSTRACT

4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is an important target site for discovering new bleaching herbicides. To explore novel HPPD inhibitors with excellent herbicidal activity, a series of novel N-aroyl diketone/triketone derivatives were rationally designed by splicing active groups and bioisosterism. Bioassays revealed that most of these derivatives displayed preferable herbicidal activity against Echinochloa crus-galli (EC) at 0.045 mmol/m2 and Abutilon juncea (AJ) at 0.090 mmol/m2. In particular, compound I-f was more potent compared to the commercialized compound mesotrione. Molecular docking indicated that the corresponding active molecules of target compounds and mesotrione shared similar interplay with surrounding residues, which led to a perfect interaction with the active site of Arabidopsis thaliana HPPD.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Herbicides/chemistry , Ketones/chemistry , Plant Proteins/antagonists & inhibitors , 4-Hydroxyphenylpyruvate Dioxygenase/chemistry , 4-Hydroxyphenylpyruvate Dioxygenase/metabolism , Catalytic Domain , Echinochloa/drug effects , Echinochloa/enzymology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Herbicides/chemical synthesis , Herbicides/pharmacology , Ketones/pharmacology , Malvaceae/drug effects , Malvaceae/enzymology , Molecular Docking Simulation , Plant Proteins/chemistry , Plant Proteins/metabolism , Plant Weeds/drug effects , Plant Weeds/enzymology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL