Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Langmuir ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38320153

ABSTRACT

The sorbent concentration (Cs) effect and sorbate initial concentration (C0) effect are common phenomena observed in the study of adsorption kinetics at solid-liquid interfaces. That is, adsorption rate constants simulated with classical kinetic equations, such as the pseudo-second-order (PSO) model, for a given system vary with Cs and C0. The classical kinetic equations cannot predict or describe the "Cs-effect" and "C0-effect" (called "C-effects" here). In the current work, the dynamic partition coefficient of sorbate between solid and liquid phases (Kt) was used to describe the adsorption kinetic processes. Based on the surface component activity (SCA) model, which assumes the activity coefficients of the surface components (fs) are not equal to unity but rather a function of Cs and the adsorption capacity (or C0) and referring to the classical PSO model, a new kinetic equation was established, called the "SCA-PSO kinetic model", and its two parameters, the intrinsic equilibrium partition coefficient (Ke0) and the intrinsic rate constant (k20), are independent of Cs and C0. In addition, the new model relates Kt and the rate constant (k2) to Cs and C0 via fs, and can thus describe the C-effects. The fs can be estimated from the change of equilibrium partition coefficient (Ke) with Cs and C0. The new model predicts that with the increase of Cs and C0, Ke decreases while k2 increases. Its rationality was confirmed by the literature-reported adsorption kinetic data of heavy metals on inorganic and biomass sorbents with the C-effects.

2.
Public Health Nutr ; 27(1): e122, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38533778

ABSTRACT

OBJECTIVE: We aimed to examine the association between dietary Se intake and CVD risk in Chinese adults. DESIGN: This prospective cohort study included adults above 20 years old in the China Health and Nutrition Survey (CHNS), and they were followed up from 1997 to 2015 (n 16 030). Dietary data were retrieved from CHNS, and a 3-d, 24-h recall of food intake was used to assess the cumulative average intake of dietary Se, which was divided into quartiles. The Cox proportional hazards model was adopted to analyse the association between dietary Se intake and incident CVD risk. SETTING: CHNS (1991, 1993, 1997, 2000, 2004, 2006, 2009, 2011 and 2015). RESULTS: A total of 663 respondents developed CVD after being followed up for a mean of 9·9 years (median 9 years). The incidence of CVD was 4·3, 3·7, 4·6 and 4·0 per 1000 person-years across the quartiles of cumulative Se intake. After adjusting all potential factors, no significant associations were found between cumulative Se intake and CVD risk. No interactions were found between Se intake and income, urbanisation, sex, region, weight, hypertension and CVD risk. CONCLUSION: We found no association between dietary Se and CVD.


Subject(s)
Cardiovascular Diseases , Diet , Nutrition Surveys , Selenium , Humans , China/epidemiology , Male , Female , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control , Adult , Middle Aged , Selenium/administration & dosage , Diet/statistics & numerical data , Retrospective Studies , Prospective Studies , Incidence , Proportional Hazards Models , Risk Factors , Young Adult
3.
BMC Public Health ; 23(1): 2550, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38129799

ABSTRACT

BACKGROUND: Unhealthy snacking behaviors and body weight misperception are both significant concerns in adolescent health. Weight misperception are common among youth and may influence their motivation to engage in health-related behaviors, however, the effect on snacking patterns choice remains unclear. Our study aimed to examine the relationship between body weight misperception and snacking pattern choice among school adolescents. METHODS: A cross-sectional study was conducted using an online survey platform. Body weight misperception was defined based on perceived body weight and true weight. Snack intake was measured using a qualitative food-frequency questionnaire. Factor analysis was used to identify snacking patterns, and multiple linear regression was employed to examine the association between body weight misperception and snacking patterns. RESULTS: 190,296 students with the average age of 13.3 ± 1.0 years was included, and 44.5% of students misperceived their weight. Overestimation was more prevalent than underestimation. Two snacking patterns, namely a high-calorie snacking pattern and a healthy snacking pattern, were identified with eigenvalues > 1. Weight underestimation was positively linked to high-calorie snacking pattern scores for both normal weight students (ß: 0.16, 95% CI: 0.11, 0.21) and students with overweight/obesity (ß: 0.44, 95% CI: 0.35, 0.52), and to healthy snacking scores for students with overweight/obesity (ß: 0.28, 95% CI: 0.22, 0.33), but negatively linked to healthy snacking pattern scores for normal weight students (ß: -0.12, 95% CI: -0.15, -0.09). Conversely, weight overestimation was negatively linked to both high-calorie and healthy snacking pattern scores for normal weight students (ß: -0.07, 95% CI: -0.11, -0.04 and ß: -0.13, 95% CI: -0.15, -0.10), but positively linked to healthy snacking scores for underweight students (ß: 0.15, 95% CI: 0.08, 0.21). Interactions were found between sex, grade, accommodation, only child, primary guardians, parental education level and weight misperception to snacking patterns. CONCLUSIONS: Adolescents with normal weight and overweight/obesity who misperceived their weight exhibited less healthy snacking patterns, whereas underweight students who misperceived their weight displayed healthier snacking patterns. Comprehensive programs are crucial to educate and guide adolescents in understanding their weight status and making healthier snack choices, involving families, schools, and society.


Subject(s)
Body Image , Feeding Behavior , Obesity , Overweight , Thinness , Adolescent , Child , Humans , Body Mass Index , Body Weight , Cross-Sectional Studies , Obesity/epidemiology , Overweight/epidemiology , Snacks
4.
Colloids Surf A Physicochem Eng Asp ; 656: 130393, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36277261

ABSTRACT

The consumption of famciclovir (FCV) has been increased dramatically since the outbreak of coronavirus in 2019, and the pollution and harm of FCV in waters are concerned. Here, by utilizing aryl halides on 2, 4, 6-tris(4-bromophenyl)- 1, 3, 5-triazine (BPT) and primary amine groups on benzidine (BZ), a novel conjugated microporous polymer, namely BPT-BZ-CMP, was synthesized by Buchwald-Hartwig coupling reaction and applied in the removal of FCV from aqueous solution firstly. The synthesized BPT-BZ-CMP were characterized by various methods, including FTIR, SEM, BET, and Zeta-potential. Due to the micropore structure and high specific surface area, it took only 30 min for BPT-BZ-CMP to adsorb FCV to reach an equilibrium, and the maximum adsorption capacity was 347.8 mg·g-1. The Liu and pseudo-second-order kinetic models properly fit the adsorption equilibrium and kinetic data, respectively. The adsorption process was a spontaneous process, and the hydrogen bonding, π-π interaction and C-H···π interaction enhanced the adsorption of FCV on BPT-BZ-CMP. BPT-BZ-CMP maintained a good adsorption capacity after four consecutive adsorption-desorption cycle experiments. This study confirmed the potential of BPT-BZ-CMP as efficient sorbent to remove FCV from aqueous solutions.

5.
Cytometry A ; 91(12): 1175-1183, 2017 12.
Article in English | MEDLINE | ID: mdl-29165899

ABSTRACT

Scientific Complementary Metal Oxide Semiconductor (sCMOS) cameras were introduced into the market in 2009 and are now becoming a major type of commercial cameras for low-light imaging. sCMOS cameras provide simultaneously low read noise, high readout speed, and large pixel array; however, the relatively low quantum efficiency (QE) of sCMOS cameras has been a major limitation for its application in single molecule imaging, especially super-resolution localization microscopy which requires high detection sensitivity. Here we report the imaging performance of a newly released back-illuminated sCMOS camera (called Dhyana 95 from Tucsen) which is claimed to be the world's first 95% QE sCMOS camera. The imaging performance evaluation is based on a new methodology which is designed to provide paired images from two tested cameras under almost identical experimental conditions. We verified that this new 95% QE sCMOS camera is able to provide superior imaging performance over a representative front-illuminated sCMOS camera (Hamamatsu Flash 4.0 V2) and a popular back-illuminated EMCCD camera (Andor iXon 897 Ultra) in a wide signal range. We hope this study will inspire more studies on using sCMOS cameras in super-resolution localization microscopy, or even single molecule imaging. © 2017 International Society for Advancement of Cytometry.


Subject(s)
Microscopy, Fluorescence/instrumentation , Equipment Design , Microscopy, Fluorescence/methods , Semiconductors
6.
Faraday Discuss ; 196: 439-454, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27905612

ABSTRACT

We report the design and synthesis of a tetraphenylethene substituted with naphthalimide at the 4, 6 positions, named NI-2TPE. NI-2TPE exhibits strong solvent-dependent emission properties with combined ICT and AIE characteristics in THF-H2O systems. This probe was used directly on test papers to distinguish normal organic solvents using their emission colours under UV light based on its AIE and ICT nature. Thanks to the vinyl group in NI-2TPE, we synthesized a copolymer of NIPAM and NI-2TPE, termed P(NIPAM-co-NI-2TPE). The resulting polymer is highly soluble and fluorescent in water (ΦF = 15.4%). Due to the well-known thermo-responsive character of NIPAM, P(NIPAM-co-NI-2TPE) exhibits an interesting fluorescence change in response to various temperatures. Due to the thermo-induced shrinking of the PNIPAM chain, the fluorescence intensity gradually increased from 20 to 34 °C. As the temperature further increased from 34 to 90 °C, the fluorescence intensity decreased sharply, which was caused by the well-known thermal effects. Furthermore, we synthesized a P(HEA-co-NI-2TPE-TPP acrylate) copolymer, in which HEA is a hydrophilic unit, TPP is a mitochondria label and NI-2TPE a fluorescent probe. The corresponding polymer probe is highly soluble in water with FLQY = 7% and we have further applied this probe as a mitochondria targeted imaging tracker in HeLa cells successfully.


Subject(s)
Cells/chemistry , Fluorescence , Fluorescent Dyes/chemistry , Naphthalimides/chemistry , Optical Imaging , Stilbenes/chemistry , Fluorescent Dyes/chemical synthesis , HeLa Cells , Humans , Molecular Imaging , Molecular Structure , Polymerization , Ultraviolet Rays
7.
Photochem Photobiol Sci ; 15(11): 1433-1441, 2016 Nov 02.
Article in English | MEDLINE | ID: mdl-27739551

ABSTRACT

Photoswitchable fluorophores are promising in single-molecule optical devices and super-resolution fluorescence imaging, especially in single-molecule photo-activated localization microscopy (PALM) or stochastic optical reconstruction microscopy (STORM). However, the scarcity of current photoswitchable fluorophores stimulates researchers to develop complicated optical systems and processing software, in accordance with the limited photoswitchable fluorescent proteins and organic fluorophores. Previous efforts to develop synthetic photoswitchable fluorophores have exhibited their promising potential in super-resolution fluorescence imaging. Here, we have designed and synthesized a fluorescence molecular switch with reversible green emission, a napthalimide-hexaarylbiimidazole conjugate (NI-N-HABI), which exhibits strong fluorescence in the emissive state, with fast thermal fading of the photochromism and spontaneous fluorescence recovery after photobleaching (FRAP) induced by blue-light. The photoswitchable fluorophore enables the red-edge wavelength of the optical response to red-shift from the initial near-UV region at less than 400 nm, to 500 nm. The relatively fast fading speed of NI-N-HABI and its sensitivity to longer blue-light irradiation (400-500 nm) have allowed simplification of the optical microscopic system from a two-wavelength laser source to a single-wavelength laser. We applied NI-N-HABI in single-wavelength-controlled in situ dynamic super-resolution fluorescence imaging for the self-assembly and solvent annealing of amphiphilic block polymers, with 50 nm of optical resolution. Single-wavelength-controlled dynamic super-resolution fluorescence imaging facilitates nanoscale optical visualization for the dynamic physical and chemical fluctuation processes of stimuli-responsive nanostructures.

8.
J Am Chem Soc ; 137(7): 2436-9, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25668069

ABSTRACT

One approach toward optical nanoimaging involves sequential molecular localization of photoswitchable fluorophores to achieve high resolution beyond optical limit of diffraction. Block copolymer micelles assembled from polystryrene-block-poly(ethylene oxide) block copolymers (PSt-b-PEO) are visualized in optical nanoimaging by staining the polystyrene blocks with spiropyrans (SPs). SPs localized in hydrophobic phase of block copolymer micelles exhibit reversible fluorescence on-off switching at alternating irradiation of UV and visible light. Phase-selective distribution of SPs in block copolymer micelles enables optical nanoimaging of microphase structures of block copolymer self-assembly at 50-nm resolution. To date, this is the sturdiest realization of optical nanoimaging with subdiffraction resolution for solution self-assembly of block copolymers.


Subject(s)
Nanotechnology/methods , Optical Imaging/methods , Polymers/chemistry , Micelles
9.
Surg Endosc ; 29(7): 1809-16, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25303908

ABSTRACT

BACKGROUND: Successful vascular sealing by radiofrequency (RF)-induced tissue fusion is well established. The present study reports on a novel electrode structure design together with its experimental assessment for RF thermo-fusion of porcine colonic segments. MATERIALS AND METHODS: Two types of electrode were constructed and used in the present study: one with a conventional smooth surface (S) and the other with a novel reciprocating concave-convex (CC) configuration. Finite element modeling was used to study the thermal distribution profile of the CC electrode. Ex vivo porcine colonic segments were used to create end-to-end serosa-to-serosa colonic anastomoses by applying a pulse of 160 W RF power for 20 s. Different compression pressures (S1, S2, S3) and (C1, C2, C3, C4, C5), were applied, via specially designed ring carriers, to the S and CC electrodes, respectively. Assessment was based on anastomotic burst pressures and histological appearances using light microscopy of paraffin sections. RESULTS: In total, 22 RF-induced circular anastomoses were performed. Similar burst pressures were observed for anastomoses created by the two types of electrodes (S, CC) performed under the same compression pressure. In contrast, significant differences were observed on histological examination of tissue anastomotic site. In particular, fusion areas between gaps of the CC electrode showed normal histological appearance, while the S electrode produced a completely flat featureless appearance. Furthermore, the CC electrode produced significantly different burst pressures depending on the applied compression pressure during thermo-fusion: compression pressures C1 vs. C4 produced circular anastomotic fusions with burst pressures of 21.9 ± 9.3 vs. 44.6 ± 8.9 mmHg, (p = 0.034); but the burst pressure beyond C4, declined significantly, with C4 vs. C5, burst pressures of 44.6 ± 8.9 vs. 24.7 ± 8.0 mmHg, (p = 0.034). CONCLUSIONS: The CC electrode exhibits larger and faster thermal diffusion profiles resulting in normal histological appearances in the gaps between CC electrode by protecting tissue from mechanical and thermal damage.


Subject(s)
Catheter Ablation/instrumentation , Colon/surgery , Electrodes , Anastomosis, Surgical/methods , Animals , Disease Models, Animal , Equipment Design , Swine
10.
Chemosphere ; 358: 142277, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719118

ABSTRACT

Peracetic acid (PAA) has garnered significant attention as a novel disinfectant owing to its remarkable oxidative capacity and minimal potential to generate byproducts. In this study, we prepared a novel catalyst, denoted as cobalt modified nitrogen-doped carbon nanotubes (Co@N-CNTs), and evaluated it for PAA activation. Modification with cobalt nanoparticles (∼4.8 nm) changed the morphology and structure of the carbon nanotubes, and greatly improved their ability to activate PAA. Co@N-CNTs/PAA catalytic system shows outstanding catalytic degradation ability of antiviral drugs. Under neutral conditions, with a dosage of 0.05 g/L Co@N-CNT-9.8 and 0.25 mM PAA, the removal efficiency of acyclovir (ACV) reached 98.3% within a mere 10 min. The primary reactive species responsible for effective pollutant degradation were identified as acetylperoxyl radicals (CH3C(O)OO•) and acetyloxyl radicals (CH3C(O)O•). In addition, density functional theory (DFT) proved that Co nanoparticles, as the main catalytic sites, were more likely to adsorb PAA and transfer more electrons than N-doped graphene. This study explored the feasibility of PAA degradation of antiviral drugs in sewage, and provided new insights for the application of heterogeneous catalytic PAA in environmental remediation.


Subject(s)
Antiviral Agents , Cobalt , Nanotubes, Carbon , Nitrogen , Peracetic Acid , Nanotubes, Carbon/chemistry , Nitrogen/chemistry , Cobalt/chemistry , Peracetic Acid/chemistry , Catalysis , Antiviral Agents/chemistry , Water Pollutants, Chemical/chemistry , Acyclovir/chemistry , Adsorption
11.
Nutrients ; 15(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36678268

ABSTRACT

Inconsistent findings have been discovered in studies examining the link between dietary selenium (Se) and sleep. Data were obtained from 17,176 people aged 20 and over who participated in the China Health and Nutrition Survey (CHNS) from 2004 to 2011. Face-to-face interviews were used to measure sleep duration in 2004, 2006, 2009, and 2011. To track dietary Se consumption, a 3-day, 24-h recall was undertaken. In the analysis, multilevel mixed-effects logistic regression was employed. The odds ratios (95% confidence intervals) of optimal sleep duration (7-9 h/day) in the regression of Model 4 were 1.00, 1.01 (0.89-1.15) and 1.19 (1.02-1.38) for the three tertiles of selenium consumption, respectively. Only overweight patients displayed a substantial positive connection between Se intake and the optimal sleep duration in the subgroup analysis. In summary, Se intake was significantly associated with optimal sleep duration.


Subject(s)
Selenium , Humans , Adult , Longitudinal Studies , Diet , Nutritional Status , Sleep , Nutrition Surveys , China
12.
J Chromatogr A ; 1682: 463519, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36162251

ABSTRACT

High-efficiency caption of pesticide residue is of vital significance for environmental safety monitoring. Herein, a hexagonal boron nitride nanosheets-based magnetic composite (Fe3O4@h-BNNSs) was synthesized and applied for the magnetic solid phase extraction (MSPE) of five phenoxy carboxylic acid (PCA) herbicides from water samples. Based on the π-π interaction, hydrogen bond and halogen bond, the Fe3O4@h-BNNSs composite showed excellent adsorption ability towards PCA herbicides. Several main variables that influenced the extraction efficiencies of PCA herbicides were investigated and optimized via single-factor experiment. Combining this Fe3O4@h-BNNSs composite-based MSPE with high-performance liquid chromatography-tandem mass spectrometry, a novel sensitive method for the analysis of PCA herbicides was developed. Under the most favorable conditions, the proposed method displayed good linear ranges (20.0-10000.0 ng L-1), low limits of detection (5.6-10.3 ng L-1), satisfactory precisions (1.1-6.8%) and recoveries (76.6-107.2%). Overall, the present work can be a versatile and worthy utility for the determination of PCA herbicides from different water samples.


Subject(s)
Herbicides , Pesticide Residues , Boron Compounds , Carboxylic Acids/analysis , Chromatography, High Pressure Liquid/methods , Halogens/analysis , Herbicides/analysis , Magnetic Phenomena , Pesticide Residues/analysis , Solid Phase Extraction/methods , Tandem Mass Spectrometry , Water/chemistry
13.
Front Nutr ; 9: 985941, 2022.
Article in English | MEDLINE | ID: mdl-36438728

ABSTRACT

Objective: Puerperae' dietary patterns (DPs) during the puerperium may be influenced by the mode of delivery, but population studies on this topic are scarce. This study aims to explore the relationship between DPs and different modes of delivery among puerperae. Methods: A cross-sectional study was conducted on 3,345 parturients in Lanzhou, China. The postpartum food intake was measured by a food frequency questionnaire (FFQ). Factor analysis was used to determine the DPs. Multiple linear regression was employed to examine the association between the mode of delivery and DP. Results: In this study, two DPs, i.e., traditional and modern DPs, were identified. Traditional DP was characterized by high energy-adjusted intake of tubers, coarse cereals, rice, whole grains, fishery products, and eggs. Modern DP included a high intake of coffee, non-sugary drinks, wine, tea, and fishery products. Compared with participants with vaginal delivery (reference category), cesarean section had an inverse association with modern DP (ß: -0.11, 95% CI: -0.36, -0.09). A significant interaction was found between education level, monthly household income, alcohol drinking, and modes of delivery. The inverse association between cesarean section and modern DP or the intake of coffee was significant among puerperae with higher or lower monthly household income. However, the inverse association between cesarean section and traditional DP was only found among puerperae with higher monthly household income. Moreover, among the participants with high education, cesarean section was positively associated with intake of vegetables. Conclusion: Cesarean puerperae with higher levels of education and those with lower and higher monthly household income had less unhealthy foods intake than those who had vaginal delivery. They need to be accounted for in educational programs and interventions focused on healthy diet recommendations in puerperium.

14.
J Hazard Mater ; 408: 124446, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33243656

ABSTRACT

The magnetic layered double hydroxide-based materials (MLDHs) with the metal composition of Mg(II)Al(III) were synthesized by different conditions as the adsorbent for removal of a phytohormone, indole-3-butyric acid (IBA). The morphological characteristics of MLDHs were studied through various characterization methods such as XRD, SEM, TEM, FTIR, BET, Zeta-potential and VSM. The adsorption results showed that the adsorption capacity of MLDH-1 synthesized by co-precipitation method with ammonia as the base source was the best (maximum 522.6 mg/g). The extent of adsorption in the pH range of 3.0-9.0 was observed to be no noticeable change. From the economical point of view, 1.0 g/L MLDH-1 composites were selected as optimum parameter. For a given adsorbent concentration (Cs), its kinetics and adsorption isotherm followed the pseudo-second-order and Liu isotherm model, respectively. The adsorbed sample can be easily magnetically separated and regenerated with NaNO3. The adsorption process was spontaneous and exothermic, including two path stages: surface adsorption of lamellar and interlayer anion exchange. The research makes a contribution to evaluating the ability of MLDHs in IBA removal and helping the public to understand the mechanism of adsorption process.

15.
Food Chem ; 348: 129103, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-33515950

ABSTRACT

A novel magnetic boron nitride nanosheets (Fe3O4@BNNSs) composite-based magnetic solid-phase extraction (MSPE) method was employed to analyse six plant growth regulators (PGRs) in tomatoes combined with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The novel Fe3O4@BNNSs composite was prepared via an in situ chemical coprecipitation process and characterized by scanning electron microscopy (SEM), Fourier transform infrared spectrometry (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and vibrating sample magnetometry (VSM). Several factors that may affect the extraction efficiencies were optimized. Under the optimal factors, low limits of detection (0.002-0.010 ng g-1), good linear ranges (0.05-10 ng g-1) and satisfactory precisions (intra-day: 1.2%-3.9%; inter-day: 2.1%-6.9%) were achieved. The established approach was successfully employed to extract and determine PGRs in tomatoes, and the spiked recoveries were between 85.2 and 109.0%.


Subject(s)
Boron Compounds/chemistry , Food Analysis/methods , Plant Growth Regulators/analysis , Plant Growth Regulators/isolation & purification , Solanum lycopersicum/chemistry , Solid Phase Extraction , Adsorption , Limit of Detection , Magnetic Phenomena , Plant Growth Regulators/chemistry
16.
Sci Total Environ ; 716: 137120, 2020 May 10.
Article in English | MEDLINE | ID: mdl-32059321

ABSTRACT

LiAl hydrotalcite-like compound (LiAl HTlc) was synthesized via a hydrothermal method and used to adsorb Cu2+ and Zn2+ for investigating the adsorption characteristics of heavy metal cations. The X-Raydiffraction (XRD), fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and transmission electron microscopy (TEM) characterizations revealed the interconnecting flower-like layered structure of LiAl HTlc. The adsorption kinetics and isotherms of Cu2+ and Zn2+ on LiAl HTlc agreed with the pseudo-second-order model and the Langmuir model at a given sorbent concentration (Cs), respectively. The Cs-effect on the adsorption kinetics and isotherms was observed, and the Langmuir-surface component activity (SCA) equation could be utilized to characterize the effect of Cs in the adsorption isotherms. The adsorption process was spontaneous and endothermic. The adsorption mechanism denoted that the adsorption process was controlled using two main mechanisms, i.e., surface complexation and isomorphic substitution. This is the first report, to the best of our knowledge, on the usage of LiAl HTlc for the removal of heavy metal cations Cu2+ and Zn2+ from a solution. LiAl HTlc is a promising sorbent for treating water containing heavy metal cations.

17.
Int J Antimicrob Agents ; 56(3): 106110, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32712332

ABSTRACT

The crude mortality rate in critical pneumonia cases with coronavirus disease 2019 (COVID-19) reaches 49%. This study aimed to test whether levels of blood urea nitrogen (BUN) in combination with D-dimer were predictors of in-hospital mortality in COVID-19 patients. The clinical characteristics of 305 COVID-19 patients were analysed and were compared between the survivor and non-survivor groups. Of the 305 patients, 85 (27.9%) died and 220 (72.1%) were discharged from hospital. Compared with discharged cases, non-survivor cases were older and their BUN and D-dimer levels were significantly higher (P < 0.0001). Least absolute shrinkage and selection operator (LASSO) and multivariable Cox regression analyses identified BUN and D-dimer levels as independent risk factors for poor prognosis. Kaplan-Meier analysis showed that elevated levels of BUN and D-dimer were associated with increased mortality (log-rank, P < 0.0001). The area under the curve for BUN combined with D-dimer was 0.94 (95% CI 0.90-0.97), with a sensitivity of 85% and specificity of 91%. Based on BUN and D-dimer levels on admission, a nomogram model was developed that showed good discrimination, with a concordance index of 0.94. Together, initial BUN and D-dimer levels were associated with mortality in COVID-19 patients. The combination of BUN ≥ 4.6 mmol/L and D-dimer ≥ 0.845 µg/mL appears to identify patients at high risk of in-hospital mortality, therefore it may prove to be a powerful risk assessment tool for severe COVID-19 patients.


Subject(s)
Betacoronavirus/pathogenicity , Blood Urea Nitrogen , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Fibrin Fibrinogen Degradation Products/metabolism , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Aged , Area Under Curve , Biomarkers/blood , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/virology , Female , Hospital Mortality , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/virology , Prognosis , Proportional Hazards Models , Retrospective Studies , Risk , SARS-CoV-2
18.
Physiol Meas ; 38(3): 489-500, 2017 03.
Article in English | MEDLINE | ID: mdl-28176677

ABSTRACT

The present study investigates the relationship between bio-impedance and burst pressure of colorectal anastomosis created by radiofrequency (RF)-induced tissue fusion. Colorectal anastomosis were created with ex vivo porcine colorectal segments, during which 5 levels of compression pressure were applied by a custom-made bipolar prototype, with 5 replicate experiments at each compression pressure. Instant anastomotic tensile strength was assessed by burst pressure. Bio-impedance of fused tissue was measured by Impedance Analyzer across frequency that 100 Hz to 3 MHz. Statistical analysis shows only a weak correlation between bio-impedance modulus and burst pressures at frequency of 445 kHz ([Formula: see text] = -0.426, P = 0.099 > 0.05). In contrast, results demonstrated a highly significant negative correlation between reactance modulus and burst pressures ([Formula: see text] = -0.812, P = 0.000 < 0.05). The decrease in mean reactance modulus with increasing burst pressures was highly significant (P = 0.019 < 0.05). The observed strong negative correlation between reactance modulus and burst pressures at frequency of 445 kHz indicates that reactance is likely to be a good index for tensile strength of RF-induced colorectal anastomosis, and should be considered for inclusion in a feedback loops in devices design.


Subject(s)
Anastomosis, Surgical , Colon/radiation effects , Colon/surgery , Radio Waves , Rectum/radiation effects , Rectum/surgery , Animals , Colon/cytology , Electric Impedance , Pressure , Rectum/cytology , Swine
19.
Pathol Res Pract ; 211(3): 214-8, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25434604

ABSTRACT

Bipolar radiofrequency-induced thermo-fusion has been explored as an advanced surgical method for intestinal anastomoses; however, the histological characteristics of collagen denaturation and injuries arising from this process remain unclear. The aim of this study was to investigate the microcosmic changes and tissue damage of fusion regions with various parameters of injury. Ex vivo colons of pigs were fused serosa-serosa on two carrier rings, which were installed on a homemade anastomotic device. Five levels of compressive pressure from 171 to 313 kPa were applied for 5s to fuse the colons under radiofrequency power of 160 W, and then the collagen denaturation of the fused region was examined by transmission electron microscopy. Light microscopy was utilized to observe histological slices that were stained with picrosirius red in order to visualize the tissue injuries under two levels of radiofrequency power (120 vs. 140 W) and operation time (5 vs. 10s). Transmission electron micrographs showed that increased compressive pressure led to thicker denatured collagen fibrils and wider gaps between each collagen fibril. Serosa adhesion regions appeared abundant in collagen. No histological differences were observed when 120 W of power was applied for 5 and 10s. Significant muscle cracking occurred when colons were fused using 140 W for 5s. When the operation time was extended to 10s, 140 W led to tight fusion and less splitting on muscles. These results suggest that higher compressive pressure results in more severe collagen unfolding and also reduces collagen crosslinking in fused colons. Improved radiofrequency power along with operation time could avoid tissue injury upon radiofrequency-induced colonic anastomoses.


Subject(s)
Collagen/metabolism , Colon/pathology , Colon/surgery , Electrosurgery/adverse effects , Anastomosis, Surgical/adverse effects , Anastomosis, Surgical/methods , Animals , Colon/metabolism , Female , Swine
20.
Nat Commun ; 5: 5709, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25502396

ABSTRACT

Photoswitchable fluorescent diarylethenes are promising in molecular optical memory and photonic devices. However, the performance of current diarylethenes is far from satisfactory because of the scarcity of high-speed switching capability and large fluorescence on-off ratio. Here we report a trident perylenemonoimide dyad modified by triple dithienylethenes whose photochromic fluorescence quenching ratio at the photostationary state exceeds 10,000 and the fluorescence quenching efficiency is close to 100% within seconds of ultraviolet irradiation. The highly sensitive fluorescence on/off switching of the trident dyad enables recyclable fluorescence patterning and all-optical transistors. The prototype optical device based on the trident dyad enables the optical switching of incident light and conversion from incident light wavelength to transmitted light wavelength, which is all-optically controlled, reversible and wavelength-convertible. In addition, the trident dyad-staining block copolymer vesicles are observed via optical nanoimaging with a sub-100 nm resolution, portending a potential prospect of the dithienylethene dyad in super-resolution imaging.

SELECTION OF CITATIONS
SEARCH DETAIL