Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Phys Chem Chem Phys ; 25(11): 7669-7680, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36857660

ABSTRACT

The excited-state properties and photophysics of cytosine aza-analogues, i.e., 2,4-diamino-1,3,5-triazine (2,4-DT) and 2-amino-1,3,5-triazine (2-AT) in solution have been systematically explored using the QM(MS-CASPT2//CASSCF)/MM approach. The excited-state nonradiative relaxation mechanisms for the initially photoexcited S1(ππ*) state decay back to the S0 state are proposed in terms of the present computed minima, surface crossings (conical intersections and singlet-triplet crossings), and excited-state decay paths in the S1, S2, T1, T2, and S0 states. Upon photoexcitation to the bright S1(ππ*) state, 2,4-DT quickly relaxes to its S1 minimum and then overcomes a small energy barrier of 5.1 kcal mol-1 to approach a S1/S0 conical intersection, where the S1 system hops to the S0 state through S1 → S0 internal conversion (IC). In addition, at the S1 minimum, the system could partially undergo intersystem crossing (ISC) to the T1 state, followed by further ISC to the S0 state via the T1/S0 crossing point. In the T1 state, an energy barrier of 7.9 kcal mol-1 will trap 2,4-DT for a while. In parallel, for 2-AT, the system first relaxes to the S1 minimum and then S1 → S0 IC or S1 → T1 → S0 ISCs take place to the S0 state by surmounting a large barrier of 15.3 kcal mol-1 or 11.9 kcal mol-1, respectively, which heavily suppress electronic transition to the S0 state. Different from 2,4-DT, upon photoexcitation in the Franck-Condon region, 2-AT can quickly evolve in an essentially barrierless manner to nearby S2/S1 conical intersection, where the S2 and T1 states can be populated. Once it hops to the S2 state, the system will overcome a relatively small barrier (6.6 kcal mol-1vs. 15.3 kcal mol-1) through IC to the S0 state. Similarly, an energy barrier of 11.9 kcal mol-1 heavily suppresses the T1 state transformation to the S0 state. The present work manifests that the amination/deamination of the triazine rings can affect some degree of different vertical and adiabatic excitation energies and nonradiative decay pathways in solution. It not only rationalizes excited-state decay dynamics of 2,4-DT and 2-AT in aqueous solution but could also provide insights into the understanding of the photophysics of aza-nucleobases.

2.
BMC Bioinformatics ; 22(Suppl 12): 367, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35045824

ABSTRACT

BACKGROUND: During the pathogenesisof complex diseases, a sudden health deterioration will occur as results of the cumulative effect of various internal or external factors. The prediction of an early warning signal (pre-disease state) before such deterioration is very important in clinical practice, especially for a single sample. The single-sample landscape entropy (SLE) was proposed to tackle this issue. However, the PPI used in SLE was lack of definite biological meanings. Besides, the calculation of multiple correlations based on limited reference samples in SLE is time-consuming and suspect. RESULTS: Abnormal signals generally exert their effect through the static definite biological functions in signaling pathways across the development of diseases. Thus, it is a natural way to study the propagation of the early-warning signals based on the signaling pathways in the KEGG database. In this paper, we propose a signaling perturbation method named SSP, to study the early-warning signal in signaling pathways for single dynamic time-series data. Results in three real datasets including the influenza virus infection, lung adenocarcinoma, and acute lung injury show that the proposed SSP outperformed the SLE. Moreover, the early-warning signal can be detected by one important signaling pathway PI3K-Akt. CONCLUSIONS: These results all indicate that the static model in pathways could simplify the detection of the early-warning signals.


Subject(s)
Phosphatidylinositol 3-Kinases , Signal Transduction , Entropy
3.
Phys Chem Chem Phys ; 23(46): 26519-26523, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34807205

ABSTRACT

Owing to the small electronegativity of the sulfur atom, it is commonly supposed that at most one weak H-bond can be formed between a sulfur atom and an H-bond donor. In this paper, an unprecedented 2 : 1 binding species generated from two molecules of phenol and a molecule of thioether was observed and characterized by various nuclear magnetic resonance (NMR) techniques, Fourier transform-infrared (FT-IR) techniques and density functional theory (DFT) calculations, revealing the formation of sulfur-centred O-H⋯S⋯H-O bifurcated H-bonds. This work may provide a simple and efficient method for the quantitative analysis of weak H-bonds between small organic molecules.

4.
BMC Plant Biol ; 20(1): 86, 2020 Feb 22.
Article in English | MEDLINE | ID: mdl-32087683

ABSTRACT

BACKGROUND: Elevated temperature as a result of global climate warming, either in form of sudden heatwave (heat shock) or prolonged warming, has profound effects on the growth and development of plants. However, how plants differentially respond to these two forms of elevated temperatures is largely unknown. Here we have therefore performed a comprehensive comparison of multi-level responses of Arabidopsis leaves to heat shock and prolonged warming. RESULTS: The plant responded to prolonged warming through decreased stomatal conductance, and to heat shock by increased transpiration. In carbon metabolism, the glycolysis pathway was enhanced while the tricarboxylic acid (TCA) cycle was inhibited under prolonged warming, and heat shock significantly limited the conversion of pyruvate into acetyl coenzyme A. The cellular concentration of hydrogen peroxide (H2O2) and the activities of antioxidant enzymes were increased under both conditions but exhibited a higher induction under heat shock. Interestingly, the transcription factors, class A1 heat shock factors (HSFA1s) and dehydration responsive element-binding proteins (DREBs), were up-regulated under heat shock, whereas with prolonged warming, other abiotic stress response pathways, especially basic leucine zipper factors (bZIPs) were up-regulated instead. CONCLUSIONS: Our findings reveal that Arabidopsis exhibits different response patterns under heat shock versus prolonged warming, and plants employ distinctly different response strategies to combat these two types of thermal stress.


Subject(s)
Arabidopsis/physiology , Heat-Shock Response , Hot Temperature/adverse effects , Metabolome , Transcriptome , Arabidopsis/genetics , Plant Leaves/genetics , Plant Leaves/physiology , Stress, Physiological
5.
Molecules ; 24(10)2019 May 16.
Article in English | MEDLINE | ID: mdl-31100815

ABSTRACT

In this study, a carbon-based solid acid was created through the sulfonation of carbon obtained from the hydrothermal pretreatment of glucose. Additionally, ethyl levulinate, a viable liquid biofuel, was produced from furfuryl alcohol using the environmentally benign and low-cost catalyst in ethanol. Studies for optimizing the reaction conditions, such as reaction time, temperature, and catalyst loading, were performed. Under the optimal conditions, a maximum ethyl levulinate yield of 67.1% was obtained. The recovered catalyst activity (Ethyl levulinate yield 57.3%) remained high after being used four times, and it was easily regenerated with a simple sulfonation process. Moreover, the catalyst was characterized using FT-IR, XRD, SEM, elemental analysis, and acid-base titration techniques.


Subject(s)
Acids , Carbon , Ethanol , Furans , Glucose , Levulinic Acids , Acids/chemistry , Acids/metabolism , Carbon/chemistry , Carbon/metabolism , Catalysis , Ethanol/chemistry , Ethanol/metabolism , Furans/chemistry , Furans/metabolism , Glucose/chemistry , Glucose/metabolism , Hydrolysis , Levulinic Acids/chemistry , Levulinic Acids/metabolism , Metabolic Networks and Pathways , Molecular Structure
6.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(1): 248-53, 2016 Jan.
Article in Zh | MEDLINE | ID: mdl-27228776

ABSTRACT

This study chooses the core demonstration area of 'Bohai Barn' project as the study area, which is located in Wudi, Shandong Province. We first collected near-ground and multispectral images and surface soil salinity data using ADC portable multispectral camera and EC110 portable salinometer. Then three vegetation indices, namely NDVI, SAVI and GNDVI, were used to build 18 models respectively with the actual measured soil salinity. These models include linear function, exponential function, logarithmic function, exponentiation function, quadratic function and cubic function, from which the best estimation model for soil salinity estimation was selected and used for inverting and analyzing soil salinity status of the study area. Results indicated that all models mentioned above could effectively estimate soil salinity and models using SAVI as the dependent variable were more effective than the others. Among SAVI models, the linear model (Y = -0.524x + 0.663, n = 70) is the best, under which the test value of F is the highest as 141.347 at significance test level, estimated R2 0.797 with a 93.36% accuracy. Soil salinity of the study area is mainly around 2.5 per thousand - 3.5 per thousand, which gradually increases from southwest to northeast. The study has probed into soil salinity estimation methods based on near-ground and multispectral data, and will provide a quick and effective technical soil salinity estimation approach for coastal saline soil of the study area and the whole Yellow River Delta.

7.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(3): 800-5, 2016 Mar.
Article in Zh | MEDLINE | ID: mdl-27400527

ABSTRACT

Leaf area index (LAI) is the dynamic index of crop population size. Hyperspectral technology can be used to estimate apple canopy LAI rapidly and nondestructively. It can be provide a reference for monitoring the tree growing and yield estimation. The Red Fuji apple trees of full bearing fruit are the researching objects. Ninety apple trees canopies spectral reflectance and LAI values were measured by the ASD Fieldspec3 spectrometer and LAI-2200 in thirty orchards in constant two years in Qixia research area of Shandong Province. The optimal vegetation indices were selected by the method of correlation analysis of the original spectral reflectance and vegetation indices. The models of predicting the LAI were built with the multivariate regression analysis method of support vector machine (SVM) and random forest (RF). The new vegetation indices, GNDVI527, ND-VI676, RVI682, FD-NVI656 and GRVI517 and the previous two main vegetation indices, NDVI670 and NDVI705, are in accordance with LAI. In the RF regression model, the calibration set decision coefficient C-R2 of 0.920 and validation set decision coefficient V-R2 of 0.889 are higher than the SVM regression model by 0.045 and 0.033 respectively. The root mean square error of calibration set C-RMSE of 0.249, the root mean square error validation set V-RMSE of 0.236 are lower than that of the SVM regression model by 0.054 and 0.058 respectively. Relative analysis of calibrating error C-RPD and relative analysis of validation set V-RPD reached 3.363 and 2.520, 0.598 and 0.262, respectively, which were higher than the SVM regression model. The measured and predicted the scatterplot trend line slope of the calibration set and validation set C-S and V-S are close to 1. The estimation result of RF regression model is better than that of the SVM. RF regression model can be used to estimate the LAI of red Fuji apple trees in full fruit period.


Subject(s)
Malus/growth & development , Spectrum Analysis , Support Vector Machine , Trees/growth & development , Fabaceae , Fruit , Models, Theoretical , Plant Leaves , Regression Analysis
8.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(2): 520-5, 2014 Feb.
Article in Zh | MEDLINE | ID: mdl-24822432

ABSTRACT

This paper chose the typical salinization area in Kenli County of the Yellow River Delta as the study area, selected HJ-1A satellite HSI image at March 15, 2011 and TM image at March 22, 2011 as source of information, and pre-processed these data by image cropping, geometric correction and atmospheric correction. Spectral characteristics of main land use types including different degree of salinization lands, water and shoals were analyzed to find distinct bands for information extraction Land use information extraction model was built by adopting the quantitative and qualitative rules combining the spectral characteristics and the content of soil salinity. Land salinization information was extracted via image classification using decision tree method. The remote sensing image interpretation accuracy was verified by land salinization degree, which was determined through soil salinity chemical analysis of soil sampling points. In addition, classification accuracy between the hyperspectral and multi-spectral images were analyzed and compared. The results showed that the overall image classification accuracy of HSI was 96.43%, Kappa coefficient was 95.59%; while the overall image classification accuracy of TM was 89.17%, Kappa coefficient was 86.74%. Therefore, compared to multi-spectral TM data, the hyperspectral imagery could be more accurate and efficient for land salinization information extraction. Also, the classification map showed that the soil salinity distinction degree of hyperspectral image was higher than that of multi-spectral image. This study explored the land salinization information extraction techniques from hyperspectral imagery, extracted the spatial distribution and area ratio information of different degree of salinization land, and provided decision-making basis for the scientific utilization and management of coastal salinization land resources in the Yellow River Delta.

9.
Orthop Surg ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118238

ABSTRACT

OBJECTIVE: Spine fixation surgery affects the biomechanical environment in the sacroiliac joint (SIJ), which may lead to the SIJ pain or degeneration after surgery. The purpose of this study is to determine the impact of the number and position of fixed segments on the SIJs and provide references for surgeons to plan fixation levels and enhance surgical outcomes. METHODS: The intact lumbar-pelvis finite element (FE) models and 11 fixation FE models with different number and position of fixed segments were developed based on CT images. A 400N follower load and 10° range of motion (ROM) of the spine were applied to the superior endplate of L1 to simulate the flexion, extension, bending and torsion motion after surgery. The peak stress on the SIJs, lumbar intervertebral discs, screws and rods were calculated to evaluate the biomechanical effects of fixation procedures. RESULTS: With the lowermost instrumented vertebra (LIV) of L5 or S1, the peak stress on SIJs increased with the number of fixed segments increasing. The flexion motion led to the greater von Mises stress on SIJ compared with other load conditions. Compared with the intact model, peak stress on all fixed intervertebral discs was reduced in the models with less than three fixed segments, and it increased in the models with more than three fixed segments. The stress on the SIJ was extremely high in the models with all segments from L1 to L5 fixed, including L1-L5, L1-S1 and L1-S2 fixation models. The stress on the segment adjacent to the fixed segments was significant higher compared to that in the intact model. The peak stress on rods and screws also increased with the number of fixed segments increasing in the flexion, extension and bending motion, and the bending and flexion motions led to the greater von Mises stress on SIJs. CONCLUSION: Short-term fixation (≤2 segments) did not increase the stress on the SIJs significantly, while long-term segment fixation (≥4 segments) led to greater stress on the SIJs especially when all the L1-L5 segments were fixed. Unfixed lumbar segments compensated the ROM loss of the fixed segments, and the preservation of lumbar spine mobility would reduce the risks of SIJ degeneration.

10.
Orthop Surg ; 16(8): 2081-2086, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38924370

ABSTRACT

BACKGROUND: Congenital lumbar facet joint defect is a rare congenital developmental disorder with only a few reported cases in the literature, primarily affecting the L5-S1 segments. This study reports the first case of a defect in the left L3 inferior articular process; and presents a review of the existing literature on the subject, proposes a classification system, and validates the inter-observer and intra-observer reliability of this classification system. CASE PRESENTATION: A 14-year-old boy presented to our orthopedic clinic with persistent lower back pain for 1 month. Imaging analysis, including CT scans, 3D reconstruction, and MRI, revealed a congenital lumbar facet joint defect at the L3 level, which has not been reported. Conservative treatment resulted in a significant improvement in his symptoms, and he is currently under follow-up care. CONCLUSION: Congenital defect of the lumbar facet joint is a rare spinal condition. This article reports the first patient with a defect in the left L3 inferior articular process and conducts a comprehensive literature review, proposing a classification of articular process defects into five types. The two most common types are Types B and C. We have demonstrated that this system is reliable and reproducible and have described the treatment of each type.


Subject(s)
Lumbar Vertebrae , Zygapophyseal Joint , Humans , Male , Adolescent , Zygapophyseal Joint/abnormalities , Zygapophyseal Joint/diagnostic imaging , Lumbar Vertebrae/abnormalities , Lumbar Vertebrae/diagnostic imaging , Low Back Pain/diagnostic imaging , Low Back Pain/etiology , Magnetic Resonance Imaging , Tomography, X-Ray Computed
11.
ACS Biomater Sci Eng ; 10(5): 3454-3469, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38590081

ABSTRACT

Massive unmelted Ti6Al4 V (Ti64) particles presented across all surfaces of additively manufactured Ti64 scaffolds significantly impacted the designed surface topography, mechanical properties, and permeability, reducing the osseointegration of the scaffolds. In this study, the proposed flowing acid etching (FAE) method presented high efficiency in eliminating Ti64 particles and enhancing the surface modification capacity across all surfaces of Ti64 scaffolds. The Ti64 particles across all surfaces of the scaffolds were completely removed effectively and evenly. The surface topography of the scaffolds closely resembled the design after the 75 s FAE treatment. The actual elastic modulus of the treated scaffolds (3.206 ± 0.040 GPa) was closer to the designed value (3.110 GPa), and a micrometer-scale structure was constructed on the inner and outer surfaces of the scaffolds after the 90 s FAE treatment. However, the yield strength of scaffolds was reduced to 89.743 ± 0.893 MPa from 118.251 ± 0.982 MPa after the 90 s FAE treatment. The FAE method also showed higher efficiency in decreasing the roughness and enhancing the hydrophilicity and surface energy of all of the surfaces. The FAE treatment improved the permeability of scaffolds efficiently, and the permeability of scaffolds increased to 11.93 ± 0.21 × 10-10 mm2 from 8.57 ± 0.021 × 10-10 mm2 after the 90 s FAE treatment. The treated Ti64 scaffolds after the 90 s FAE treatment exhibited optimized osseointegration effects in vitro and in vivo. In conclusion, the FAE method was an efficient way to eliminate unmelted Ti64 particles and obtain ideal surface topography, mechanical properties, and permeability to promote osseointegration in additively manufactured Ti64 scaffolds.


Subject(s)
Alloys , Osseointegration , Surface Properties , Tissue Scaffolds , Titanium , Titanium/chemistry , Alloys/chemistry , Osseointegration/drug effects , Animals , Tissue Scaffolds/chemistry , Elastic Modulus , Materials Testing
12.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(4): 1023-7, 2013 Apr.
Article in Zh | MEDLINE | ID: mdl-23841421

ABSTRACT

The objective of the present paper is fast and nondestructive estimate of kalium content using ASD FieldSpec3 spectrometer determined hyperspectral data in apple florescence canopy. According to detection of hyperspectral data of the apple florescence canopy and kalium content data at laboratory in Qixia city of experimental orchards in 2008 and 2009, the correlation analysis of hyperspectral reflectance and its eleven transforms with kalium content was proceeded. The biggest correlation coefficient as independent variable and the estimation model of kalium content were established based on fuzzy recognition algorithms. The model was tested by sample inspection in 2008 and verified by data in 2009. The results showed that the correlation is less for the original spectral reflectance (R) and its reciprocal(1/R), logarithm (lgR), square root (R1/2) and the kalium content, but it is enhanced obviously for their first derivative and second derivative. The correlation coefficient(r) of kalium content estimating model y = 11.344 5h + 1.309 7 is 0.985 1, the total root mean square difference (RMSE) is 0.355 7 and F statistics is 3 085.6. The average relative error of measured values and estimated values for 24 inspection sample is 9.8%, estimation accuracy is 90.2% and verification accuracy is 83.3% utilizing test data in 2009. It was showed that this model is more stable by estimating apple florescence canopy of kalium content and the model precision is able to meet the needs of production.


Subject(s)
Malus/chemistry , Potassium/analysis , Spectrum Analysis/methods , Flowers , Forecasting , Fuzzy Logic , Malus/growth & development , Models, Theoretical
13.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(8): 2203-6, 2013 Aug.
Article in Zh | MEDLINE | ID: mdl-24159876

ABSTRACT

The hyperspectral reflectance of apple tree canopy during spring shoots stopping growth period was measured using ASD FieldSpec3 field spectrometer. Original spectral data were processed in deviation forms, and significant spectrum parameters correlated with chlorophyll content were found out with correlation analysis. The best vegetation indices were chosen and the apple canopy chlorophyll content estimation model was established by analyzing vegetation index of two-band combination in the sensitive region 400-1 350 nm. The result showed that (1) The sensitive band region of apple canopy chlorophyll content is 400-1 350 nm. (2) The vegetation index CCI(D(794)/D(763)) can commendably estimate the apple canopy chlorophyll content. (3) The model with CCI(D(794)/D(763)) as the independent variables was determined to be the best for chlorophyll content prediction of apple tree canopy. Therefore, using hyperspectral technology can estimate apple canopy chlorophyll content more rapidly and accurately, and provides a theoretical basis for rapid apple tree canopy nutrition diagnosis and growth monitoring.


Subject(s)
Chlorophyll/analysis , Malus/chemistry , Malus/growth & development , Plant Leaves/chemistry , Spectrum Analysis , Models, Theoretical
14.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(10): 2809-14, 2013 Oct.
Article in Zh | MEDLINE | ID: mdl-24409741

ABSTRACT

The environmental vulnerability retrieval is important to support continuing data. The spatial distribution of regional environmental vulnerability was got through remote sensing retrieval. In view of soil and vegetation, the environmental vulnerability evaluation index system was built, and the environmental vulnerability of sampling points was calculated by the AHP-fuzzy method, then the correlation between the sampling points environmental vulnerability and ETM + spectral reflectance ratio including some kinds of conversion data was analyzed to determine the sensitive spectral parameters. Based on that, models of correlation analysis, traditional regression, BP neural network and support vector regression were taken to explain the quantitative relationship between the spectral reflectance and the environmental vulnerability. With this model, the environmental vulnerability distribution was retrieved in the Yellow River Mouth Area. The results showed that the correlation between the environmental vulnerability and the spring NDVI, the September NDVI and the spring brightness was better than others, so they were selected as the sensitive spectral parameters. The model precision result showed that in addition to the support vector model, the other model reached the significant level. While all the multi-variable regression was better than all one-variable regression, and the model accuracy of BP neural network was the best. This study will serve as a reliable theoretical reference for the large spatial scale environmental vulnerability estimation based on remote sensing data.


Subject(s)
Environmental Monitoring , Remote Sensing Technology , Rivers , Environment , Models, Theoretical , Neural Networks, Computer , Plants , Regression Analysis , Soil
15.
Orthop Surg ; 15(1): 315-327, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36411502

ABSTRACT

OBJECTIVES: Bags such as handbags, shoulder bags, and backpacks are commonly used. However, it is difficult to assess the biomechanical effects of bag-carrying styles on the lumbar spine and paraspinal muscles using traditional methods. This study aimed to evaluate the biomechanical effects of bag-carrying styles on the lumbar spine. METHODS: We developed a hybrid model that combined a finite element (FE) model of the lumbar spine and musculoskeletal models of three bag-carrying styles. The image data was collected from a 26-years-old, 176 cm and 70 kg volunteer. OpenSim and ABAQUS were used to do the musculoskeletal analysis and finite analysis. Paraspinal muscle force, intervertebral compressive force (ICF), and intervertebral shear force (ISF) on L1 were calculated and loaded into the FE model to assess the stress distribution on the lumbar spine. RESULTS: Different paraspinal muscle activation occurred in the three bag-carrying models. The increase in the ICF generated by all three bags was greater than the bags' weights. The handbag produced greater muscle force, ICF, ISF, and peak stress on the nucleus pulposus than the backpack and shoulder bag of the same weight. Peak stress on the intervertebral discs in the backpack model and the L1-L4 segments of the shoulder bag model increased linearly with bag weight, and increased exponentially with bag weight in the handbag model. CONCLUSION: Unbalanced bag-carrying styles (shoulder bags and handbags) led to greater muscle force, which generated greater ICF, ISF, and peak stress on the lumbar spine. The backpack produced the least burden on the lumbar spine and paraspinal muscles. Heavy handbags should be used carefully in daily life.


Subject(s)
Intervertebral Disc , Paraspinal Muscles , Humans , Adult , Finite Element Analysis , Weight-Bearing/physiology , Lumbar Vertebrae/physiology , Intervertebral Disc/physiology , Biomechanical Phenomena
16.
Heliyon ; 9(12): e22792, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38125487

ABSTRACT

Silicon nano/microstructures are widely utilized in the semiconductor industry, and plasma etching is the most prominent method for fabricating silicon nano/microstructures. Among the variety of silicon nano/microstructures, black silicon with light-trapping properties has garnered broad interest from both the scientific and industrial communities. However, the fabrication mechanism of black silicon remains unclear, and the light absorption of black silicon only focuses on the near-infrared region thus far. Herein, we demonstrate that black silicon can be fabricated from individual flower-like silicon microstructures. Using fluorocarbon gases as etchants, silicon flower microstructures have been formed via maskless plasma etching. Black silicon forming from silicon flower microstructures exhibits strong absorption with wavelength from 0.25 µm to 20 µm. The result provides novel insight into the understanding of the plasma etching mechanism in addition to offering further significant practical applications for device manufacturing.

17.
Global Spine J ; 13(6): 1522-1532, 2023 Jul.
Article in English | MEDLINE | ID: mdl-34409875

ABSTRACT

STUDY DESIGN: Retrospective. OBJECTIVES: To present rarely reported complex fractures of the upper cervical spine (C1-C2) and discuss the clinical results of the posterior temporary C1-2 pedicle screws fixation for C1-C2 stabilization. METHODS: A total of 19 patients were included in the study (18 males and 1 female). Their age ranged from 23 to 66 years (mean age of 39.6 years). The patients were diagnosed with complex fractures of the atlas and the axis of the upper cervical spine and underwent posterior temporary C1-2 pedicle screws fixation. The patients underwent a serial postoperative clinical examination at approximately 3, 6, 9 months, and annually thereafter. The neck disability index (NDI) and the range of neck rotary motion were used to evaluate the postoperative clinical efficacy of the patients. RESULTS: The average operation time and blood loss were 110 ± 25 min and 50 ± 12 ml, respectively. The mean follow-up was 38 ± 11 months (range 22 to 60 months). The neck rotary motion before removal, immediately after removal, and the last follow-up were 68.7 ± 7.1°, 115.1 ± 11.7°, and 149.3 ± 8.9° (P < 0.01). The NDI scores before and after the operation were 42.7 ± 4.3, 11.1 ± 4.0 (P < 0.01), and the NDI score 2 days after the internal fixation was removed was 7.3 ± 2.9, which was better than immediately after the operation (P < 0.01), and 2 years after the internal fixation was removed. The NDI score was 2.0 ± 0.8, which was significantly better than 2 days after the internal fixation was taken out (P < 0.001). CONCLUSIONS: Posterior temporary screw fixation is a good alternative surgical treatment for unstable C1-C2 complex fractures.

18.
Ying Yong Sheng Tai Xue Bao ; 34(12): 3347-3356, 2023 Dec.
Article in Zh | MEDLINE | ID: mdl-38511374

ABSTRACT

Establishing the remote sensing yield estimation model of wheat-maize rotation cultivated land can timely and accurately estimate the comprehensive grain yield. Taking the winter wheat-summer maize rotation cultivated land in Caoxian County, Shandong Province, as test object, using the Sentinel-2 images from 2018 to 2019, we compared the time-series feature classification based on QGIS platform and support vector machine algorithm to select the best method and extract sowing area of wheat-maize rotation cultivated land. Based on the correlation between wheat and maize vegetation index and the statistical yield, we screened the sensitive vegetation indices and their growth period, and obtained the vegetation index integral value of the sensitive spectral period by using the Newton-trapezoid integration method. We constructed the multiple linear regression and three machine learning (random forest, RF; neural network model, BP; support vector machine model, SVM) models based on the integral value combination to get the best and and optimized yield estimation model. The results showed that the accuracy rate of extracting wheat and maize sowing area based on time-series features using QGIS platform reached 94.6%, with the overall accuracy and Kappa coefficient were 5.9% and 0.12 higher than those of the support vector machine algorithm, respectively. The remote sensing yield estimation in sensitive spectral period was better than that in single growth period. The normalized differential vegetation index and ratio vegetation index integral group of wheat and enhanced vegetation index and structure intensify pigment vegetable index integral group of maize could more effectively aggregate spectral information. The optimal combination of vegetation index integral was difference, and the fitting accuracy of machine learning algorithm was higher than that of empirical statistical model. The optimal yield estimation model was the difference value group-random forest (DVG-RF) model of machine learning algorithm (R2=0.843, root mean square error=2.822 kg·hm-2), with a yield estimation accuracy of 93.4%. We explored the use of QGIS platform to extract the sowing area, and carried out a systematical case study on grain yield estimation method of wheat-maize rotation cultivated land. The established multi-vegetation index integral combination model was effective and feasible, which could improve accuracy and efficiency of yield estimation.


Subject(s)
Triticum , Zea mays , Remote Sensing Technology/methods , Edible Grain , China
19.
Beijing Da Xue Xue Bao Yi Xue Ban ; 44(3): 339-46, 2012 Jun 18.
Article in Zh | MEDLINE | ID: mdl-22692300

ABSTRACT

OBJECTIVE: To explore the correlation between feeding index and growth development status of infants from two counties of western China by applying the method of multiple correspondence analysis. METHODS: Two sample counties were randomly selected from the ones that satisfied the research conditions in Shaanxi province and Chongqing in western China. In the study, 472 premature/low birth weight infants (PLBW) and 461 normal term infants (NT) of 6-36 months from the two counties were investigated from September 2010 to November 2010. The SPSS 19.0 software was applied to analyze the data using general statistical analysis and multiple correspondence analysis. RESULTS: In the two counties of western China, the proportion of infants with feeding index at the medium level was the highest, which was between 50% and 60%. In the PLBW group and the NT group, the proportion of low level of feeding index among 6-9 month-old infants was the highest, and the proportion was 33.3% for the PLBW group and 29.4% for the NT group. For both the PLBW group and the NT group, the distribution of feeding index among the different age groups showed significant difference (P<0.05).Among the infants with low level of feeding index, the growth development of the PLBW lay behind that of the NT. We could see a catching-up trend of the PLBW with medium or good level of feeding index, but their growth development index was still at a lower level than that of the NT with the same level of feeding condition. Through multiple correspondence analyses, the outcomes of PLBW corresponded and strongly correlated with low level of feeding index, low level of growth development index, mother's low education degree and low annual family income. And the outcomes of NT corresponded and strongly correlated with medium/good level of feeding index, medium level of growth development status, mother's medium/high education degree and medium/high level of annual family income. CONCLUSION: There are good correspondence correlations at different hierarchical levels of the infants' group, feeding index, growth development index and family factors in the two counties of western China. Multiple correspondence analysis could directly reveal the correlation among several variables, which is a suitable method for categorical data. The result can be illustrated directly through a two-dimensional graph and could provide the suggestion of feeding practice for different infants in western rural China.


Subject(s)
Child Development , Factor Analysis, Statistical , Feeding Methods/statistics & numerical data , Child, Preschool , China , Female , Humans , Income , Infant , Male , Rural Population , Sampling Studies , Socioeconomic Factors , Surveys and Questionnaires
20.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(5): 1367-70, 2012 May.
Article in Zh | MEDLINE | ID: mdl-22827091

ABSTRACT

The present study chose the apple orchard of Shandong Agricultural University as the study area to explore the method of apple leaf chlorophyll content estimation by hyperspectral analysis technology. Through analyzing the characteristics of apple leaves' hyperspectral curve, transforming the original spectral into first derivative, red edge position and leaf chlorophyll index (LCI) respectively, and making the correlation analysis and regression analysis of these variables with the chlorophyll content to establish the estimation models and test to select the high fitting precision models. Results showed that the fitting precision of the estimation model with variable of LCI and the estimation model with variable of the first derivative in the band of 521 and 523 nm was the highest. The coefficients of determination R2 were 0.845 and 0.839, the root mean square errors RMSE were 2.961 and 2.719, and the relative errors RE% were 4.71% and 4.70%, respectively. Therefore LCI and the first derivative are the important index for apple leaf chlorophyll content estimation. The models have positive significance to guide the production of apple cultivation.


Subject(s)
Chlorophyll/analysis , Malus , Plant Leaves/chemistry , Models, Theoretical , Regression Analysis , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL