Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 985
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Physiol Lung Cell Mol Physiol ; 327(2): L160-L172, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38771132

ABSTRACT

The alveolar type II epithelial cells (AEC2s) act as stem cells in the lung for alveolar epithelial maintenance and repair. Chemokine C-X-C motif chemokine 10 (CXCL10) is expressed in injured tissues, modulating multiple cellular functions. AEC2s, previously reported to release chemokines to recruit leukocytes, were found in our study to secrete CXCL10 after bleomycin injury. We found that Sftpc-Cxcl10 transgenic mice were protected from bleomycin injury. The transgenic mice showed an increase in the AEC2 population in the lung by flow cytometry analysis. Both endogenous and exogenous CXCL10 promoted the colony formation efficiency of AEC2s in a three-dimensional (3-D) organoid growth assay. We identified that the regenerative effect of CXCL10 was CXCR3 independent using Cxcr3-deficient mice, but it was related to the TrkA pathway. Binding experiments showed that CXCL10 interacted with TrkA directly and reversibly. This study demonstrates a previously unidentified AEC2 autocrine signaling of CXCL10 to promote their regeneration and proliferation, probably involving a CXCR3-independent TrkA pathway.NEW & NOTEWORTHY CXCL10 may aid in lung injury recovery by promoting the proliferation of alveolar stem cells and using a distinct regulatory pathway from the classical one.


Subject(s)
Alveolar Epithelial Cells , Chemokine CXCL10 , Receptors, CXCR3 , Animals , Mice , Alveolar Epithelial Cells/metabolism , Cell Proliferation , Chemokine CXCL10/metabolism , Chemokine CXCL10/genetics , Lung Injury/metabolism , Lung Injury/pathology , Mice, Inbred C57BL , Mice, Transgenic , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/pathology , Receptors, CXCR3/metabolism , Receptors, CXCR3/genetics , Regeneration , Signal Transduction
2.
Crit Rev Eukaryot Gene Expr ; 34(1): 15-26, 2024.
Article in English | MEDLINE | ID: mdl-37824389

ABSTRACT

H subunit of V-ATPase (ATP6V1H) is specifically expressed in osteoclasts and its deficiency lead to osteoporosis. Our group previously found four intronic SNPs of ATP6V1H related to reduced bone mineral density, but the mechanisms was not clear. In this study, we found that the above four SNPs were located at lncRNA lnc-TCEA1-3 by using bioinformatics analysis. We further detected the function of lnc-TCEA1-3 on regulating ATP6V1H and osteoclast function using Atp6v1h knockout mice, lentivirus transfection and qPCR analysis. Over expression of lnc-TCEA1-3 up regulated the expression of ATP6V1H in HEK293 cells, HOS cells and primarily cultured osteoclasts, and increased the number of primarily cultured osteoclasts. In addition, over expression of lnc-TCEA1-3 exerted distinct effect on two transcripts of ATP6V1H in HEK293, HOS and osteoclasts. This study will facilitate the in-depth analysis of the effects of ATP6V1H on bone diseases, and discover new therapeutic strategies.


Subject(s)
Osteoporosis , RNA, Long Noncoding , Vacuolar Proton-Translocating ATPases , Animals , Mice , Humans , Osteoclasts/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , HEK293 Cells , Osteoporosis/genetics , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism
3.
Plant Cell Physiol ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978103

ABSTRACT

The HKT transporter plays an important role for plants in response to salt stress, but the transport property of the soybean HKT transporters at the molecular level is still unclear. Here, using Xenopus oocyte as a heterologous expression system and two-electrode voltage-clamp technique, we identified four HKT transporters, GmHKT1;1, GmHKT1;2, GmHKT1;3, and GmHKT1;4, which all belong to type I subfamily, but having distinct ion transport properties. While GmHKT1;1, GmHKT1;2 and GmHKT1;3 function as Na+ transporters, GmHKT1;1 is less selective against K+ than the two other transporters. Astonishingly, GmHKT1;4, which lacks transmembrane segments and has no ion permeability, is significantly expressed, and its gene expression pattern is different from the other three GmHKTs under salt stress. Interestingly, GmHKT1;4 reduced the Na+/K+ currents mediated by GmHKT1;1. Further study showed that the transport ability of GmHKT1;1 regulated by GmHKT1;4 was related to the structural differences in the first intracellular domain and the fourth repeat domain. Overall, we have identified one unique GmHKT member, GmHKT1;4, which modulates the Na+ and K+ transport ability of GmHKT1;1 via direct interaction. Thus, we have revealed a new type of HKTs interaction model for altering their ion transport properties.

4.
Br J Haematol ; 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972835

ABSTRACT

This retrospective study analysed 106 acute myeloid leukaemia (AML) patients undergoing autologous haematopoietic stem cell transplantation (ASCT) to assess the impact of multiple small-dose infusions of granulocyte-colony-stimulating factor (G-CSF)-mobilized haploidentical lymphocytes as post-ASCT maintenance therapy. Among them, 50 patients received lymphocyte maintenance therapy, 21 received alternative maintenance therapy, and 35 received no maintenance therapy. Patients receiving lymphocyte maintenance therapy demonstrated significantly higher overall survival (OS) and disease-free survival (DFS) compared to those without maintenance therapy, with 4-year OS and DFS rates notably elevated. While there were no significant differences in recurrence rates among the three groups, lymphocyte maintenance therapy showcased particular benefits for intermediate-risk AML patients, yielding significantly higher OS and DFS rates and lower relapse rates compared to alternative maintenance therapy and no maintenance therapy. The study suggests that multiple small-dose infusions of G-CSF-mobilized haploidentical lymphocytes may offer promising outcomes for AML patients after ASCT, particularly for those classified as intermediate-risk. These findings underscore the potential efficacy of lymphocyte maintenance therapy in reducing disease relapse and improving long-term prognosis in this patient population.

5.
Gastroenterology ; 165(3): 629-646, 2023 09.
Article in English | MEDLINE | ID: mdl-37247644

ABSTRACT

BACKGROUND & AIMS: Hyperactivation of ribosome biogenesis leads to hepatocyte transformation and plays pivotal roles in hepatocellular carcinoma (HCC) development. We aimed to identify critical ribosome biogenesis proteins that are overexpressed and crucial in HCC progression. METHODS: HEAT repeat containing 1 (HEATR1) expression and clinical correlations were analyzed using The Cancer Genome Atlas and Gene Expression Omnibus databases and further evaluated by immunohistochemical analysis of an HCC tissue microarray. Gene expression was knocked down by small interfering RNA. HEATR1-knockdown cells were subjected to viability, cell cycle, and apoptosis assays and used to establish subcutaneous and orthotopic tumor models. Chromatin immunoprecipitation and quantitative polymerase chain reaction were performed to detect the association of candidate proteins with specific DNA sequences. Endogenous coimmunoprecipitation combined with mass spectrometry was used to identify protein interactions. We performed immunoblot and immunofluorescence assays to detect and localize proteins in cells. The nucleolus ultrastructure was detected by transmission electron microscopy. Click-iT (Thermo Fisher Scientific) RNA imaging and puromycin incorporation assays were used to measure nascent ribosomal RNA and protein synthesis, respectively. Proteasome activity, 20S proteasome foci formation, and protein stability were evaluated in HEATR1-knockdown HCC cells. RESULTS: HEATR1 was the most up-regulated gene in a set of ribosome biogenesis mediators in HCC samples. High expression of HEATR1 was associated with poor survival and malignant clinicopathologic features in patients with HCC and contributed to HCC growth in vitro and in vivo. HEATR1 expression was regulated by the transcription factor specificity protein 1, which can be activated by insulin-like growth factor 1-mammalian target of rapamycin complex 1 signaling in HCC cells. HEATR1 localized predominantly in the nucleolus, bound to ribosomal DNA, and was associated with RNA polymerase I transcription/processing factors. Knockdown of HEATR1 disrupted ribosomal RNA biogenesis and impaired nascent protein synthesis, leading to reduced cytoplasmic proteasome activity and inhibitory-κB/nuclear factor-κB signaling. Moreover, HEATR1 knockdown induced nucleolar stress with increased nuclear proteasome activity and inactivation of the nucleophosmin 1-MYC axis. CONCLUSIONS: Our study revealed that HEATR1 is up-regulated by insulin-like growth factor 1-mammalian target of rapamycin complex 1-specificity protein 1 signaling in HCC and functions as a crucial regulator of ribosome biogenesis and proteome homeostasis to promote HCC development.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Homeostasis , Hot Temperature , Insulin-Like Growth Factor I/genetics , Liver Neoplasms/pathology , Mechanistic Target of Rapamycin Complex 1/metabolism , Proteasome Endopeptidase Complex/genetics , Proteome/metabolism , Ribosomes/metabolism , Ribosomes/pathology , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism
6.
Hum Brain Mapp ; 45(5): e26656, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38530116

ABSTRACT

Gray matter (GM) atrophy and white matter (WM) lesions may contribute to cognitive decline in patients with delayed neurological sequelae (DNS) after carbon monoxide (CO) poisoning. However, there is currently a lack of evidence supporting this relationship. This study aimed to investigate the volume of GM, cortical thickness, and burden of WM lesions in 33 DNS patients with dementia, 24 DNS patients with mild cognitive impairment, and 51 healthy controls. Various methods, including voxel-based, deformation-based, surface-based, and atlas-based analyses, were used to examine GM structures. Furthermore, we explored the connection between GM volume changes, WM lesions burden, and cognitive decline. Compared to the healthy controls, both patient groups exhibited widespread GM atrophy in the cerebral cortices (for volume and cortical thickness), subcortical nuclei (for volume), and cerebellum (for volume) (p < .05 corrected for false discovery rate [FDR]). The total volume of GM atrophy in 31 subregions, which included the default mode network (DMN), visual network (VN), and cerebellar network (CN) (p < .05, FDR-corrected), independently contributed to the severity of cognitive impairment (p < .05). Additionally, WM lesions impacted cognitive decline through both direct and indirect effects, with the latter mediated by volume reduction in 16 subregions of cognitive networks (p < .05). These preliminary findings suggested that both GM atrophy and WM lesions were involved in cognitive decline in DNS patients following CO poisoning. Moreover, the reduction in the volume of DMN, VN, and posterior CN nodes mediated the WM lesions-induced cognitive decline.


Subject(s)
Carbon Monoxide Poisoning , Cognitive Dysfunction , White Matter , Humans , Carbon Monoxide Poisoning/complications , Carbon Monoxide Poisoning/diagnostic imaging , Gray Matter/diagnostic imaging , White Matter/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Atrophy , Disease Progression
7.
J Hum Genet ; 69(1): 3-11, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37821671

ABSTRACT

Complex chromosomal rearrangements (CCRs) can result in spontaneous abortions, infertility, and malformations in newborns. In this study, we explored a familial CCR involving chromosome 6 by combining optical genomic mapping (OGM) and molecular cytogenetic methodologies. Within this family, the father and the paternal grandfather were both asymptomatic carriers of an identical balanced CCR, while the two offspring with an unbalanced paternal-origin CCR and two microdeletions presented with clinical manifestation. The first affected child, a 5-year-old boy, exhibited neurodevelopmental delay, while the second, a fetus, presented with hydrops fetalis. SNP-genotype analysis revealed a recombination event during gamete formation in the father that may have contributed to the deletion in his offspring. Meanwhile, the couple's haplotypes will facilitate the selection of normal gametes in the setting of assisted reproduction. Our study demonstrated the potential of OGM in identifying CCRs and its ability to work with current methodologies to refine precise breakpoints and construct accurate haplotypes for couples with a CCR.


Subject(s)
Chromosomes, Human, Pair 6 , Translocation, Genetic , Child, Preschool , Female , Humans , Infant, Newborn , Male , Pregnancy , Chromosome Aberrations , Chromosomes, Human, Pair 6/genetics , Cytogenetic Analysis , Genomics
8.
Plant Physiol ; 191(1): 280-298, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36102807

ABSTRACT

Plant height and tiller number are two major factors determining plant architecture and yield. However, in rice (Oryza sativa), the regulatory mechanism of plant architecture remains to be elucidated. Here, we reported a recessive rice mutant presenting dwarf and reduced tillering phenotypes (drt1). Map-based cloning revealed that the phenotypes are caused by a single point mutation in DRT1, which encodes the Class I formin protein O. sativa formin homolog 13 (OsFH13), binds with F-actin, and promotes actin polymerization for microfilament organization. DRT1 protein localized on the plasma membrane (PM) and chloroplast (CP) outer envelope. DRT1 interacted with rice phototropin 2 (OsPHOT2), and the interaction was interrupted in drt1. Upon blue light stimulus, PM localized DRT1 and OsPHOT2 were translocated onto the CP membrane. Moreover, deficiency of DRT1 reduced OsPHOT2 internalization and OsPHOT2-mediated CP relocation. Our study suggests that rice formin protein DRT1/OsFH13 is necessary for plant morphology and CP relocation by modulating the actin-associated cytoskeleton network.


Subject(s)
Actins , Oryza , Actins/metabolism , Oryza/metabolism , Formins/genetics , Formins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Chloroplasts/metabolism , Mutation/genetics , Gene Expression Regulation, Plant
9.
Haematologica ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934064

ABSTRACT

To evaluate the efficacy and safety of flumatinib in the later-line treatment of Chinese patients with Philadelphia chromosome-positive chronic-phase chronic myeloid leukemia (CP-CML previously treated with tyrosine kinase inhibitors (TKIs). Patients with CML-CP were evaluated for the probabilities of responses including complete hematologic response (CHR), cytogenetic response, and molecular response (MR) and adverse events (AEs) after the later-line flumatinib therapy. Of 336 enrolled patients with median age 50 years, median duration of treatment with flumatinib was 11.04 (2-25.23) months. Patients who achieved clinical responses at baseline showed maintenance of CHR, complete cytogenetic response (CCyR)/2-log molecular response (MR2), major molecular response (MMR), and 4-log molecular response or deep molecular response (MR4/DMR) in 100%, 98.9%, 98.6%, and 92.9% patients, respectively. CHR, CCyR/MR2, MMR, and MR4/DMR responses were achieved in 86.4%, 52.7%, 49.6%, and 23.5% patients respectively, which showed the lack of respective clinical responses at baseline. The patients without response at baseline, treated with flumatinib as 2L TKI, having no resistance to prior TKI or only resistance to imatinib, with response to last TKI, and with BCR::ABL ≤10% had higher CCyR/MR2, MMR, or MR4/DMR. The AEs observed during the later-line flumatinib treatment were tolerable and consistent with those reported with the first-line therapy. Flumatinib was effective and safe in patients who are resistant or intolerant to other TKIs. In particular, 2L flumatinib treatment induced high response rates and was more beneficial to patients without previous 2G TKI resistance, thus serving as a probable treatment option for these patients.

10.
FASEB J ; 37(7): e23044, 2023 07.
Article in English | MEDLINE | ID: mdl-37342905

ABSTRACT

RUNX1T1 (Runt-related transcription factor 1, translocated to 1) plays a wide-ranging and diverse role in cellular development, including hematopoiesis and adipogenesis. However, little is known about the function of RUNX1T1 in the skeletal muscle development. Here, we assessed the impact of RUNX1T1 on the proliferation and myogenic differentiation of goat primary myoblasts (GPMs). It was observed that RUNX1T1 is highly expressed during the early stages of myogenic differentiation and the fetal stage. Moreover, the knockdown of RUNX1T1 promotes the proliferation and inhibits myogenic differentiation and mitochondrial biogenesis of GPMs. RNA sequencing analysis revealed that significantly differentially expressed genes in RUNX1T1 knockdown cells were enriched in the calcium signaling pathway. Additionally, we discovered that RUNX1T1 regulates alternative splicing (AS) events involved in myogenesis. We also show that silencing RUNX1T1 blocked the Ca2+ -CAMK signaling pathway and reduced the expression levels of muscle-specific isoforms of recombinant rho associated coiled coil containing crotein kinase 2 (ROCK2) during myogenic differentiation, partially explaining why RUNX1T1 deficiency leads to the impairment of myotube formation. These findings suggest that RUNX1T1 is a novel regulator of myogenic differentiation that regulates the calcium signaling pathway and AS of ROCK2. Overall, our results highlight the critical role of RUNX1T1 in myogenesis and broaden our understanding of myogenic differentiation.


Subject(s)
Alternative Splicing , Calcium Signaling , Cell Differentiation/genetics , Muscle Development/genetics , Muscle Fibers, Skeletal/metabolism , Goats , Animals
11.
Crit Rev Food Sci Nutr ; : 1-21, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38841734

ABSTRACT

Chronic inflammation-induced diseases (CID) are the dominant cause of death worldwide, contributing to over half of all global deaths. Sulforaphane (SFN) derived from cruciferous vegetables has been extensively studied for its multiple functional benefits in alleviating CID. This work comprehensively reviewed the biosynthesis, metabolism, bioavailability, delivery, health benefits, and applications of SFN and its potential mechanisms against CID (e.g., cancer, obesity, type 2 diabetes, et al.), and neurological disorders based on a decade of research. SFN exerts its biological functions through the hydrolysis of glucosinolates by gut microbiota, and exhibits rapid metabolism and excretion characteristics via metabolization of mercapturic acid pathway. Microencapsulation is an important way to improve the stability and targeted delivery of SFN. The health benefits of SNF against CID are attributed to the multiple regulatory mechanisms including modulating oxidative stress, inflammation, apoptosis, immune response, and intestinal homeostasis. The clinical applications of SFN and related formulations show promising potential; however, further exploration is required regarding the sources, dosages, toxicity profiles, and stability of SFN. Together, SFN is a natural product with great potential for development and application, which is crucial for the development of functional food and pharmaceutical industries.

12.
Analyst ; 149(9): 2621-2628, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38546096

ABSTRACT

17ß-Estradiol (E2) is an important endogenous estrogen, which disturbs the endocrine system and poses a threat to human health because of its accumulation in the human body. Herein, a biofuel cell (BFC)-based self-powered electrochemical aptasensor was developed for E2 detection. Porous carbon nanocage/gold nanoparticle composite modified indium tin oxide (CNC/AuNP/ITO) and glucose oxidase modified CNC/AuNP/ITO were used as the biocathode and bioanode of BFCs, respectively. [Fe(CN)6]3- was selected as an electroactive probe, which was entrapped in the pores of positively charged magnetic Fe3O4 nanoparticles (PMNPs) and then capped with a negatively charged E2 aptamer to form a DNA bioconjugate. The presence of the target E2 triggered the entrapped [Fe(CN)6]3- probe release due to the removal of the aptamer via specific recognition, which resulted in the transfer of electrons produced by glucose oxidation at the bioanode to the biocathode and produced a high open-circuit voltage (EOCV). Consequently, a "signal-on" homogeneous self-powered aptasensor for E2 assay was realized. Promisingly, the BFC-based self-powered aptasensor has particularly high sensitivity for E2 detection in the concentration range of 0.5 pg mL-1 to 15 ng mL-1 with a detection limit of 0.16 pg mL-1 (S/N = 3). Therefore, the proposed BFC-based self-powered electrochemical aptasensor has great promise to be applied as a successful prototype of a portable and on-site bioassay in the field of environment monitoring and food safety.


Subject(s)
Aptamers, Nucleotide , Bioelectric Energy Sources , Carbon , Electrochemical Techniques , Estradiol , Gold , Metal Nanoparticles , Estradiol/chemistry , Estradiol/analysis , Aptamers, Nucleotide/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Carbon/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Biosensing Techniques/methods , Limit of Detection , Humans , DNA/chemistry , Glucose Oxidase/chemistry , Tin Compounds/chemistry
13.
Analyst ; 149(4): 1271-1279, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38226548

ABSTRACT

T4 polynucleotide kinase helps with DNA recombination and repair. In this study, an electrochemical biosensor was developed for a T4 polynucleotide kinase activity assay and inhibitor screening based on phosphate pillar[5]arene and multi-walled carbon nanotube nanocomposites. The water-soluble pillar[5]arene was employed as the host to complex thionine guest molecules. The substrate DNA with a 5'-hydroxyl group initially self-assembled on the gold electrode surface through chemical adsorption of the thiol group, which was phosphorylated in the presence of T4 polynucleotide kinase. Titanium dioxide nanoparticles served as a bridge to link phosphorylated DNA and phosphate pillar[5]arene and multi-walled carbon nanotube composite due to strong phosphate-Ti4+-phosphate chemistry. Through supramolecular host-guest recognition, thionine molecules were able to penetrate the pillar[5]arene cavity, resulting in an enhanced electrochemical response signal. The electrochemical signal is proportional to the T4 polynucleotide kinase concentration in the range of 10-5 to 15 U mL-1 with a detection limit of 5 × 10-6 U mL-1. It was also effective in measuring HeLa cell lysate-related T4 polynucleotide kinase activity and inhibitor screening. The proposed method offers a unique sensing platform for kinase activity measurement, holding great potential in nucleotide kinase-target drug development, clinical diagnostics, and inhibitor screening.


Subject(s)
Biosensing Techniques , Nanotubes, Carbon , Phenothiazines , Humans , Polynucleotide 5'-Hydroxyl-Kinase , Nanotubes, Carbon/chemistry , Phosphates , HeLa Cells , DNA/chemistry , Biosensing Techniques/methods
14.
J Asthma ; : 1-10, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38767583

ABSTRACT

OBJECTIVE: To investigate the role of 14-3-3ß in acute asthma exacerbations in children and analyze the risk factors for asthma exacerbations. METHODS: This study recruited 101 children with acute asthma exacerbations, 101 children with stable asthma, and 65 healthy children. Serum 14-3-3ß was compared among the three groups. Factors such as asthma family history, skin prick test, serum-specific IgE test, coinfections, and clinical indicators (FeNO, FEV1, white blood cells, eosinophils, and serum IgE level) were compared between the asthma groups. Risk factors associated with acute asthma exacerbations were identified using multivariate logistic regression models. ROC curve was drawn to determine the diagnostic sensitivity and specificity of 14-3-3ß. RESULTS: Serum 14-3-3ß was significantly greater in the acute asthma group than in the stable asthma and control groups. Serum 14-3-3ß was higher in severe acute asthma group than in mild-moderate asthma group. There were no significant differences in serum 14-3-3ß levels between stable asthma and control groups (p > .05). Multivariate logistic regression analysis revealed that serum 14-3-3ß level, FeNO, coinfection, and FEV1 z-score significantly increased the odds of acute asthma exacerbations in children. The optimal 14-3-3ß cutoff value (39.79 ng/mL), had a sensitivity of 69.3% and specificity of 94.1% for predicting acute asthma exacerbations. CONCLUSIONS: 14-3-3ß is elevated in children with acute exacerbations of asthma, and increases with exacerbation severity. 14-3-3ß, FeNO, FEV1, and coinfection could be independent risk factors for predicting asthma exacerbations. The optimal 14-3-3ß cutoff value for predicting asthma exacerbations was 39.79 ng/mL.

15.
Gerontology ; 70(2): 125-133, 2024.
Article in English | MEDLINE | ID: mdl-37952534

ABSTRACT

INTRODUCTION: The C-reactive protein/albumin ratio is a reliable indicator of outcome risk in several diseases. This study aims to evaluate prognostic power of the C-reactive protein/albumin ratio for in-hospital mortality and the dose-response relationship between the two in the oldest-old patients with acute ischemic stroke. METHODS: A longitudinal observational study was conducted on patients with acute ischemic stroke (aged ≥80 years) from two tertiary hospitals between January 1, 2014, and January 31, 2020. Based on the tertiles of the C-reactive protein/albumin ratio, the patients were divided into three groups. Restrictive cubic spline and robust locally weighted regression analysis were performed on continuous variables to examine the dose-response relationship between the C-reactive protein/albumin ratio and in-hospital mortality risk. All-cause mortality during hospitalization was the outcome for this study. RESULTS: The study included 584 patients (mean age = 84.6 ± 3.1 years; 59.6% men). The C-reactive protein/albumin ratio was divided into three groups, namely, T1 of <0.73, T2 of 0.73-2.03, and T3: >2.03. After adjusting for demographic and clinical characteristics, a higher C-reactive protein/albumin ratio was independently associated with in-hospital mortality. The hazard ratio for this association was 2.01 (95% confidence interval: 1.12-3.60, p = 0.019). A dose-response relationship between the C-reactive protein/albumin ratio and in-hospital mortality risk was observed. Sensitivity analysis found no attenuation in the hazard ratio in uninfected individuals, whereas no difference in the hazard ratio was noted in individuals with infections. CONCLUSIONS: When predicting in-hospital mortality in the oldest-old patients with ischemic stroke, the C-reactive protein/albumin ratio might be a helpful and convenient metric.


Subject(s)
Ischemic Stroke , Stroke , Aged, 80 and over , Female , Humans , Male , Albumins , C-Reactive Protein/analysis , Hospital Mortality , Ischemic Stroke/complications , Prognosis , Retrospective Studies , Risk Factors
16.
BMC Geriatr ; 24(1): 503, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38844834

ABSTRACT

BACKGROUND: Life's Essential 8 (LE8), the recently updated construct for quantifying cardiovascular health, is related to the risks of cardiovascular events. The present study aimed to evaluate associations of LE8 score with the multi-territorial extent of atherosclerosis in a community-dwelling population. METHODS: Data were derived from the baseline cross-sectional survey of the PolyvasculaR Evaluation for Cognitive Impairment and vaScular Events (PRECISE) study in Lishui City. The LE8 included overall, medical and behavior LE8 scores, and were categorized as low (< 60), moderate (60-<80), and high (≥ 80) groups. Vascular magnetic resonance imaging was used to evaluate intracranial and extracranial arteries; thoracoabdominal computed tomography angiography to evaluate coronary, subclavian, aorta, renal, ilio-femoral arteries; and ankle-brachial index to evaluate peripheral arteries. The presence of atherosclerotic plaque or stenosis in any territory was defined as plaque or vascular stenosis with 1 territory affected or more in these arteries. The extent of atherosclerotic plaques or stenosis was assessed according to the number of these 8 vascular sites affected, and graded as four grades (none, single territory, 2-3 territories, 4-8 territories). RESULTS: Of 3065 included participants, the average age was 61.2 ± 6.7 years, and 53.5% were women (n = 1639). The moderate and high overall LE8 groups were associated with lower extent of multi-territorial plaques [common odds ratio (cOR) 0.44, 95% confidence interval (CI), 0.35-0.55; cOR 0.16, 95%CI, 0.12-0.21; respectively] and stenosis (cOR 0.51, 95%CI, 0.42-0.62; cOR 0.16, 95%CI, 0.12-0.21; respectively) after adjustment for potential covariates. Similar results were observed for medical LE8 score with the extent of multi-territorial plaques and stenosis (P < 0.05). We also found the association between behavior LE8 score and the extent of multi-territorial stenosis (P < 0.05). CONCLUSIONS: The higher LE8 scores, indicating healthier lifestyle, were associated with lower presence and extent of atherosclerotic plaque and stenosis in southern Chinese adults. Prospective studies are needed to further validate these findings.


Subject(s)
Plaque, Atherosclerotic , Humans , Cross-Sectional Studies , Male , Female , Plaque, Atherosclerotic/diagnostic imaging , Aged , Middle Aged , Constriction, Pathologic , Independent Living/trends
17.
Exp Aging Res ; : 1-15, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012915

ABSTRACT

BACKGROUND: Quality of life, social support, and loneliness are common problems among older adults in China , but the relationships among these issues have not been clearly identified. OBJECTIVES: The present study aimed to determine the relationships among Quality of life, social support, and loneliness. METHODS: A total of 560 older adults were randomly selected , the social support rating scale (SSRS), University of California at Los Angeles (UCLA) loneliness scale, and Short-Form 12 (SF-12) were employed to measure their degree of social support, level of loneliness, and quality of life. RESULTS: The average physical component summary (PCS) score was 49.97±16.33, and the average mental component summary (MCS) score was 47.26±11.49. Loneliness plays a partial mediating role between social support and quality of life. CONCLUSION: Loneliness and a lack of social support will affect the quality of life of the older adults. Thus, we need to urgently strengthen the care and support for the older adults and alleviate the loneliness of the older adults in the community.

18.
Mikrochim Acta ; 191(4): 203, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38492084

ABSTRACT

Chiral covalent organic frameworks (CCOFs) possess a superior chiral recognition environment, abundant pore configuration, and favorable physicochemical stability. In the post-synthetic chiral modification of COFs, research usually focused on increasing the density of chiral sites as much as possible, and little attention has been paid to the influence of the density of chiral sites on the spatial structure and chiral separation performance of CCOFs. In this article, 1,3,5-tris(4-aminophenyl) benzene (TPB), 2,5-dihydroxyterephthalaldehyde (DHTP), and 2,5-dimethoxyterephthalaldehyde (DMTP) served as the platform molecules to directly establish hydroxyl-controlled COFs through Schiff base condensation reactions. Then the novel chiral selectors 6-deoxy-6-[1-(2-aminoethyl)-3-(4-(4-isocyanatobenzyl)phenyl)urea]-ß-cyclodextrin (UB-ß-CD) were pended into the micropore structures of COFs via covalent bond for further construction the [UB-ß-CD]x-TPB-DMTP COFs (x represents the density of chiral sites). The chiral sites density on [UB-ß-CD]x-TPB-DMTP COFs was regulated by changing the construction proportion of DHTP to obtain a satisfactory CCOFs and significantly improve the ability of chiral separation. [UB-ß-CD]x-TPB-DMTP COFs were coated on the inner wall of a capillary via a covalently bonding strategy. The prepared open tubular capillary exhibited strong and broad enantioselectivity toward a variety of chiral analytes, including sixteen racemic amino acids and six model chiral drugs. By comparing the outcomes of chromatographic separation, we observed that the density of chiral sites in CCOFs was not positively correlated with their enantiomeric separation performance. The mechanism of chiral recognition [UB-ß-CD]x-TPB-DMTP COFs were further demonstrated by molecular docking simulation. This study not only introduces a new high-efficiency member of the COFs-based CSPs family but also demonstrates the enantioseparation potential of CCOFs constructed with traditional post-synthetic modification (PSM) strategy by utilizing the inherent characteristics of porous organic frameworks.

19.
Genomics ; 115(3): 110596, 2023 05.
Article in English | MEDLINE | ID: mdl-36870548

ABSTRACT

We sought to extend our observation of LncRNA ADAMTS9-AS1 and to specifically uncover its role on the stemness of lung adenocarcinoma (LUAD) cancer cells. ADAMTS9-AS1 was poorly expressed in LUAD. The high ADAMTS9-AS1 expression was positively associated with overall survival. ADAMTS9-AS1 overexpression attenuated the colony-forming capacity and reduced stem cell-like population of LUAD cancer stem cells (CSCs). Furthermore, ADAMTS9-AS1 overexpression increased E-cadherin expression in addition to the downregulated expressions of Fibronectin and Vimentin in LUAD spheres. In vitro results also confirmed the ADAMTS9-AS1's inhibitory effect on the growth of LUAD cells. Moreover, the antagonistic repression of miR-5009-3p levels with the expression of ADAMTS9-AS1 and NPNT was confirmed. Finally, ADAMTS9-AS1 overexpression curbed the increasing stemness of LUDA-CSC caused by NPNT silencing, thus leading to the suppression of LUAD progression in vitro. Conclusively, ADAMTS9-AS1 negatively controls the LUAD cancer cell stemness progression through regulating miR-5009-3p/NPNT axis.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , Adenocarcinoma of Lung/genetics , Lung Neoplasms/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , ADAMTS9 Protein/genetics
20.
J Prosthet Dent ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38880678

ABSTRACT

STATEMENT OF PROBLEM: High-level evidence regarding the accuracy and adaptation of 1-piece endodontic crowns fabricated by using 3-dimensional (3D) printing technology is lacking. PURPOSE: The purpose of this in vitro study was to compare the accuracy and adaptation of 1-piece endodontic crowns produced through 3D printing and computer-numerical-control milling technology and to explore the influence of trueness on 1-piece endodontic crown adaptation. MATERIAL AND METHODS: One-piece endodontic crowns were prepared for a typodont right mandibular first molar, scanned with a 3Shape E3 scanner, and designed with a computer-aided design software program. Two types of 1-piece endodontic crowns were fabricated: 3D printed by using resin and zirconia slurry and milled from Grandio and zirconia blocks. A reverse engineering software program was used to superimpose 4 groups of crowns with the reference crowns used for accuracy analysis. Microcomputed tomography was used to measure 1-piece endodontic crown adaptation. The correlation between trueness and adaptation was evaluated through the Spearman correlation test (α=.05). RESULTS: Milled resin-based 1-piece endodontic crowns demonstrated better trueness on marginal and occlusal surfaces compared with 3D printed ones (P<.001). However, no significant difference was observed in the trueness of intaglio surfaces between the 2 groups (P>.05). The milled group exhibited better adaptations than the printed one (P<.05). For zirconia 1-piece endodontic crowns, no significant differences were found in trueness or adaptation between the milled and printed groups (P>.05). Notably, the trueness of the axial wall had the greatest impact on overall crown adaptation, with its adaptation closely linked to the trueness of each area, particularly the axial wall. CONCLUSIONS: Milled resin-based 1-piece endodontic crowns exhibited higher levels of trueness and adaptation compared with 3D printed ones, while 3D printed zirconia 1-piece endodontic crowns were comparable with milled ones.

SELECTION OF CITATIONS
SEARCH DETAIL