Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Materials (Basel) ; 17(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38591537

ABSTRACT

The material undergoes high temperature and high strain rate deformation process during the cutting process, which may induce the dynamic recrystallization behavior and result in the evolution of dynamic mechanical properties of the material to be machined. In this paper, the modified Johnson-Cook (J-C) model for nickel-based powder metallurgy superalloy considering dynamic recrystallization behavior in high strain rate and temperature is proposed. The dynamic mechanical properties of the material under different strain rates and temperature conditions are obtained by quasi-static compression test and split Hopkinson pressure bar (SHPB) test. The coefficients of the modified J-C model are obtained by the linear regression method. The modified model is verified by comparison with experimental and model prediction results. The results show that the modified J-C model proposed in this paper can accurately describe the mechanical properties of nickel-based powder metallurgy superalloys at high temperatures and high strain rates. This provides help for studying the cutting mechanism and finite element simulation of nickel-based powder metallurgy superalloy.

2.
Materials (Basel) ; 17(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38893836

ABSTRACT

In this paper, the stress-strain curves of Ti2AlNb are established based on uniaxial impact tests over wide ranges of temperature and strain rate. The Ti2AlNb exhibited the work hardening effect but did not show an obvious yield stage during a quasi-static compression test. In the SHPB test, an obvious temperature softening effect was found, the strain rate strengthening effect was detected when the strain rate was 4000-8000 s-1, and the strain rate softening effect was detected in the range of 8000-12,000 s-1. A function describing the effect of strain rate on the strain rate strengthening parameters under various temperatures was proposed to modify the basic J-C constitutive model. The relative errors between the experimental measured value and predicted values in various experimental conditions with a modified J-C model were less than 5.0%. The results verified that the modified J-C model could accurately describe the dynamic mechanical properties of Ti2AlNb at high temperatures and strain rates. The research could help to illustrate the cutting mechanism and finite element simulation of Ti2AlNb alloy.

SELECTION OF CITATIONS
SEARCH DETAIL