Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Nanotechnology ; 34(11)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36595250

ABSTRACT

Fe-Co alloys exhibit an excellent saturation magnetization, which makes them become a potential candidate for the high property magnetic particles in magnetorheological fluids (MRFs). How to decrease their coercivity and residual magnetization without sacrificing the saturation magnetization is a crucial problem to be solved. In this study, Fe-Co nanoparticles were prepared by DC arc discharge and further disposed through low temperature annealing in Ar atmosphere. The successful synthesis of Fe-Co nanoparticles was proved by x-ray diffraction and EDS. The vibrating sample magnetometer results revealed that the prepared Fe-Co nanoparticles had a saturation magnetization of 208 emu g-1, while the coercivity and remanent magnetization were 58 Oe and 5.8 emu g-1, respectively. The MR properties of Fe-Co nanoparticles based MRFs (FeCoNP-MRFs) with 10% particles by volume fraction were systematically investigated. The FeCoNP-MRFs showed up to 4.61 kPa dynamic shear stress at 436 kA m-1magnetic field and an excellent reversibility. The MR properties of FeCoNP-MRFs were fitted well by Bingham and power law model, and described by Seo-Seo and Casson fluid model. Meanwhile, the sedimentation ratio of FeCoNP-MRFs was still 87.3% after 72 h, indicating an excellent sedimentation stability.

2.
Lasers Med Sci ; 39(1): 3, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38082158

ABSTRACT

Palladium nanoparticles (Pd NPs) show significant promise as agents for the photothermal treatment of tumors due to their high photothermal conversion efficiency and thermal stability. theoretical calculations were conducted to investigate the electric field and solid heat conduction of Pd NPs with various sizes and particle distances, aiming to achieve the maximum photothermal conversion efficiency during laser irradiation. Subsequently, Pd NPs with optimal size and structure were synthesized. In vitro and in vivo experiments were conducted to evaluate photothermal conversion. The theoretical results indicated that a peak temperature of 90.12 °C is achieved when the side length is 30 nm with a distance of 2 nm. In vitro experiments demonstrated that the photothermal conversion efficiency of Pd NPs can reach up to 61.9%. in vivo experiments revealed that injecting Pd NPs into blood vessels can effectively reduce the number of laser pulses by 22.22%, thereby inducing obvious vasoconstriction.


Subject(s)
Metal Nanoparticles , Nanoparticles , Neoplasms , Humans , Palladium/pharmacology , Palladium/chemistry , Metal Nanoparticles/therapeutic use , Metal Nanoparticles/chemistry , Finite Element Analysis , Nanoparticles/chemistry , Neoplasms/therapy , Light , Phototherapy/methods , Cell Line, Tumor
3.
Sensors (Basel) ; 23(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36772575

ABSTRACT

Face alignment is widely used in high-level face analysis applications, such as human activity recognition and human-computer interaction. However, most existing models involve a large number of parameters and are computationally inefficient in practical applications. In this paper, we aim to build a lightweight facial landmark detector by proposing a network-level architecture-slimming method. Concretely, we introduce a selective feature fusion mechanism to quantify and prune redundant transformation and aggregation operations in a high-resolution supernetwork. Moreover, we develop a triple knowledge distillation scheme to further refine a slimmed network, where two peer student networks could learn the implicit landmark distributions from each other while absorbing the knowledge from a teacher network. Extensive experiments on challenging benchmarks, including 300W, COFW, and WFLW, demonstrate that our approach achieves competitive performance with a better trade-off between the number of parameters (0.98 M-1.32 M) and the number of floating-point operations (0.59 G-0.6 G) when compared to recent state-of-the-art methods.


Subject(s)
Benchmarking , Fruit , Humans , Knowledge , Learning , Recognition, Psychology
4.
Sensors (Basel) ; 23(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36772608

ABSTRACT

Wireless sensor networks (WSNs) are widely used in industrial applications. However, many of them have limited lifetimes, which has been a considerable constraint on their widespread use. As a typical application of WSNs, distributed measurement of the electric field under high-voltage direct-current (HVDC) transmission lines also suffers from this issue. This paper first introduces the composition of the electric-field measurement system (EFMS) and its working principle. Considering the actual power supply of the system, this paper mainly introduces the composition of the wireless sensor node (WSND) and analyzes the power consumption and potential working state transformation of the WSND, together with a comprehensive study on parameters affecting the power consumption of the wireless communication unit. Moreover, an energy-efficient scheduling approach is proposed after specially designing a working sequence and the study on system parameters. The proposed approach is verified by experiments on not only the experimental line of the national HVDC test base, but also a commercial operation HVDC transmission line with the challenge of long endurance, which is considered in this paper with a new strategy. The results show that the proposed method can greatly extend the lifetime of the WSND.

5.
Angew Chem Int Ed Engl ; 61(5): e202113506, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34761489

ABSTRACT

The clinical prospect of sonodynamic therapy (SDT) has not been fully realized due to the scarcity of efficient sonosensitizers. Herein, we designed phthalocyanine-artesunate conjugates (e.g. ZnPcT4 A), which could generate up to ca. 10-fold more reactive oxygen species (ROS) than the known sonosensitizer protoporphyrin IX. Meanwhile, an interesting and significant finding of aggregation-enhanced sonodynamic activity (AESA) was observed for the first time. ZnPcT4 A showed about 60-fold higher sonodynamic ROS generation in the aggregated form than in the disaggregated form in aqueous solutions. That could be attributed to the boosted ultrasonic cavitation of nanostructures. The level of the AESA effect depended on the aggregation ability of sonosensitizer molecules and the particle size of their aggregates. Moreover, biological studies demonstrated that ZnPcT4 A had high anticancer activities and biosafety. This study thus opens up a new avenue the development of efficient organic sonosensitizers.


Subject(s)
Isoindoles
6.
Biol Pharm Bull ; 44(3): 325-331, 2021.
Article in English | MEDLINE | ID: mdl-33642542

ABSTRACT

The neuroprotective effects of heme oxygenase (HO) have been well investigated. The potential effects of exogenous supplementation of biliverdin (BVD), one of the main products catalyzed by HO, on neurobehaviors are still largely unknown. The present study aimed to investigate the effects of BVD treatment on depression, anxiety, and memory in adult mice. Mice were injected with BVD through tail vein daily for a total 5 d, and depression- and anxiety-like behaviors were conducted by using open field test (OFT), novelty suppressed feeding (NSF), forced swimming test (FST) and tail suspension test (TST) since the third day of BVD administration. Novel object recognition (NOR) paradigm was used for memory formation test. After the final test, serum and hippocampal levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) of mice were analyzed by enzyme-linked immunosorbent assay (ELISA). The results showed that BVD treatment at low dose (2 mg/kg) induced depression-like behaviors, and high dose (8 mg/kg) BVD injection increased anxiety-like behaviors and impaired memory formation in mice. ELISA data showed that BVD treatment significantly increased hippocampal IL-6 and TNF-α level while only decreasing serum IL-6 level of mice. The present data suggest that exogenous BVD treatment induced depression- and anxiety-like phenotypes, which may be related to inflammatory factors, providing BVD may be a potential target for the prevention of mental disorders.


Subject(s)
Anxiety/chemically induced , Biliverdine/adverse effects , Depression/chemically induced , Memory Disorders/chemically induced , Animals , Anxiety/metabolism , Depression/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Interleukin-6/blood , Interleukin-6/metabolism , Male , Memory Disorders/metabolism , Mice, Inbred ICR , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/metabolism
7.
Sensors (Basel) ; 22(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35009748

ABSTRACT

The fault detection of manned submersibles plays a very important role in protecting the safety of submersible equipment and personnel. However, the diving sensor data is scarce and high-dimensional, so this paper proposes a submersible fault detection method, which is made up of feature selection module based on hierarchical clustering and Autoencoder (AE), the improved Deep Convolutional Generative Adversarial Networks (DCGAN)-based data augmentation module and fault detection module using Convolutional Neural Network (CNN) with LeNet-5 structure. First, feature selection is developed to select the features that have a strong correlation with failure event. Second, data augmentation model is conducted to generate sufficient data for training the CNN model, including rough data generation and data refiners. Finally, a fault detection framework with LeNet-5 is trained and fine-tuned by synthetic data, and tested using real data. Experiment results based on sensor data from submersible hydraulic system demonstrate that our proposed method can successfully detect the fault samples. The detection accuracy of proposed method can reach 97% and our method significantly outperforms other classic detection algorithms.


Subject(s)
Algorithms , Neural Networks, Computer , Data Collection
8.
Lasers Med Sci ; 35(7): 1589-1597, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32277406

ABSTRACT

Laser therapy has been widely used to treat port-wine stain (PWS) and other cutaneous vascular lesions via selective photothermolysis. High incident laser fluence is always prohibited in clinic to prevent the thermal damage in normal skin tissue, leading to insufficient energy deposition on the target blood vessel and incomplete clearance of PWS lesion. In this study, repeated multipulse laser (RMPL) irradiation was proposed to induce acute thermal damage to target blood vessels with low incident fluence (40 J/cm2 for 1064-nm Nd:YAG laser). The feasibility of the method was investigated using animal models. Repeated multipulse irradiation cycles with 10-min intervals were performed in RMPL. A hamster dorsal skin chamber model with a visualization system was constructed to investigate the instant generation of thermal coagulum and relevant hemostasis by thrombus formation during and after irradiation under 1064 nm Nd:YAG single multipulse laser (SMPL) and RMPL irradiation. The diameter of the target blood vessel and the size of thermal coagula were measured before and after laser irradiation. The reflectance spectra of the dorsal skin were measured by a reflectance spectrometer during RMPL. Stasis thermal coagula that clogged the vessel lumen were generated during SMPL irradiation with low incident fluence. However, there was no acute thermal damage of blood vessels. Reflectance spectra measurement showed that the generation of thermal coagula and subsequent thrombus formation increases blood absorption by more than 10% within the first 10 min after laser irradiation. Acute vessel thermal damage could be induced in the target blood vessel by RMPL with low incident fluence of 40 J/cm2. Compared with our previous SMPL study, nearly 30% reduction in incident laser fluence was achieved by RMPL. Low fluence RMPL may be a promising approach to improve the therapeutic outcome for patients with cutaneous vascular lesions by improving energy deposition on the target blood vessel.


Subject(s)
Blood Vessels/radiation effects , Hemostasis/radiation effects , Lasers, Solid-State/therapeutic use , Skin/blood supply , Skin/radiation effects , Temperature , Animals , Cricetinae , Female , Humans , Mice , Port-Wine Stain/surgery
9.
Pharmazie ; 75(7): 313-317, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32635972

ABSTRACT

A magnetic targeting nanoparticle based on graphene oxide-ferroferric oxide (GO-Fe3O4) was investigated as a potential drug delivery vehicle. The formation of GO/Fe3O4 hybrid material was confirmed by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The GO/Fe3O4 hybrid still shows a higher saturation magnetization of 58.42 emu/g after coating with graphene oxide. Drug loading and releasing experiments demonstrate the GO-Fe3O4 hybrid has a good loading capacity of (6.47±0.08) mg/mg for temozolomide and a satisfactory release under slightly acidic condition. The MTT assays of glioma C6 cells exhibits the GO-Fe3O4 hybrid does not display toxicity with the concentration ranged from 40 to 120 µg/mL in vitro, while the complex of temozolomide loaded on GO/Fe3O4 has a better inhibitory effect on the proliferation of rat glioma C6 cells. All results suggest the prepared GO/Fe3O4 has potential applications in targeted anticancer drug delivery.


Subject(s)
Brain Neoplasms/drug therapy , Drug Delivery Systems , Glioma/drug therapy , Temozolomide/administration & dosage , Animals , Antineoplastic Agents, Alkylating/administration & dosage , Antineoplastic Agents, Alkylating/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Carriers/chemistry , Drug Liberation , Graphite/chemistry , Magnetic Iron Oxide Nanoparticles , Rats , Temozolomide/pharmacology
10.
Nanotechnology ; 27(12): 125603, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-26890721

ABSTRACT

The optimization of nanopore-based devices is closely related to the nanopore three-dimensional (3D) structures. In this paper, faceted nanopores were fabricated in magnesium (Mg) by aligning the electron beam (e-beam) along the [0001] direction. Detailed structural characterization by transmission electron microscopy reveals the existence of two 3D structures: hexagonal prism-shaped and hourglass-shaped 3D morphologies. Moreover, the 3D structures of nanopores are also found to depend on the widest nanopore diameter-to-thickness ratio (D/t). A plausible formation mechanism for different 3D structures is discussed. Our results incorporate a critical piece of information regarding the nanopore 3D structures in Mg and may serve as an important design guidance for the size- and shape-controllable fabrication of solid-state nanopores applying the e-beam sculpting technique.

11.
Article in English | MEDLINE | ID: mdl-38064321

ABSTRACT

Though the forearm is the focus of the prostheses, myoelectric control with the electrodes on the wrist is more comfortable for general consumers because of its unobtrusiveness and incorporation with the existing wrist-based wearables. Recently, deep learning methods have gained attention for myoelectric control but their performance is unclear on wrist myoelectric signals. This study compared the gesture recognition performance of myoelectric signals from the wrist and forearm between a state-of-the-art method, TDLDA, and four deep learning models, including convolutional neural network (CNN), temporal convolutional network (TCN), gate recurrent unit (GRU) and Transformer. It was shown that with forearm myoelectric signals, the performance between deep learning models and TDLDA was comparable, but with wrist myoelectric signals, the deep learning models outperformed TDLDA significantly with a difference of at least 9%, while the performance of TDLDA was close between the two signal modalities. This work demonstrated the potential of deep learning for wrist-based myoelectric control and would facilitate its application into more sections.


Subject(s)
Deep Learning , Wrist , Humans , Electromyography/methods , Forearm , Gestures
12.
Sci Rep ; 14(1): 17586, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080450

ABSTRACT

Film hole irrigation under muddy water conditions is a new and effective water-saving irrigation technology. In order to determine the influence of multiple factors on the infiltration process of film hole irrigation under muddy water conditions, 12 sets of indoor infiltration tests were conducted to investigate the effects of four key influencing factors (muddy water sand content, hole diameter, soil bulk density, and infiltration time) on the infiltration characteristics of irrigation with film holes under muddy water conditions, in this study. Based on the experimental data, accurate and effective soil water infiltration and vertical and horizontal wetting front transport models were constructed. Based on the modeling results, the standard regression coefficients of each influencing factor against the fitted parameters were calculated and the effects of the factors on the fitted parameters were analyzed. Error analysis showed that both models could effectively simulate the soil water infiltration process under experimental conditions. Infiltration time was the dominant factor influencing the cumulative infiltration per unit of film hole area, followed by hole diameter, muddy water sand content and lastly, soil bulk density. Infiltration time was also the main influencing factor of the vertical wetting front transport distance, followed by soil bulk density, muddy water sand content, and lastly, hole diameter. Similarly, infiltration time exerted the greatest effect on the horizontal transport distance, followed by hole diameter, soil bulk density and muddy water sand content. The model validation revealed that both the calculated and measured values were distributed around the 1:1 line, reflecting the accuracy of the models. The results of this study can provide theoretical support for the design of film hole irrigation systems under muddy water conditions.

13.
Med Biol Eng Comput ; 62(1): 307-326, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37804386

ABSTRACT

Epilepsy is a chronic brain disease, and identifying seizures based on electroencephalogram (EEG) signals would be conducive to implement interventions to help patients reduce impairment and improve quality of life. In this paper, we propose a classification algorithm to apply dynamical graph neural network with attention mechanism to single channel EEG signals. Empirical mode decomposition (EMD) are adopted to construct graphs and the optimal adjacency matrix is obtained by model optimization. A multilayer dynamic graph neural network with attention mechanism is proposed to learn more discriminative graph features. The MLP-pooling structure is proposed to fuse graph features. We performed 12 classification tasks on the epileptic EEG database of the University of Bonn, and experimental results showed that using 25 runs of ten-fold cross-validation produced the best classification results with an average of 99.83[Formula: see text] accuracy, 99.91[Formula: see text] specificity, 99.78[Formula: see text] sensitivity, 99.87[Formula: see text] precision, and 99.47[Formula: see text] [Formula: see text] score for the 12 classification tasks.


Subject(s)
Epilepsy , Quality of Life , Humans , Epilepsy/diagnosis , Neural Networks, Computer , Seizures/diagnosis , Algorithms , Electroencephalography/methods
14.
Carbohydr Polym ; 342: 122400, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39048199

ABSTRACT

Previous RS5 (type 5 resistant starch) research has significantly broadened starch use and benefited society, yet the effects of the molecular weight of amylose on RS5 remain underexplored. In this study, amyloses with different molecular weights were complexed with caproic acid (C6), lauric acid (C12), and stearic acid (C18) to observe the effects of the molecular weight of amylose on the structure and in vitro digestive properties of RS5. Gel permeation chromatography revealed that the peak average molecular weight (Mp) values of high-amylose cornstarch NF-CGK (CGK), high-amylose cornstarch obtained via cornstarch via autoclave (high temperature and high pressure)-cooling combined pullulanase enzymatic hydrolysis (CTE), and high-amylose cornstarch NF-G370 (HCK) were 21,282, 171,537, and 188,084 before fatty acid complexation, respectively. Additionally, their weight average molecular weight (Mw) values of 32,429, 327,344, and 410,610 and hydrolysis rates of 58.12 %, 86.77 %, and 64.58 %, respectively. The hydrolysis rate of low-Mw amylose (GCK) complexes with fatty acids was lower than that of HCK and CTE starch-lipid complexes. However, HCK and CTE having similar molecular weights, there was no significant difference in the hydrolysis rate of starch-lipid complexes. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and complexing index analyses confirmed the formation of these complexes. This study proposed the mechanism of RS5 formation and provided guidance for its future development.


Subject(s)
Amylose , Lauric Acids , Molecular Weight , Amylose/chemistry , Lauric Acids/chemistry , Hydrolysis , Starch/chemistry , Starch/metabolism , Digestion , Stearic Acids/chemistry , Lipids/chemistry , Caprylates
15.
Foods ; 13(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38338571

ABSTRACT

High Fischer ratio oligopeptides (HFOs) exhibit diverse biological activities, including anti-inflammatory and antioxidant properties. HFOs from gluten origin were prepared through fermentation and enzymatic hydrolysis and then characterized using free amino acid analysis and scanning electron microscopy (SEM). Following intervention, the levels of serum total cholesterol (TC), triglyceride (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and hepatic malondialdehyde (MDA) in the rats significantly decreased (p < 0.05). Simultaneously, there was an increasing trend in superoxide dismutase (SOD) levels, and glutathione (GSH) levels were significantly elevated (p < 0.05). The mRNA expression levels of alcohol metabolism-related genes (ADH4, ALDH2, and CYP2E1) exhibited a significant increase (p < 0.05). Histological examination revealed a reduction in liver damage. The findings indicate that high Fischer ratio oligopeptides, prepared through enzymatic and fermentation methods, significantly improve lipid levels, ameliorate lipid metabolism disorders, and mitigate oxidative stress, and exhibit a discernible alleviating effect on alcoholic liver injury in rats.

16.
Foods ; 13(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38998575

ABSTRACT

In this study, three different brands of commercially available marinated tofu were analyzed and compared with homemade products to explore the effect of key flavor substances on their sensory quality, sensory properties, texture characteristics, and volatile components. The texture characteristics and flavor substances of the three brands of commercially available marinated tofu were significantly different from those of homemade products. A total of 64 volatile components were identified by headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS), mainly including 11 hydrocarbons, 11 alcohols, 10 ketones, 15 aldehydes, 4 esters, 1 acid, and 12 other volatile substances. Among these, nine key flavor compounds (ROAV > 1, VIP > 1) were identified using the relative odor activity value (ROAV) combined with a partial least squares discriminant analysis (PLS-DA) and variable importance in projection, including α-Pinene, ß-Myrcene, α-Phellandrene, 1-Penten-3-one, Butanal, 3-Methyl butanal, acetic acid ethyl ester, 1,8-Cineol, and 2-Pentyl furan. The correlation heatmap showed that sensory evaluation was positively correlated with hardness, gumminess, chewiness, and springiness while negatively correlated with 2-Pentyl furan, α-Pinene, resilience, α-Phellandrene, 1-Penten-3-one, acetic acid ethyl ester, and 1,8-Cineol. Overall, this study provides a theoretical reference for developing new instant marinated tofu snacks.

17.
Comput Biol Med ; 177: 108608, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796880

ABSTRACT

BACKGROUND AND OBJECTIVE: Cardiac computed tomography angiography (CTA) is the preferred modality for preoperative planning in aortic valve stenosis. However, it cannot provide essential functional hemodynamic data, specifically the mean transvalvular pressure gradient (MPG). This study aims to introduce a computational fluid dynamics (CFD) approach for MPG quantification using cardiac CTA, enhancing its diagnostic value. METHODS: Twenty patients underwent echocardiography, cardiac CTA, and invasive catheterization for pressure measurements. Cardiac CTA employed retrospective electrocardiographic gating to capture multi-phase data throughout the cardiac cycle. We segmented the region of interest based on mid-systolic phase cardiac CTA images. Then, we computed the average flow velocity into the aorta as the inlet boundary condition, using variations in end-diastolic and end-systolic left ventricular volume. Finally, we conducted CFD simulations using a steady-state model to obtain pressure distribution within the computational domain, allowing for the derivation of MPG. RESULTS: The mean value of MPG, measured via invasive catheterization (MPGInv), echocardiography (MPGEcho), and cardiac CTA (MPGCT), were 51.3 ± 28.4 mmHg, 44.8 ± 19.5 mmHg, and 55.8 ± 25.6 mmHg, respectively. In comparison to MPGInv, MPGCT exhibited a higher correlation of 0.91, surpassing that of MPGEcho, which was 0.82. Moreover, the limits of agreement for MPGCT ranged from -27.7 to 18.7, outperforming MPGEcho, which ranged from -40.1 to 18.0. CONCLUSIONS: The proposed method based on cardiac CTA enables the evaluation of MPG for aortic valve stenosis patients. In future clinical practice, a single cardiac CTA examination can comprehensively assess both the anatomical and functional hemodynamic aspects of aortic valve disease.


Subject(s)
Computed Tomography Angiography , Hemodynamics , Humans , Computed Tomography Angiography/methods , Male , Female , Aged , Hemodynamics/physiology , Middle Aged , Aortic Valve/diagnostic imaging , Aortic Valve/physiopathology , Aortic Valve Disease/diagnostic imaging , Aortic Valve Disease/physiopathology , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/physiopathology , Models, Cardiovascular , Echocardiography/methods
18.
Acta Biomater ; 166: 1-13, 2023 08.
Article in English | MEDLINE | ID: mdl-37137403

ABSTRACT

Chimeric antigen receptor T (CAR-T) cells have achieved breakthrough efficacies against hematological malignancies, but their unsatisfactory efficacies in solid tumors limit their applications. The prohibitively high prices further restrict their access to broader populations. Novel strategies are urgently needed to address these challenges, and engineering biomaterials can be one promising approach. The established process for manufacturing CAR-T cells involves multiple steps, and biomaterials can help simplify or improve several of them. In this review, we cover recent progress in engineering biomaterials for producing or stimulating CAR-T cells. We focus on the engineering of non-viral gene delivery nanoparticles for transducing CAR into T cells ex vivo/in vitro or in vivo. We also dive into the engineering of nano-/microparticles or implantable scaffolds for local delivery or stimulation of CAR-T cells. These biomaterial-based strategies can potentially change the way CAR-T cells are manufactured, significantly reducing their cost. Modulating the tumor microenvironment with the biomaterials can also considerably enhance the efficacy of CAR-T cells in solid tumors. We pay special attention to progress made in the past five years, and perspectives on future challenges and opportunities are also discussed. STATEMENT OF SIGNIFICANCE: Chimeric antigen receptor T (CAR-T) cell therapies have revolutionized the field of cancer immunotherapy with genetically engineered tumor recognition. They are also promising for treating many other diseases. However, the widespread application of CAR-T cell therapy has been hampered by the high manufacturing cost. Poor penetration of CAR-T cells into solid tissues further restricted their use. While biological strategies have been explored to improve CAR-T cell therapies, such as identifying new cancer targets or integrating smart CARs, biomaterial engineering provides alternative strategies toward better CAR-T cells. In this review, we summarize recent advances in engineering biomaterials for CAR-T cell improvement. Biomaterials ranging from nano-, micro-, and macro-scales have been developed to assist CAR-T cell manufacturing and formulation.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , T-Lymphocytes , Receptors, Antigen, T-Cell/genetics , Neoplasms/therapy , Cell Engineering , Tumor Microenvironment
19.
PLoS One ; 18(6): e0287606, 2023.
Article in English | MEDLINE | ID: mdl-37352300

ABSTRACT

Part-time shoulder use (PTSU) is a traffic strategy that temporarily uses the shoulder as a lane when necessary. Research has shown that, when a hard shoulder is required to set the traffic function, the left hard shoulder is preferable. Super multilane highways are usually equipped with left hard shoulders of sufficient width, but the wide cross-sectional characteristics make it difficult for vehicles to turn into the emergency parking lane to avoid a breakdown or accident in the lane, which is an ideal implementation object of PTSU. In this study, two virtual simulation scenarios for PTSU were created: one with the left hard shoulder open and used as a travel lane, and the other with the left hard shoulder closed and its original function restored. Vehicle driving data were collected through driving simulation experiments to reveal the influence of the left hard shoulder on vehicle handling stability. The optimal width of the left hard shoulder was determined by ANOVA and comparison of the mean and standard deviation. The purpose of this study was to quantify the effect of the width of the left hard shoulder on the driving stability of vehicles in the inside lane under PTSU and determine the ideal shoulder width by comparing the stability parameters of vehicles.


Subject(s)
Accidents, Traffic , Automobile Driving , Safety , Cross-Sectional Studies , Computer Simulation , Data Collection
20.
Foods ; 12(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36900437

ABSTRACT

Depression is a chronic mental illness with devastating effects on a person's physical and mental health. Studies have reported that food fermentation with probiotics can enrich the nutritional values of food and produce functional microorganisms that can alleviate depression and anxiety. Wheat germ is an inexpensive raw material that is rich in bioactive ingredients. For example, gamma-aminobutyric acid (GABA) is reported to have antidepressant effects. Several studies concluded that Lactobacillus plantarum is a GABA-producing bacteria and can alleviate depression. Herein, fermented wheat germs (FWGs) were used to treat stress-induced depression. FWG was prepared by fermenting wheat germs with Lactobacillus plantarum. The chronic unpredictable mild stress (CUMS) model was established in rats, and these rats were treated with FWG for four weeks to evaluate the effects of FWG in relieving depression. In addition, the study also analyzed the potential anti-depressive mechanism of FWG based on behavioral changes, physiological and biochemical index changes, and intestinal flora changes in depressed rats. The results demonstrated that FWG improved depression-like behaviors and increased neurotransmitter levels in the hippocampus of CUMS model rats. In addition, FWG effectively altered the gut microbiota structure and remodeled the gut microbiota in CUMS rats, restored neurotransmitter levels in depressed rats through the brain-gut axis, and restored amino acid metabolic functions. In conclusion, we suggest that FWG has antidepressant effects, and its potential mechanism may act by restoring the disordered brain-gut axis.

SELECTION OF CITATIONS
SEARCH DETAIL