Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.011
Filter
Add more filters

Publication year range
1.
Development ; 151(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38149472

ABSTRACT

Lissencephaly is a neurodevelopmental disorder characterized by a loss of brain surface convolutions caused by genetic variants that disrupt neuronal migration. However, the genetic origins of the disorder remain unidentified in nearly one-fifth of people with lissencephaly. Using whole-exome sequencing, we identified a de novo BAIAP2 variant, p.Arg29Trp, in an individual with lissencephaly with a posterior more severe than anterior (P>A) gradient, implicating BAIAP2 as a potential lissencephaly gene. Spatial transcriptome analysis in the developing mouse cortex revealed that Baiap2 is expressed in the cortical plate and intermediate zone in an anterior low to posterior high gradient. We next used in utero electroporation to explore the effects of the Baiap2 variant in the developing mouse cortex. We found that Baiap2 knockdown caused abnormalities in neuronal migration, morphogenesis and differentiation. Expression of the p.Arg29Trp variant failed to rescue the migration defect, suggesting a loss-of-function effect. Mechanistically, the variant interfered with the ability of BAIAP2 to localize to the cell membrane. These results suggest that the functions of BAIAP2 in the cytoskeleton, cell morphogenesis and migration are important for cortical development and for the pathogenesis of lissencephaly in humans.


Subject(s)
Lissencephaly , Animals , Humans , Mice , Brain/metabolism , Cell Movement/genetics , Cytoskeleton/metabolism , Lissencephaly/genetics , Lissencephaly/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism
2.
Trends Immunol ; 2024 Oct 22.
Article in English | MEDLINE | ID: mdl-39443266

ABSTRACT

Brain metastasis poses formidable clinical challenges due to its intricate interactions with the brain's unique immune environment, often resulting in poor prognoses. This review delves into systems immunology's role in uncovering the dynamic interplay between metastatic cancer cells and brain immunity. Leveraging spatial and single-cell technologies, along with advanced computational modeling, systems immunology offers unprecedented insights into mechanisms of immune evasion and tumor proliferation. Recent studies highlight potential immunotherapeutic targets, suggesting strategies to boost antitumor immunity and counteract cancer cell evasion in the brain. Despite substantial progress, challenges persist, particularly in accurately simulating human conditions. This review underscores the need for interdisciplinary collaboration to harness systems immunology's full potential, aiming to dramatically improve outcomes for patients with brain metastasis.

3.
Proc Natl Acad Sci U S A ; 121(4): e2308942121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38241441

ABSTRACT

In the Antibody Mediated Prevention (AMP) trials (HVTN 704/HPTN 085 and HVTN 703/HPTN 081), prevention efficacy (PE) of the monoclonal broadly neutralizing antibody (bnAb) VRC01 (vs. placebo) against HIV-1 acquisition diagnosis varied according to the HIV-1 Envelope (Env) neutralization sensitivity to VRC01, as measured by 80% inhibitory concentration (IC80). Here, we performed a genotypic sieve analysis, a complementary approach to gaining insight into correlates of protection that assesses how PE varies with HIV-1 sequence features. We analyzed HIV-1 Env amino acid (AA) sequences from the earliest available HIV-1 RNA-positive plasma samples from AMP participants diagnosed with HIV-1 and identified Env sequence features that associated with PE. The strongest Env AA sequence correlate in both trials was VRC01 epitope distance that quantifies the divergence of the VRC01 epitope in an acquired HIV-1 isolate from the VRC01 epitope of reference HIV-1 strains that were most sensitive to VRC01-mediated neutralization. In HVTN 704/HPTN 085, the Env sequence-based predicted probability that VRC01 IC80 against the acquired isolate exceeded 1 µg/mL also significantly associated with PE. In HVTN 703/HPTN 081, a physicochemical-weighted Hamming distance across 50 VRC01 binding-associated Env AA positions of the acquired isolate from the most VRC01-sensitive HIV-1 strain significantly associated with PE. These results suggest that incorporating mutation scoring by BLOSUM62 and weighting by the strength of interactions at AA positions in the epitope:VRC01 interface can optimize performance of an Env sequence-based biomarker of VRC01 prevention efficacy. Future work could determine whether these results extend to other bnAbs and bnAb combinations.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Humans , Broadly Neutralizing Antibodies , Antibodies, Neutralizing , HIV Antibodies , Epitopes/genetics
4.
Nat Chem Biol ; 20(11): 1505-1513, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38538923

ABSTRACT

Telomere dysfunction is intricately linked to the aging process and stands out as a prominent cancer hallmark. Here we demonstrate that telomerase activity is differentially regulated in cancer and normal cells depending on the expression status of fructose-1,6-bisphosphatase 1 (FBP1). In FBP1-expressing cells, FBP1 directly interacts with and dephosphorylates telomerase reverse transcriptase (TERT) at Ser227. Dephosphorylated TERT fails to translocate into the nucleus, leading to the inhibition of telomerase activity, reduction in telomere lengths, enhanced senescence and suppressed tumor cell proliferation and growth in mice. Lipid nanoparticle-mediated delivery of FBP1 mRNA inhibits liver tumor growth. Additionally, FBP1 expression levels inversely correlate with TERT pSer227 levels in renal and hepatocellular carcinoma specimens and with poor prognosis of the patients. These findings demonstrate that FBP1 governs cell immortality through its protein phosphatase activity and uncover a unique telomerase regulation in tumor cells attributed to the downregulation or deficiency of FBP1 expression.


Subject(s)
Fructose-Bisphosphatase , Telomerase , Telomerase/metabolism , Telomerase/genetics , Telomerase/antagonists & inhibitors , Humans , Animals , Fructose-Bisphosphatase/metabolism , Fructose-Bisphosphatase/genetics , Fructose-Bisphosphatase/antagonists & inhibitors , Mice , Cell Proliferation , Phosphorylation , Cell Line, Tumor , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Mice, Nude
5.
J Biol Chem ; 300(3): 105762, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367665

ABSTRACT

Long non-coding RNAs (LncRNAs) could regulate chemoresistance through sponging microRNAs (miRNAs) and sequestering RNA binding proteins. However, the mechanism of lncRNAs in rituximab resistance in diffuse large B-cell lymphoma (DLBCL) is largely unknown. Here, we investigated the functions and molecular mechanisms of lncRNA CHROMR in DLBCL tumorigenesis and chemoresistance. LncRNA CHROMR is highly expressed in DLBCL tissues and cells. We examined the oncogenic functions of lncRNA CHROMR in DLBCL by a panel of gain-or-loss-of-function assays and in vitro experiments. LncRNA CHROMR suppression promotes CD20 transcription in DLBCL cells and inhibits rituximab resistance. RNA immunoprecipitation, RNA pull-down, and dual luciferase reporter assay reveal that lncRNA CHROMR sponges with miR-27b-3p to regulate mesenchymal-epithelial transition factor (MET) levels and Akt signaling in DLBCL cells. Targeting the lncRNA CHROMR/miR-27b-3p/MET axis reduces DLBCL tumorigenesis. Altogether, these findings provide a new regulatory model, lncRNA CHROMR/miR-27b-3p/MET, which can serve as a potential therapeutic target for DLBCL.


Subject(s)
Antineoplastic Agents, Immunological , Carcinogenesis , Drug Resistance, Neoplasm , Lymphoma, Large B-Cell, Diffuse , MicroRNAs , Proto-Oncogene Proteins c-met , RNA, Long Noncoding , Rituximab , Humans , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Rituximab/pharmacology , Rituximab/therapeutic use , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Drug Resistance, Neoplasm/genetics , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Neoplasm Invasiveness , Proto-Oncogene Proteins c-met/metabolism
6.
Circulation ; 150(5): 362-373, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38939965

ABSTRACT

BACKGROUND: Waitlist mortality (WM) remains elevated in pediatric heart transplantation. Allocation policy is a potential tool to help improve WM. This study aims to identify patients at highest risk for WM to potentially inform future allocation policy changes. METHODS: The Pediatric Heart Transplant Society database was queried for patients <18 years of age indicated for heart transplantation between January 1, 2010 to December 31, 2021. Waitlist mortality was defined as death while awaiting transplant or removal from the waitlist due to clinical deterioration. Because WM is low after the first year, analysis was limited to the first 12 months on the heart transplant list. Kaplan-Meier analysis and log-rank testing was conducted to compare unadjusted survival between groups. Cox proportional hazard models were created to determine risk factors for WM. Subgroup analysis was performed for status 1A patients based on body surface area (BSA) at time of listing, cardiac diagnosis, and presence of mechanical circulatory support. RESULTS: In total 5974 children met study criteria of which 3928 were status 1A, 1012 were status 1B, 963 were listed status 2, and 65 were listed status 7. Because of the significant burden of WM experienced by 1A patients, further analysis was performed in only patients indicated as 1A. Within that group of patients, those with smaller size and lower eGFR had higher WM, whereas those patients without congenital heart disease or support from a ventricular assist device (VAD) at time of listing had decreased WM. In the smallest size cohort, cardiac diagnoses other than dilated cardiomyopathy were risk factors for WM. Previous cardiac surgery was a risk factor in the 0.3 to 0.7 m2 and >0.7 m2 BSA groups. VAD support was associated with lower WM other than in the single ventricle cohort, where VAD was associated with higher WM. Extracorporeal membrane oxygenation and mechanical ventilation were associated with increased risk of WM in all cohorts. CONCLUSIONS: There is significant variability in WM among status-1A patients. Potential refinements to current allocation system should factor in the increased WM risk we identified in patients supported by extracorporeal membrane oxygenation or mechanical ventilation, single ventricle congenital heart disease on VAD support and small children with congenital heart disease, restrictive cardiomyopathy, or hypertrophic cardiomyopathy.


Subject(s)
Databases, Factual , Heart Transplantation , Waiting Lists , Humans , Heart Transplantation/mortality , Waiting Lists/mortality , Child , Male , Female , Child, Preschool , Infant , Adolescent , Risk Factors , Treatment Outcome , Infant, Newborn
7.
Lancet ; 403(10445): 2720-2731, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38824941

ABSTRACT

BACKGROUND: Anti-PD-1 therapy and chemotherapy is a recommended first-line treatment for recurrent or metastatic nasopharyngeal carcinoma, but the role of PD-1 blockade remains unknown in patients with locoregionally advanced nasopharyngeal carcinoma. We assessed the addition of sintilimab, a PD-1 inhibitor, to standard chemoradiotherapy in this patient population. METHODS: This multicentre, open-label, parallel-group, randomised, controlled, phase 3 trial was conducted at nine hospitals in China. Adults aged 18-65 years with newly diagnosed high-risk non-metastatic stage III-IVa locoregionally advanced nasopharyngeal carcinoma (excluding T3-4N0 and T3N1) were eligible. Patients were randomly assigned (1:1) using blocks of four to receive gemcitabine and cisplatin induction chemotherapy followed by concurrent cisplatin radiotherapy (standard therapy group) or standard therapy with 200 mg sintilimab intravenously once every 3 weeks for 12 cycles (comprising three induction, three concurrent, and six adjuvant cycles to radiotherapy; sintilimab group). The primary endpoint was event-free survival from randomisation to disease recurrence (locoregional or distant) or death from any cause in the intention-to-treat population. Secondary endpoints included adverse events. This trial is registered with ClinicalTrials.gov (NCT03700476) and is now completed; follow-up is ongoing. FINDINGS: Between Dec 21, 2018, and March 31, 2020, 425 patients were enrolled and randomly assigned to the sintilimab (n=210) or standard therapy groups (n=215). At median follow-up of 41·9 months (IQR 38·0-44·8; 389 alive at primary data cutoff [Feb 28, 2023] and 366 [94%] had at least 36 months of follow-up), event-free survival was higher in the sintilimab group compared with the standard therapy group (36-month rates 86% [95% CI 81-90] vs 76% [70-81]; stratified hazard ratio 0·59 [0·38-0·92]; p=0·019). Grade 3-4 adverse events occurred in 155 (74%) in the sintilimab group versus 140 (65%) in the standard therapy group, with the most common being stomatitis (68 [33%] vs 64 [30%]), leukopenia (54 [26%] vs 48 [22%]), and neutropenia (50 [24%] vs 46 [21%]). Two (1%) patients died in the sintilimab group (both considered to be immune-related) and one (<1%) in the standard therapy group. Grade 3-4 immune-related adverse events occurred in 20 (10%) patients in the sintilimab group. INTERPRETATION: Addition of sintilimab to chemoradiotherapy improved event-free survival, albeit with higher but manageable adverse events. Longer follow-up is necessary to determine whether this regimen can be considered as the standard of care for patients with high-risk locoregionally advanced nasopharyngeal carcinoma. FUNDING: National Natural Science Foundation of China, Key-Area Research and Development Program of Guangdong Province, Natural Science Foundation of Guangdong Province, Overseas Expertise Introduction Project for Discipline Innovation, Guangzhou Municipal Health Commission, and Cancer Innovative Research Program of Sun Yat-sen University Cancer Center. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
Antibodies, Monoclonal, Humanized , Chemoradiotherapy , Induction Chemotherapy , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Humans , Middle Aged , Male , Female , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Carcinoma/drug therapy , Adult , China/epidemiology , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/therapy , Chemoradiotherapy/methods , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/administration & dosage , Aged , Cisplatin/therapeutic use , Cisplatin/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Gemcitabine , Deoxycytidine/analogs & derivatives , Deoxycytidine/therapeutic use , Deoxycytidine/administration & dosage , Young Adult , Adolescent , Progression-Free Survival
8.
Brief Bioinform ; 24(2)2023 03 19.
Article in English | MEDLINE | ID: mdl-36681903

ABSTRACT

Binding affinity prediction largely determines the discovery efficiency of lead compounds in drug discovery. Recently, machine learning (ML)-based approaches have attracted much attention in hopes of enhancing the predictive performance of traditional physics-based approaches. In this study, we evaluated the impact of structural dynamic information on the binding affinity prediction by comparing the models trained on different dimensional descriptors, using three targets (i.e. JAK1, TAF1-BD2 and DDR1) and their corresponding ligands as the examples. Here, 2D descriptors are traditional ECFP4 fingerprints, 3D descriptors are the energy terms of the Smina and NNscore scoring functions and 4D descriptors contain the structural dynamic information derived from the trajectories based on molecular dynamics (MD) simulations. We systematically investigate the MD-refined binding affinity prediction performance of three classical ML algorithms (i.e. RF, SVR and XGB) as well as two common virtual screening methods, namely Glide docking and MM/PBSA. The outcomes of the ML models built using various dimensional descriptors and their combinations reveal that the MD refinement with the optimized protocol can improve the predictive performance on the TAF1-BD2 target with considerable structural flexibility, but not for the less flexible JAK1 and DDR1 targets, when taking docking poses as the initial structure instead of the crystal structures. The results highlight the importance of the initial structures to the final performance of the model through conformational analysis on the three targets with different flexibility.


Subject(s)
Molecular Dynamics Simulation , Proteins , Ligands , Proteins/chemistry , Protein Binding , Machine Learning , Molecular Docking Simulation
9.
Plant Cell ; 34(1): 579-596, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34735009

ABSTRACT

The self-incompatibility (SI) system with the broadest taxonomic distribution in angiosperms is based on multiple S-locus F-box genes (SLFs) tightly linked to an S-RNase termed type-1. Multiple SLFs collaborate to detoxify nonself S-RNases while being unable to detoxify self S-RNases. However, it is unclear how such a system evolved, because in an ancestral system with a single SLF, many nonself S-RNases would not be detoxified, giving low cross-fertilization rates. In addition, how the system has been maintained in the face of whole-genome duplications (WGDs) or lost in other lineages remains unclear. Here we show that SLFs from a broad range of species can detoxify S-RNases from Petunia with a high detoxification probability, suggestive of an ancestral feature enabling cross-fertilization and subsequently modified as additional SLFs evolved. We further show, based on its genomic signatures, that type-1 was likely maintained in many lineages, despite WGD, through deletion of duplicate S-loci. In other lineages, SI was lost either through S-locus deletions or by retaining duplications. Two deletion lineages regained SI through type-2 (Brassicaceae) or type-4 (Primulaceae), and one duplication lineage through type-3 (Papaveraceae) mechanisms. Thus, our results reveal a highly dynamic process behind the origin, maintenance, loss, and regain of SI.


Subject(s)
Biological Evolution , Germ Cells, Plant/physiology , Magnoliopsida/physiology , Self-Incompatibility in Flowering Plants , Self-Incompatibility in Flowering Plants/genetics
10.
FASEB J ; 38(10): e23655, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38767449

ABSTRACT

The disruption of mitochondria homeostasis can impair the contractile function of cardiomyocytes, leading to cardiac dysfunction and an increased risk of heart failure. This study introduces a pioneering therapeutic strategy employing mitochondria derived from human umbilical cord mesenchymal stem cells (hu-MSC) (MSC-Mito) for heart failure treatment. Initially, we isolated MSC-Mito, confirming their functionality. Subsequently, we monitored the process of single mitochondria transplantation into recipient cells and observed a time-dependent uptake of mitochondria in vivo. Evidence of human-specific mitochondrial DNA (mtDNA) in murine cardiomyocytes was observed after MSC-Mito transplantation. Employing a doxorubicin (DOX)-induced heart failure model, we demonstrated that MSC-Mito transplantation could safeguard cardiac function and avert cardiomyocyte apoptosis, indicating metabolic compatibility between hu-MSC-derived mitochondria and recipient mitochondria. Finally, through RNA sequencing and validation experiments, we discovered that MSC-Mito transplantation potentially exerted cardioprotection by reinstating ATP production and curtailing AMPKα-mTOR-mediated excessive autophagy.


Subject(s)
AMP-Activated Protein Kinases , Apoptosis , Autophagy , Mesenchymal Stem Cells , Mitochondria , Myocytes, Cardiac , TOR Serine-Threonine Kinases , Animals , Humans , Male , Mice , AMP-Activated Protein Kinases/metabolism , Doxorubicin/pharmacology , Heart Failure/metabolism , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/transplantation , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , TOR Serine-Threonine Kinases/metabolism
11.
Ann Intern Med ; 177(8): 1048-1057, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38950397

ABSTRACT

BACKGROUND: Acupuncture may improve degenerative lumbar spinal stenosis (DLSS), but evidence is insufficient. OBJECTIVE: To investigate the effect of acupuncture for DLSS. DESIGN: Multicenter randomized clinical trial. (ClinicalTrials.gov: NCT03784729). SETTING: 5 hospitals in China. PARTICIPANTS: Patients with DLSS and predominantly neurogenic claudication pain symptoms. INTERVENTION: 18 sessions of acupuncture or sham acupuncture (SA) over 6 weeks, with 24-week follow-up after treatment. MEASUREMENTS: The primary outcome was change from baseline in the modified Roland-Morris Disability Questionnaire ([RMDQ] score range, 0 to 24; minimal clinically important difference [MCID], 2 to 3). Secondary outcomes were the proportion of participants achieving minimal (30% reduction from baseline) and substantial (50% reduction from baseline) clinically meaningful improvement per the modified RMDQ. RESULTS: A total of 196 participants (98 in each group) were enrolled. The mean modified RMDQ score was 12.6 (95% CI, 11.8 to 13.4) in the acupuncture group and 12.7 (CI, 12.0 to 13.3) in the SA group at baseline, and decreased to 8.1 (CI, 7.1 to 9.1) and 9.5 (CI, 8.6 to 10.4) at 6 weeks, with an adjusted difference in mean change of -1.3 (CI, -2.6 to -0.03; P = 0.044), indicating a 43.3% greater improvement compared with SA. The between-group difference in the proportion of participants achieving minimal and substantial clinically meaningful improvement was 16.0% (CI, 1.6% to 30.4%) and 12.6% (CI, -1.0% to 26.2%) at 6 weeks. Three cases of treatment-related adverse events were reported in the acupuncture group, and 3 were reported in the SA group. All events were mild and transient. LIMITATION: The SA could produce physiologic effects. CONCLUSION: Acupuncture may relieve pain-specific disability among patients with DLSS and predominantly neurogenic claudication pain symptoms, although the difference with SA did not reach MCID. The effects may last 24 weeks after 6-week treatment. PRIMARY FUNDING SOURCE: 2019 National Administration of Traditional Chinese Medicine "Project of building evidence-based practice capacity for TCM-Project BEBPC-TCM" (NO. 2019XZZX-ZJ).


Subject(s)
Acupuncture Therapy , Intermittent Claudication , Lumbar Vertebrae , Spinal Stenosis , Humans , Spinal Stenosis/complications , Spinal Stenosis/therapy , Male , Female , Middle Aged , Intermittent Claudication/therapy , Aged , Treatment Outcome , Disability Evaluation
12.
Gut ; 73(7): 1169-1182, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38395437

ABSTRACT

OBJECTIVE: Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), mostly characterised by HBV integrations, is prevalent worldwide. Previous HBV studies mainly focused on a few hotspot integrations. However, the oncogenic role of the other HBV integrations remains unclear. This study aimed to elucidate HBV integration-induced tumourigenesis further. DESIGN: Here, we illuminated the genomic structures encompassing HBV integrations in 124 HCCs across ages using whole genome sequencing and Nanopore long reads. We classified a repertoire of integration patterns featured by complex genomic rearrangement. We also conducted a clustered regularly interspaced short palindromic repeat (CRISPR)-based gain-of-function genetic screen in mouse hepatocytes. We individually activated each candidate gene in the mouse model to uncover HBV integration-mediated oncogenic aberration that elicits tumourigenesis in mice. RESULTS: These HBV-mediated rearrangements are significantly enriched in a bridge-fusion-bridge pattern and interchromosomal translocations, and frequently led to a wide range of aberrations including driver copy number variations in chr 4q, 5p (TERT), 6q, 8p, 16q, 9p (CDKN2A/B), 17p (TP53) and 13q (RB1), and particularly, ultra-early amplifications in chr8q. Integrated HBV frequently contains complex structures correlated with the translocation distance. Paired breakpoints within each integration event usually exhibit different microhomology, likely mediated by different DNA repair mechanisms. HBV-mediated rearrangements significantly correlated with young age, higher HBV DNA level and TP53 mutations but were less prevalent in the patients subjected to prior antiviral therapies. Finally, we recapitulated the TONSL and TMEM65 amplification in chr8q led by HBV integration using CRISPR/Cas9 editing and demonstrated their tumourigenic potentials. CONCLUSION: HBV integrations extensively reshape genomic structures and promote hepatocarcinogenesis (graphical abstract), which may occur early in a patient's life.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B virus , Liver Neoplasms , Virus Integration , Carcinoma, Hepatocellular/virology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/virology , Liver Neoplasms/pathology , Hepatitis B virus/genetics , Humans , Virus Integration/genetics , Animals , Mice , Male , Middle Aged , Female , Adult , Whole Genome Sequencing , DNA Copy Number Variations , Aged
13.
J Cell Physiol ; 239(2): e31129, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38192063

ABSTRACT

Myelodysplastic syndromes (MDS) are a group of heterogeneous myeloid clonal disorders characterized by ineffective hematopoiesis. Accumulating evidence has shown that macrophages (MΦs) are important components in the regulation of tumor progression and hematopoietic stem cells (HSCs). However, the roles of bone marrow (BM) MΦs in regulating normal and malignant hematopoiesis in different clinical stages of MDS are largely unknown. Age-paired patients with lower-risk MDS (N = 15), higher-risk MDS (N = 15), de novo acute myeloid leukemia (AML) (N = 15), and healthy donors (HDs) (N = 15) were enrolled. Flow cytometry analysis showed increased pro-inflammatory monocyte subsets and a decreased classically activated (M1) MΦs/alternatively activated (M2) MΦs ratio in the BM of patients with higher-risk MDS compared to lower-risk MDS. BM MФs from patients with higher-risk MDS and AML showed impaired phagocytosis activity but increased migration compared with lower-risk MDS group. AML BM MΦs showed markedly higher S100A8/A9 levels than lower-risk MDS BM MΦs. More importantly, coculture experiments suggested that the HSC supporting abilities of BM MΦs from patients with higher-risk MDS decreased, whereas the malignant cell supporting abilities increased compared with lower-risk MDS. Gene Ontology enrichment comparing BM MΦs from lower-risk MDS and higher-risk MDS for genes was involved in hematopoiesis- and immunity-related pathways. Our results suggest that BM MΦs are involved in ineffective hematopoiesis in patients with MDS, which indicates that repairing aberrant BM MΦs may represent a promising therapeutic approach for patients with MDS.


Subject(s)
Infections , Macrophages , Myelodysplastic Syndromes , Humans , Bone Marrow/pathology , Hematopoiesis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Macrophages/pathology , Myelodysplastic Syndromes/genetics , Adult , Middle Aged , Aged , Aged, 80 and over , Infections/pathology
14.
Mol Med ; 30(1): 125, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152382

ABSTRACT

BACKGROUND: Epimedin A (EA) has been shown to suppress extensive osteoclastogenesis and bone resorption, but the effects of EA remain incompletely understood. The aim of our study was to investigate the effects of EA on osteoclastogenesis and bone resorption to explore the corresponding signalling pathways. METHODS: Rats were randomly assigned to the sham operation or ovariectomy group, and alendronate was used for the positive control group. The therapeutic effect of EA on osteoporosis was systematically analysed by measuring bone mineral density and bone biomechanical properties. In vitro, RAW264.7 cells were treated with receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) to induce osteoclast differentiation. Cell viability assays, tartrate-resistant acid phosphatase (TRAP) staining, and immunofluorescence were used to elucidate the effects of EA on osteoclastogenesis. In addition, the expression of bone differentiation-related proteins or genes was evaluated using Western blot analysis or quantitative polymerase chain reaction (PCR), respectively. RESULTS: After 3 months of oral EA intervention, ovariectomized rats exhibited increased bone density, relative bone volume, trabecular thickness, and trabecular number, as well as reduced trabecular separation. EA dose-dependently normalized bone density and trabecular microarchitecture in the ovariectomized rats. Additionally, EA inhibited the expression of TRAP and NFATc1 in the ovariectomized rats. Moreover, the in vitro results indicated that EA inhibits osteoclast differentiation by suppressing the TRAF6/PI3K/AKT/NF-κB pathway. Further studies revealed that the effect on osteoclast differentiation, which was originally inhibited by EA, was reversed when the TRAF6 gene was overexpressed. CONCLUSIONS: The findings indicated that EA can negatively regulate osteoclastogenesis by inhibiting the TRAF6/PI3K/AKT/NF-κB axis and that ameliorating ovariectomy-induced osteoporosis in rats with EA may be a promising potential therapeutic strategy for the treatment of osteoporosis.


Subject(s)
Cell Differentiation , NF-kappa B , Osteoclasts , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TNF Receptor-Associated Factor 6 , Animals , TNF Receptor-Associated Factor 6/metabolism , TNF Receptor-Associated Factor 6/genetics , Osteoclasts/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , Cell Differentiation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Female , Phosphatidylinositol 3-Kinases/metabolism , Rats , Mice , RAW 264.7 Cells , Flavonoids/pharmacology , Osteogenesis/drug effects , Rats, Sprague-Dawley , Osteoporosis/metabolism , Osteoporosis/etiology , Ovariectomy/adverse effects , Gene Expression Regulation/drug effects , Bone Density/drug effects
15.
Clin Gastroenterol Hepatol ; 22(3): 591-601.e3, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38040276

ABSTRACT

BACKGROUND & AIMS: Liver fibrosis in patients with chronic hepatitis B can regress with successful antiviral therapy. However, the long-term clinical benefits of fibrosis regression have not been fully elucidated. This study investigated the association between biopsy-proven fibrosis regression by predominantly progressive, indeterminate, and predominantly regressive (P-I-R) score and liver-related events (LREs) in chronic hepatitis B patients. METHODS: Patients with on-treatment liver biopsy and significant fibrosis/cirrhosis (Ishak stage ≥3) were included in this analysis. Fibrosis regression was evaluated according to the P-I-R score of the Beijing Classification. LREs were defined as decompensations, hepatocellular carcinoma, liver transplantation, or death. The Cox proportional hazards model was used to determine associations of fibrosis regression with LREs. RESULTS: A total of 733 patients with Ishak stages 3/4 (n = 456; 62.2%) and cirrhosis (Ishak stages 5/6; n = 277; 37.8%) by on-treatment liver biopsy were enrolled. According to the P-I-R score, fibrosis regression, indeterminate, and progression were observed in 314 (42.8%), 230 (31.4%), and 189 (25.8%) patients, respectively. The 7-year cumulative incidence of LREs was 4.1%, 8.7%, and 18.1% in regression, indeterminate, and progression, respectively (log-rank, P < .001). Compared with patients with fibrosis progression, those with fibrosis regression had a lower risk of LREs (adjusted hazard ratio, 0.40; 95% CI, 0.16-0.99; P = .047), followed by the indeterminate group (adjusted hazard ratio, 0.86; 95% CI, 0.40-1.85; P = .691). Notably, this favorable association also was observed in patients with cirrhosis or low platelet counts (<150 × 109/L). CONCLUSIONS: Antiviral therapy-induced liver fibrosis regression assessed by P-I-R score is associated with reduced LREs. This shows the utility of histologic fibrosis regression assessed by on-treatment P-I-R score as a surrogate endpoint for clinical events in patients with hepatitis B virus-related fibrosis or early cirrhosis.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Liver Neoplasms , Humans , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/pathology , Liver/pathology , Liver Cirrhosis/complications , Hepatitis B/complications , Liver Neoplasms/pathology , Antiviral Agents/therapeutic use , Biopsy
16.
Biochem Biophys Res Commun ; 730: 150339, 2024 10 20.
Article in English | MEDLINE | ID: mdl-39032359

ABSTRACT

The tumor microenvironment (TME) assumes a pivotal role in the treatment of oncological diseases, given its intricate interplay of diverse cellular components and extracellular matrices. This dynamic ecosystem poses a serious challenge to traditional research methods in many ways, such as high research costs, inefficient translation, poor reproducibility, and low modeling success rates. These challenges require the search for more suitable research methods to accurately model the TME, and the emergence of 3D bioprinting technology is transformative and an important complement to these traditional methods to precisely control the distribution of cells, biomolecules, and matrix scaffolds within the TME. Leveraging digital design, the technology enables personalized studies with high precision, providing essential experimental flexibility. Serving as a critical bridge between in vitro and in vivo studies, 3D bioprinting facilitates the realistic 3D culturing of cancer cells. This comprehensive article delves into cutting-edge developments in 3D bioprinting, encompassing diverse methodologies, biomaterial choices, and various 3D tumor models. Exploration of current challenges, including limited biomaterial options, printing accuracy constraints, low reproducibility, and ethical considerations, contributes to a nuanced understanding. Despite these challenges, the technology holds immense potential for simulating tumor tissues, propelling personalized medicine, and constructing high-resolution organ models, marking a transformative trajectory in oncological research.


Subject(s)
Bioprinting , Printing, Three-Dimensional , Tumor Microenvironment , Humans , Bioprinting/methods , Neoplasms/pathology , Animals , Tissue Engineering/methods , Biocompatible Materials/chemistry , Tissue Scaffolds/chemistry
17.
Small ; 20(40): e2402819, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38837885

ABSTRACT

Janus-micromotors, as efficient self-propelled materials, have garnered considerable attention for their potential applications in non-agitated liquids. However, the design of micromotors is still challenging and with limited approaches, especially concerning speed and mobility in complex environments. Herein, a two-step spray-drying approach encompassing symmetrical assembly and asymmetrical assembly is introduced to fabricate the metal-organic framework (MOF) Janus-micromotors with hierarchical pores. Using a spray-dryer, a symmetrical assembly is first employed to prepare macro-meso-microporous UiO-66 with intrinsic micropores (<0.5 nm) alongside mesopores (≈24 nm) and macropores (≈400 nm). Subsequent asymmetrical assembly yielded the UiO-66-Janus loaded with the reducible nanoparticles, which underwent oxidation by KMnO4 to form MnO2 micromotors. The micromotors efficiently generated O2 for self-propulsion in H2O2, exhibiting ultrahigh speeds (1135 µm s-1, in a 5% H2O2 solution) and unique anti-gravity diffusion effects. In a specially designed simulated sand-water system, the micromotors traversed from the lower water to the upper water through the sand layer. In particular, the as-prepared micromotors demonstrated optimal efficiency in pollutant removal, with an adsorption kinetic coefficient exceeding five times that of the micromotors only possessing micropores and mesopores. This novel strategy fabricating Janus-micromotors shows great potential for efficient treatment in complex environments.

18.
Brief Bioinform ; 23(1)2022 01 17.
Article in English | MEDLINE | ID: mdl-34535795

ABSTRACT

Whether risk genes of severe coronavirus disease 2019 (COVID-19) from genome-wide association study could play their regulatory roles by interacting with host genes that were interacted with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins was worthy of exploration. In this study, we implemented a network-based approach by developing a user-friendly software Network Calculator (https://github.com/Haoxiang-Qi/Network-Calculator.git). By using Network Calculator, we identified a network composed of 13 risk genes and 28 SARS-CoV-2 interacted host genes that had the highest network proximity with each other, with a hub gene HNRNPK identified. Among these genes, 14 of them were identified to be differentially expressed in RNA-seq data from severe COVID-19 cases. Besides, by expression enrichment analysis in single-cell RNA-seq data, compared with mild COVID-19, these genes were significantly enriched in macrophage, T cell and epithelial cell for severe COVID-19. Meanwhile, 74 pathways were significantly enriched. Our analysis provided insights for the underlying genetic etiology of severe COVID-19 from the perspective of network biology.


Subject(s)
COVID-19 , RNA-Seq , SARS-CoV-2 , Viral Proteins , COVID-19/genetics , COVID-19/metabolism , Genome-Wide Association Study , Humans , Patient Acuity , Risk Factors , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
19.
Hepatology ; 77(1): 65-76, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35491432

ABSTRACT

BACKGROUND AND AIMS: We evaluated the efficacy and safety of the antiangiogenic tyrosine kinase inhibitor anlotinib plus TQB2450, a programmed death-ligand 1 inhibitor in pretreated advanced biliary tract cancers (BTCs). APPROACH AND RESULTS: In this pooled analysis of two single-center, phase Ib clinical trials (TQB2450-Ib-05 and TQB2450-Ib-08 trials), 66 patients with advanced BTCs who had progressed or declined or were ineligible for first-line chemotherapy were included. With the treatment of anlotinib plus TQB2450, two patients achieved complete response, and 12 had a partial response assessed by Response Evaluation Criteria in Solid Tumors 1.1, yielding an objective response rate of 21.21%, a disease control rate (DCR) of 72.73%, and a clinical benefit rate (CBR) of 42.42%. With a median follow-up of 19.68 months, median progression-free survival (PFS) and overall survival (OS) were 6.24 (95% confidence interval [CI], 4.11-8.25) and 15.77 (95% CI, 10.74-19.71) months, respectively. Adverse events (AEs) were reported in 64 (96.97%) patients, and the most common grade 3 or worse treatment-related AEs included elevated levels of aspartate aminotransferase (7.58%), alanine aminotransferase (6.06%), and hypertension (6.06%). Patients with high tumor mutational burden (TMB; ≥5 mutations/Mbp) had a better CBR (70.8% vs. 22.2%), longer OS (14.32 vs. 9.64 months), and a trend toward longer PFS (7.03 vs. 4.06 months). Patients with kirsten rat sarcoma viral oncogene homolog ( KRAS ) mutations showed a lower CBR (12.5% vs. 58.8%) and shorter PFS (2.02 vs. 6.80 months) and OS (10.53 vs. 13.13 months). CONCLUSIONS: Anlotinib combined with TQB2450 showed promising efficacy and was well tolerated in advanced BTCs. KRAS mutation and high TMB might serve as predictors of treatment efficacy.


Subject(s)
Biliary Tract Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Indoles/adverse effects , Antibodies, Monoclonal/therapeutic use , Immune Checkpoint Inhibitors/therapeutic use , Biliary Tract Neoplasms/drug therapy , Biliary Tract Neoplasms/genetics , Biliary Tract Neoplasms/pathology , Biomarkers
20.
Opt Express ; 32(7): 11737-11750, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38571014

ABSTRACT

This paper provides an extensive discussion of a complex amplitude-based dynamic three-dimensional deformation measurement method, in which the phase and amplitude of the speckle field are used for out-of-plane and in-plane deformation calculation respectively. By determining the optimal polarization states of the speckle field and reference field from the comprehensive analysis of measurement mathematical model in the principle of polarization multiplexing, the 3-step phase-shifting interferograms and one speckle gram can be directly recorded by a polarization camera in a single shot. The out-of-plane deformation would be recovered from the subtraction of speckle phases that are demodulated by a special least square algorithm; speckle gram with improved quality is offered for correlation computation to obtain in-plane deformation. The advancement and significance of the optimized strategy are intuitively demonstrated by comparing the measurement accuracy under different combinations of polarization states. Finally, the dynamic thermal deformation experiment reveals the potential in practical real-time applications.

SELECTION OF CITATIONS
SEARCH DETAIL