Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Plant J ; 118(6): 1907-1921, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38491869

ABSTRACT

The sex of dioecious plants is mainly determined by genetic factors, but it can also be converted by environmental cues such as exogenous phytohormones. Gibberellic acids (GAs) are well-known inducers of flowering and sexual development, yet the pathway of gibberellin-induced sex conversion in dioecious spinach (Spinacia oleracea L.) remains elusive. Based on sex detection before and after GA3 application using T11A and SSR19 molecular markers, we confirmed and elevated the masculinization effect of GA on a single female plant through exogenous applications of GA3, showing complete conversion and functional stamens. Silencing of GIBBERELLIC ACID INSENSITIVE (SpGAI), a single DELLA family protein that is a central GA signaling repressor, results in similar masculinization. We also show that SpGAI can physically interact with the spinach KNOX transcription factor SHOOT MERISTEMLESS (SpSTM), which is a homolog of the flower meristem identity regulator STM in Arabidopsis. The silencing of SpSTM also masculinized female flowers in spinach. Furthermore, SpSTM could directly bind the intron of SpPI to repress SpPI expression in developing female flowers. Overall, our results suggest that GA induces a female masculinization process through the SpGAI-SpSTM-SpPI regulatory module in spinach. These insights may help to clarify the molecular mechanism underlying the sex conversion system in dioecious plants while also elucidating the physiological basis for the generation of unisexual flowers so as to establish dioecy in plants.


Subject(s)
Gene Expression Regulation, Plant , Gibberellins , Plant Proteins , Spinacia oleracea , Flowers/genetics , Flowers/physiology , Gibberellins/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Spinacia oleracea/genetics , Spinacia oleracea/physiology , Spinacia oleracea/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics
2.
World J Clin Cases ; 12(21): 4717-4725, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39070850

ABSTRACT

BACKGROUND: Abdominal aortitis can induce aneurysms, and tumor rupture can lead to organ ischemia or even sudden death. At present, there is a lack of extensive understanding and identification of key problems in the treatment of abdominal aortitis, which needs to be further analyzed using bibliometric analysis. AIM: To discuss the research hotspot and development trend of abdominal aortitis treatment. METHODS: We searched the English literature (published from January 1, 2000 to March 12, 2024) on the treatment of abdominal aortitis in the Web of Science database. Then, we identified and screened duplicate literature using CiteSpace 6.1R2 software. We conducted an analysis of the number of papers, a co-occurrence analysis of the authors and institutions, and co-occurrence and cluster analyses of the keywords. Then, we drew the author, institution, and keywords of the studies into graphs for visualization. Finally, we expounded on the author, institutional network interactions, and hot keywords of the studies on the treatment of abdominal aortitis. RESULTS: We included 210 English literature articles involving 190 authors; the author cooperation team was mainly represented by Caradu Caroline, Berard Xavier, Lu Guanyi, Harada Kenichi, and Sharma Ashish K. In the keyword analysis, high-frequency keywords include abdominal aortic aneurysm (38), abdominal aorta (24), Takayasu arteritis (22), etc. The three most central keywords were disease (0.69), classification (0.68), and abdominal aortic aneurysm (0.55). The first nine clusters of keywords are case report, abdominal aortic aneurysm, Takayasu arteritis, dyspnea hematuria, aortic elastic, IgG4-related disease, report, mid aortic dysplastic syndrome, and statin. In the keyword emergent analysis, 14 emergent words were obtained. Among them, seven keywords with strong abruptness were Takayasu arteritis, abdominal aortic aneurysm, disease, retroperitoneal fibrosis, expression, management, and large vessel vasculitis. In the past 3 years, the incidences of abdominal aortic aneurysm (intensity: 4.62) and inflammation (intensity: 1.99) were higher. CONCLUSION: The number of published papers is on the increase, but the cooperation among authors is scattered. The research focus is mainly on the pathogenesis and treatment of abdominal aortitis-related diseases.

3.
Biomed Environ Sci ; 37(5): 503-510, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38843923

ABSTRACT

Objective: VATER/VACTERL-like association is associated with adverse pregnancy outcomes. Genetic evidence of this disorder is sporadic. In this study, we aimed to provide genetic insights to improve the diagnosis of VACTERL. Methods: We have described a Chinese family in which four members were affected by renal defects or agenesis, anal atresia, and anovaginal fistula, which is consistent with the diagnosis of a VACTERL-like association. Pedigree and genetic analyses were conducted using genome and exome sequencing. Results: Segregation analysis revealed the presence of a recessive X-linked microdeletion in two living affected individuals, harboring a 196-380 kb microdeletion on Xq27.1, which was identified by familial exome sequencing. Genome sequencing was performed on the affected male, confirming a -196 kb microdeletion in Xq27.1, which included a 28% loss of the CDR-1 gene. Four family members were included in the co-segregation analysis, and only VACTERL-like cases with microdeletions were reported in X27.1. Conclusion: These results suggest that the 196-380 kb microdeletion in Xq27.1 could be a possible cause of the VATER/VACTERL-like association. However, further genetic and functional analyses are required to confirm or rule out genetic background as the definitive cause of the VACTERL association.


Subject(s)
Anal Canal , Chromosomes, Human, X , Pedigree , Adult , Female , Humans , Male , Anal Canal/abnormalities , China , Chromosome Deletion , Chromosomes, Human, X/genetics , East Asian People/genetics , Esophagus/abnormalities , Heart Defects, Congenital , Kidney/abnormalities , Limb Deformities, Congenital/genetics , Spine/abnormalities , Trachea/abnormalities
4.
Sci Rep ; 14(1): 2161, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38272942

ABSTRACT

Enterovirus D68 (EV-D68) is an emerging pathogen that has caused outbreaks of severe respiratory disease worldwide, especially in children. We aim to investigate the prevalence and genetic characteristics of EV-D68 in children from Shanghai. Nasopharyngeal swab or bronchoalveolar lavage fluid samples collected from children hospitalized with community-acquired pneumonia were screened for EV-D68. Nine of 3997 samples were EV-D68-positive. Seven of nine positive samples were sequenced and submitted to GenBank. Based on partial polyprotein gene (3D) or complete sequence analysis, we found the seven strains belong to different clades and subclades, including three D1 (detected in 2013 and 2014), one D2 (2013), one D3 (2019), and two B3 (2014 and 2018). Overall, we show different clades and subclades of EV-D68 spread with low positive rates (0.2%) among children in Shanghai between 2013 and 2020. Amino acid mutations were found in the epitopes of the VP1 BC and DE loops and C-terminus; similarity analysis provided evidence for recombination as an important mechanism of genomic diversification. Both single nucleotide mutations and recombination play a role in evolution of EV-D68. Genetic instability within these clinical strains may indicate large outbreaks could occur following cumulative mutations.


Subject(s)
Enterovirus D, Human , Enterovirus Infections , Enterovirus , Respiratory Tract Infections , Child , Humans , Molecular Epidemiology , Enterovirus D, Human/genetics , Respiratory Tract Infections/epidemiology , Enterovirus Infections/epidemiology , Phylogeny , China/epidemiology , Disease Outbreaks , Enterovirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL