Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Immun Ageing ; 21(1): 11, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38280989

ABSTRACT

BACKGROUND: In the context of the COVID-19 pandemic and extensive vaccination, it is important to explore the immune response of elderly adults to homologous and heterologous booster vaccines of COVID-19. At this point, we detected serum IgG antibodies and PBMC sample transcriptome profiles in 46 participants under 70 years old and 25 participants over 70 years old who received the third dose of the BBIBP-CorV and ZF2001 vaccines. RESULTS: On day 7, the antibody levels of people over 70 years old after the third dose of booster vaccine were lower than those of young people, and the transcriptional responses of innate and adaptive immunity were also weak. The age of the participants showed a significant negative correlation with functions related to T-cell differentiation and costimulation. Nevertheless, 28 days after the third dose, the IgG antibodies of elderly adults reached equivalence to those of younger adults, and immune-related transcriptional regulation was significantly improved. The age showed a significant positive correlation with functions related to "chemokine receptor binding", "chemokine activity", and "chemokine-mediated signaling pathway". CONCLUSIONS: Our results document that the response of elderly adults to the third dose of the vaccine was delayed, but still able to achieve comparable immune effects compared to younger adults, in regard to antibody responses as well as at the transcript level.

2.
Int J Infect Dis ; : 107198, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39117174

ABSTRACT

OBJECTIVE: To investigate the effects of repeated vaccination with ancestral SARS-CoV-2 (Wuhan-hu-1)-based inactivated, recombinant protein subunit or vector-based vaccines on the neutralizing antibody response to Omicron subvariants. METHODS: Individuals who received four-dose vaccinations with the Wuhan-hu-1 strain, individuals who were infected with the BA.5 variant alone without prior vaccination, and individuals who experienced a BA.5 breakthrough infection following receiving 2-4 doses of the Wuhan-hu-1 vaccine were enrolled. Neutralizing antibodies against D614G, BA.5, XBB.1.5, EG.5.1, and BA.2.86 were detected using a pseudovirus-based neutralization assay. Antigenic cartography was used to analyze cross-reactivity patterns among D614G, BA.5, XBB.1.5, EG.5.1, and BA.2.86 and sera from individuals. RESULTS: The highest neutralizing antibody titers against D614G were observed in individuals who only received four-dose vaccination and those who experienced BA.5 breakthrough infection, which was also significantly higher than the antibody titers against XBB.1.5, EG.5.1, and BA.2.86. In contrast, only BA.5 infection elicited comparable neutralizing antibody titers against the tested variants. While neutralizing antibody titers against D614G or BA.5 were similar across the cohorts, the neutralizing capacity of antibodies against XBB.1.5, EG.5.1, and BA.2.86 was significantly reduced. BA.5 breakthrough infection following heterologous booster induced significantly higher neutralizing antibody titers against the variants, particularly against XBB.1.5 and EG.5.1, than uninfected vaccinated individuals, only BA.5 infected individuals, or those with BA.5 breakthrough infection after primary vaccination. CONCLUSIONS: Our findings suggest that repeated vaccination with the Wuhan-hu-1 strain imprinted a neutralizing antibody response toward the Wuhan-hu-1 strain with limited effects on the antibody response to the Omicron subvariants.

3.
Cell Rep ; 43(7): 114387, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38896777

ABSTRACT

The ongoing emergence of SARS-CoV-2 variants poses challenges to the immunity induced by infections and vaccination. We conduct a 6-month longitudinal evaluation of antibody binding and neutralization of sera from individuals with six different combinations of vaccination and infection against BA.5, XBB.1.5, EG.5.1, and BA.2.86. We find that most individuals produce spike-binding IgG or neutralizing antibodies against BA.5, XBB.1.5, EG.5.1, and BA.2.86 2 months after infection or vaccination. However, compared to ancestral strain and BA.5 variant, XBB.1.5, EG.5.1, and BA.2.86 exhibit comparable but significant immune evasion. The spike-binding IgG and neutralizing antibody titers decrease in individuals without additional antigen exposure, and <50% of individuals neutralize XBB.1.5, EG.5.1, and BA.2.86 during the 6-month follow-up. Approximately 57% of the 107 followed up individuals experienced an additional infection, leading to improved binding IgG and neutralizing antibody levels against these variants. These findings provide insights into the impact of SARS-CoV-2 variants on immunity following repeated exposure.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunoglobulin G , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination , Humans , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , COVID-19 Vaccines/immunology , Immunoglobulin G/immunology , Immunoglobulin G/blood , Spike Glycoprotein, Coronavirus/immunology , Female , Male , Adult , Middle Aged , Antibody Formation/immunology
SELECTION OF CITATIONS
SEARCH DETAIL