Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 603(7903): 878-884, 2022 03.
Article in English | MEDLINE | ID: mdl-35296859

ABSTRACT

Interoception, the ability to timely and precisely sense changes inside the body, is critical for survival1-4. Vagal sensory neurons (VSNs) form an important body-to-brain connection, navigating visceral organs along the rostral-caudal axis of the body and crossing the surface-lumen axis of organs into appropriate tissue layers5,6. The brain can discriminate numerous body signals through VSNs, but the underlying coding strategy remains poorly understood. Here we show that VSNs code visceral organ, tissue layer and stimulus modality-three key features of an interoceptive signal-in different dimensions. Large-scale single-cell profiling of VSNs from seven major organs in mice using multiplexed projection barcodes reveals a 'visceral organ' dimension composed of differentially expressed gene modules that code organs along the body's rostral-caudal axis. We discover another 'tissue layer' dimension with gene modules that code the locations of VSN endings along the surface-lumen axis of organs. Using calcium-imaging-guided spatial transcriptomics, we show that VSNs are organized into functional units to sense similar stimuli across organs and tissue layers; this constitutes a third 'stimulus modality' dimension. The three independent feature-coding dimensions together specify many parallel VSN pathways in a combinatorial manner and facilitate the complex projection of VSNs in the brainstem. Our study highlights a multidimensional coding architecture of the mammalian vagal interoceptive system for effective signal communication.


Subject(s)
Perception , Psychophysiology , Vagus Nerve , Vomeronasal Organ , Animals , Brain/metabolism , Calcium/metabolism , Mammals/metabolism , Mice , Sensory Receptor Cells/metabolism
2.
Nature ; 573(7773): 225-229, 2019 09.
Article in English | MEDLINE | ID: mdl-31435011

ABSTRACT

PIEZO2 is a mechanosensitive cation channel that has a key role in sensing touch, tactile pain, breathing and blood pressure. Here we describe the cryo-electron microscopy structure of mouse PIEZO2, which is a three-bladed, propeller-like trimer that comprises 114 transmembrane helices (38 per protomer). Transmembrane helices 1-36 (TM1-36) are folded into nine tandem units of four transmembrane helices each to form the unusual non-planar blades. The three blades are collectively curved into a nano-dome of 28-nm diameter and 10-nm depth, with an extracellular cap-like structure embedded in the centre and a 9-nm-long intracellular beam connecting to the central pore. TM38 and the C-terminal domain are surrounded by the anchor domain and TM37, and enclose the central pore with both transmembrane and cytoplasmic constriction sites. Structural comparison between PIEZO2 and its homologue PIEZO1 reveals that the transmembrane constriction site might act as a transmembrane gate that is controlled by the cap domain. Together, our studies provide insights into the structure and mechanogating mechanism of Piezo channels.


Subject(s)
Cryoelectron Microscopy , Ion Channels/metabolism , Ion Channels/ultrastructure , Amino Acid Sequence , Animals , Ion Channels/chemistry , Ion Transport , Mice , Models, Molecular , Protein Domains
3.
Opt Express ; 32(7): 12291-12302, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38571056

ABSTRACT

We report a Ta2O5 photonic platform with a propagation loss of 0.49 dB/cm at 1550 nm, of 0.86 dB/cm at 780 nm, and of 3.76 dB/cm at 2000 nm. The thermal bistability measurement is conducted in the entire C-band for the first time to reveal the absorption loss of Ta2O5 waveguides, offering guidelines for further reduction of the waveguide loss. We also characterize the Ta2O5 waveguide temperature response, which shows favorable thermal stability. The fabrication process temperature is below 350°C, which is friendly to integration with active optoelectronic components.

4.
Nature ; 563(7730): E19, 2018 11.
Article in English | MEDLINE | ID: mdl-30202093

ABSTRACT

In Extended Data Fig. 9a of this Article, the bottom micrographs of mPiezo1-ΔL3-4-IRES-GFP and mPiezo1-ΔL7-8-IRES-GFP (labelled 'permeabilized') are inadvertently the same images. The corrected figure panels are shown in the accompanying Amendment.

5.
Nature ; 554(7693): 487-492, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29469092

ABSTRACT

The mechanosensitive Piezo channels function as key eukaryotic mechanotransducers. However, their structures and mechanogating mechanisms remain unknown. Here we determine the three-bladed, propeller-like electron cryo-microscopy structure of mouse Piezo1 and functionally reveal its mechanotransduction components. Despite the lack of sequence repetition, we identify nine repetitive units consisting of four transmembrane helices each-which we term transmembrane helical units (THUs)-which assemble into a highly curved blade-like structure. The last transmembrane helix encloses a hydrophobic pore, followed by three intracellular fenestration sites and side portals that contain pore-property-determining residues. The central region forms a 90 Å-long intracellular beam-like structure, which undergoes a lever-like motion to connect THUs to the pore via the interfaces of the C-terminal domain, the anchor-resembling domain and the outer helix. Deleting extracellular loops in the distal THUs or mutating single residues in the beam impairs the mechanical activation of Piezo1. Overall, Piezo1 possesses a unique 38-transmembrane-helix topology and designated mechanotransduction components, which enable a lever-like mechanogating mechanism.


Subject(s)
Cryoelectron Microscopy , Ion Channel Gating , Ion Channels/metabolism , Ion Channels/ultrastructure , Mechanotransduction, Cellular , Animals , Ion Channels/chemistry , Mice , Models, Molecular , Movement , Structure-Activity Relationship
6.
J Sci Food Agric ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821885

ABSTRACT

BACKGROUND: The quality of surimi-based products can be improved by combining the flesh of different aquatic organisms. The present study investigated the effects of incorporating diverse ratios of unwashed silver carp (H) and scallop (A) and using various thermal treatments on the moisture, texture, microstructure, and conformation of the blended gels and myofibrillar protein of surimi. RESULTS: A mixture ratio of A:H = 1:3 yielded the highest gel strength, which was 60.4% higher than that of scallop gel. The cooking losses of high-pressure heating and water-bath microwaving were significantly higher than those of other methods (P < 0.05). Moreover, the two-step water bath and water-bath microwaving samples exhibited a more regular spatial network structure compared to other samples. The mixed samples exhibited a microstructure with a uniform and ordered spatial network, allowing more free water to be trapped by the internal structure, resulting in more favorable gel properties. The thermal treatments comprehensively modified the tertiary and quaternary structures of proteins in unwashed mixed gel promoted protein unfurling, provided more hydrophobic interactions, enhanced protein aggregation and improved the gel performance. CONCLUSION: The findings of the present study improve our understanding of the interactions between proteins from different sources. We propose a new method for modifying surimi's gel properties, facilitating the development of mixed surimi products, as well as enhancing the efficient utilization of aquatic resources. © 2024 Society of Chemical Industry.

7.
BMC Genomics ; 24(1): 406, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37468870

ABSTRACT

PURPOSE: A Disintegrin and Metalloproteinase (ADAM) and A Disintegrin and Metalloproteinase with Thrombospondin Motif (ADAMTS) have been reported potentially involved in bone metabolism and related to bone mineral density. This Mendelian Randomization (MR) analysis was performed to determine whether there are causal associations of serum ADAM/ADAMTS with BMD in rid of confounders. METHODS: The genome-wide summary statistics of four site-specific BMD measurements were obtained from studies in individuals of European ancestry, including forearm (n = 8,143), femoral neck (n = 32,735), lumbar spine (n = 28,498) and heel (n = 426,824). The genetic instrumental variables for circulating levels of ADAM12, ADAM19, ADAM23, ADAMTS5 and ADAMTS6 were retrieved from the latest genome-wide association study of European ancestry (n = 5336 ~ 5367). The estimated causal effect was given by the Wald ratio for each variant, the inverse-variance weighted model was used as the primary approach to combine estimates from multiple instruments, and sensitivity analyses were conducted to assess the robustness of MR results. The Bonferroni-corrected significance was set at P < 0.0025 to account for multiple testing, and a lenient threshold P < 0.05 was considered to suggest a causal relationship. RESULTS: The causal effects of genetically predicted serum ADAM/ADAMTS levels on BMD measurements at forearm, femoral neck and lumbar spine were not statistically supported by MR analyses. Although causal effect of ADAMTS5 on heel BMD given by the primary MR analysis (ß = -0.006, -0.010 to 0.002, P = 0.004) failed to reach Bonferroni-corrected significance, additional MR approaches and sensitivity analyses indicated a robust causal relationship. CONCLUSION: Our study provided suggestive evidence for the causal effect of higher serum levels of ADAMTS5 on decreased heel BMD, while there was no supportive evidence for the associations of ADAM12, ADAM19, ADAM23, and ADAMTS6 with BMD at forearm, femoral neck and lumbar spine in Europeans.


Subject(s)
Bone Density , Mendelian Randomization Analysis , Humans , Bone Density/genetics , Genome-Wide Association Study , Disintegrins/genetics , Polymorphism, Single Nucleotide , Metalloproteases/genetics
8.
Anal Chem ; 95(49): 18046-18054, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38032544

ABSTRACT

The degradation of macroplastics results in micro/nanoplastics (MNPs) in the natural environment, inducing high health risks worldwide. It remains challenging to characterize the accurate molecular structures of MNPs. Herein, we integrate 193 nm ultraviolet photodissociation (UVPD) with mass spectrometry to interrogate the molecular structures of poly(ethylene glycol) terephthalate and polyamide (PA) MNPs. The backbones of the MNP polymer can be efficiently dissociated by UVPD, producing rich types of fragment ions. Compared to high-energy collision dissociation (HCD), the structural informative fragment ions and corresponding sequence coverages obtained by UVPD were all improved 2.3 times on average, resulting in almost complete sequence coverage and precise structural interrogation of MNPs. We successfully determine the backbone connectivity differences of MNP analogues PA6, PA66, and PA610 by improving the average sequence coverage from 26.8% by HCD to 89.4% by UVPD. Our results highlight the potential of UVPD in characterizing and discriminating backbone connectivity and chain end structures of different types of MNPs.

9.
Opt Lett ; 48(14): 3781-3784, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37450749

ABSTRACT

We report a gallium phosphide-on-insulator (GaP-OI) photonic platform fabricated by an intermediate-layer bonding process aiming to increase the manufacture scalability in a low-cost manner. This is enabled by the "etch-n-transfer" sequence, which results in inverted rib waveguide structures. The shallow-etched 1.8 µm-wide waveguide has a propagation loss of 23.5 dB/cm at 1550 nm wavelength. Supercontinuum generation based on the self-phase modulation effect is observed when the waveguides are pumped by femtosecond pulses. The nonlinear refractive index of GaP, n2, is extracted to be 1.9 × 10-17 m2/W, demonstrating the great promise of the GaP-OI platform in third-order nonlinear applications.


Subject(s)
Optics and Photonics , Refractometry , Equipment Design , Ribs
10.
Molecules ; 28(14)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37513432

ABSTRACT

Crustaceans are perishable with a short shelf-life. They are prone to deterioration after capture, particularly during handling, processing, and storage due to melanosis caused by polyphenoloxidase (PPO). Therefore, inhibitory effects of chitooligosaccharide (CHOS) in comparison with CHOS-catechin (CHOS-CAT), CHOS-epigallocatechin gallate (CHOS-EGCG), and CHOS-gallic acid (CHOS-GAL) conjugates on Pacific white shrimp cephalothorax PPO were studied. IC50 of CHOS-CAT (0.32 mg/mL) toward PPO was less than those of all conjugates tested (p < 0.05). CHOS-CAT exhibited the mixed-type inhibition. Kic (0.58 mg/mL) and Kiu (0.02 mg/mL) of CHOS-CAT were lower than those of other conjugates (p < 0.05). CHOS-CAT showed static fluorescence-quenching, suggesting a change in micro-environment around the active site of PPO. Moreover, CHOS-CAT was linked with various amino acid residues, including Tyr208 or Tyr209 of proPPO via van der Waals, hydrophobic interaction, and hydrogen bonding as elucidated by the molecular docking of proPPO. Although CHOS-CAT had the highest PPO inhibitory activity, it showed a lower binding energy (-8.5 kcal/mol) than other samples, except for CHOS-EGCG (-10.2 kcal/mol). Therefore, CHOS-CAT could act as an anti-melanosis agent in shrimp and other crustaceans to prevent undesirable discoloration associated with quality losses.


Subject(s)
Catechin , Penaeidae , Animals , Polyphenols , Catechol Oxidase/chemistry , Molecular Docking Simulation , Penaeidae/chemistry
11.
J Appl Microbiol ; 132(6): 4359-4370, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35393712

ABSTRACT

AIM: Coregonus peled fillets were used as a model to evaluate the dominant bacterial growth of chilled fish during storage after shipping and interactions of selected bacterial strains. METHODS AND RESULTS: Coregonus peled fillets were transported by air and land in ice boxes about 48 h from aquatic products company in Xinjiang, China, to the laboratory located in Dalian, China. Both culture-dependent (plate counts on nonselective media) based on 16S rRNA gene sequencing and culture-independent (Illumina-MiSeq high-throughput sequencing) methods were used. To detect interactions among bacterial populations from chilled fish, the influence of 18 test strains on the growth of 12 indicator isolates was measured by a drop assay and in liquid culture medium broth. The results showed that bacterial counts exceeded 7.0 log CFU/g following storage for 4 days at 4 °C. When the bacterial counts exceeded 8.5 log CFU/g after 12 days, the predominant micro-organisms were Aeromonas, Pseudomonas, Carnobacterium, Psychrobacter and Shewanella, as measured by the culture-independent method. All test strains showed inhibiting effects on the growth of other strains in liquid culture. Pseudomonas isolates showed antibacterial activity for approximately 60% of the indicator strains on nutritional agar plates. The majority of test isolates enhancing indicator strain growth were the strains isolated on day 0. CONCLUSIONS: High-throughput sequencing approach gives whole picture of bacterial communities in chilled C. peled fillets during storage, while growth interferences between selected bacterial strains illustrate the complexity of microbial interactions. SIGNIFICANCE AND IMPACT OF THE STUDY: We determined the bacterial communities and growth interferences in chilled Coregonus peled after shipping and these are the first data concerning microbiota in C. peled using a culture-independent analysis. The present study will be useful for manufacture and preservation of C. peled products by providing with valuable information regarding microbiological spoilage of C. peled.


Subject(s)
Aeromonas , Microbiota , Aeromonas/genetics , Animals , Carnobacterium/genetics , Fishes/genetics , Food Microbiology , Food Storage/methods , Microbiota/genetics , Pseudomonas , RNA, Ribosomal, 16S/genetics
12.
Water Sci Technol ; 86(5): 1284-1298, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36358061

ABSTRACT

A quinoline-degrading strain, C2, which could completely degrade 250 mg/L of quinoline within 24 h, was isolated from coking wastewater. Strain C2 was identified as Ochrobactrum sp. on the basis of 16S rDNA sequence analysis According to 16S rDNA gene sequence analysis, Strain C2 was identified as Ochrobactrum sp. Strain C2 could utilize quinoline as the sole carbon sources and nitrogen sources to grow and degrade quinoline well under acidic conditions. The optimum inoculum concentration, temperature and shaking speed for quinoline degradation were 10%, 30 °C and 150 r/min, respectively. The degradation of quinoline at low concentration by the strain followed the first-order kinetic model. The growth process of strain C2 was more consistent with the Haldane model than the Monod model, and the kinetic parameters were: Vmax = 0.08 h-1, Ks = 131.5 mg/L, Ki = 183.1 mg/L. Compared with suspended strains, strain C2 immobilized by sodium alginate had better degradation efficiency of quinoline and COD. The metabolic pathway of quinoline by Strain C2 was tentatively proposed, quinoline was firstly converted into 2(1H) quinolone, then the benzene ring was opened with the action of catechol 1,2-dioxygenase and subsequently transformed into benzaldehyde, 2-pentanone, hydroxyphenyl propionic acid and others.


Subject(s)
Ochrobactrum , Quinolines , Ochrobactrum/genetics , Ochrobactrum/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Biodegradation, Environmental , DNA, Ribosomal
13.
Opt Express ; 29(12): 17915-17925, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34154063

ABSTRACT

In this paper, the Mach-Zehnder interferometer (MZI) based on ring-core fiber was proposed and manufactured. Benefiting from the identical diameters of ring-core fiber, no-core fiber, and single-mode fiber, the MZI fiber sensor can be prototyped by sandwiching the ring-core fiber between the no-core fiber and the single-mode fiber (SMF). With the proposed specific structure of the ring-core fiber, the simultaneous measurement of temperature and curvature was achieved with the MZI sensor by means of monitoring the wavelength shift of interference dips. Experimental results have shown that the sensitivity of curvature sensing could reach up to -3.68 nm/m-1 in the range from 1.3856 m-1 to 3.6661 m-1 with high linearity of 0.9959. Meanwhile, the maximum temperature sensitivity is measured to be 72 pm/°C with a fairly good linearity response of 0.9975. In addition, by utilizing the 2×2 matrix algorithm, the dual demodulation of temperature and curvature can be readily realized for the purpose of direct sensing. It is believed that the proposed special structure-based MZI sensor may show great potential applications in the field of fiber-optics sensing and structural health monitoring (SHM).

14.
Neurochem Res ; 46(4): 945-956, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33515352

ABSTRACT

Spinal cord injury (SCI) is a serious neurological disease. Long non-coding RNA (lncRNA) small nucleolar RNA host gene (SNHG1) and microRNA-362-3p (miR-362-3p) were confirmed to be related to neurological disorders. However, it is unclear whether SNHG1 was involved in the development of SCI via regulating miR-362-3p. PC12 cells were treated with lipopolysaccharide (LPS) to imitate the in vitro cell model of SCI. Cell ciability and apoptosis rate were detected by cell counting kit-8 (CCK-8) assay and flow cytometry assay. The levels of SNHG1, miR-362-3p, and Janus kinase-2 (Jak2) were examined by quantitative real-time polymerase chain reaction (qRT-PCR). The dual-luciferase reporter assay, RNA pull-down assay, and RNA immunoprecipitation (RIP) assay were performed to verify the interaction between miR-362-3p and SNHG1 or Jak2. Besides, the levels of apoptosis- and autophagy- related proteins were detected by western blot assay. In present research, LPS suppressed cell viability, and induced apoptosis and autophagy in PC12 cells. SNHG1 knockdown could affect cell viability, and suppress cell apoptosis and autophagy in LPS-treated PC12 cells. Moreover, miR-362-3p was a target of SNHG1, miR-362-3p targeted Jak2 and negatively regulated Jak2/stat3 pathway. Our data also demonstrated that SNHG1 depletion inactivated Jak2/stat3 pathway to affect cell viability and confine apoptosis, autophagy in LPS-treated PC12 cells. Taken together, SNHG1 regulated cell viability, apoptosis and autophagy in LPS-treated PC12 cells by activating Jak2/stat3 pathway via sponging miR-362-3p.


Subject(s)
Apoptosis/physiology , Autophagy/physiology , RNA, Long Noncoding/metabolism , Signal Transduction/physiology , Animals , Apoptosis/drug effects , Apoptosis/genetics , Autophagy/drug effects , Autophagy/genetics , Cell Survival/drug effects , Cell Survival/genetics , Cell Survival/physiology , Gene Knockdown Techniques , Janus Kinase 2/metabolism , Lipopolysaccharides/toxicity , MicroRNAs/metabolism , PC12 Cells , RNA, Long Noncoding/genetics , Rats , STAT3 Transcription Factor/metabolism , Signal Transduction/genetics
15.
Nature ; 527(7576): 64-9, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26390154

ABSTRACT

Piezo proteins are evolutionarily conserved and functionally diverse mechanosensitive cation channels. However, the overall structural architecture and gating mechanisms of Piezo channels have remained unknown. Here we determine the cryo-electron microscopy structure of the full-length (2,547 amino acids) mouse Piezo1 (Piezo1) at a resolution of 4.8 Å. Piezo1 forms a trimeric propeller-like structure (about 900 kilodalton), with the extracellular domains resembling three distal blades and a central cap. The transmembrane region has 14 apparently resolved segments per subunit. These segments form three peripheral wings and a central pore module that encloses a potential ion-conducting pore. The rather flexible extracellular blade domains are connected to the central intracellular domain by three long beam-like structures. This trimeric architecture suggests that Piezo1 may use its peripheral regions as force sensors to gate the central ion-conducting pore.


Subject(s)
Cryoelectron Microscopy , Ion Channels/chemistry , Ion Channels/ultrastructure , Animals , Cell Membrane/metabolism , Electric Conductivity , Ion Channel Gating , Ion Channels/metabolism , Mice , Models, Molecular , Pliability , Protein Multimerization , Protein Structure, Quaternary , Protein Structure, Tertiary , Protein Subunits/chemistry , Protein Subunits/metabolism
16.
Mar Drugs ; 19(11)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34822479

ABSTRACT

Metabolic syndrome is the pathological basis of cardiovascular and cerebrovascular diseases and type 2 diabetes. With the prevalence of modern lifestyles, the incidence of metabolic syndrome has risen rapidly. In recent years, marine sulfate polysaccharides (MSPs) have shown positive effects in the prevention and treatment of metabolic syndrome, and they mainly come from seaweeds and marine animals. MSPs are rich in sulfate and have stronger biological activity compared with terrestrial polysaccharides. MSPs can alleviate metabolic syndrome by regulating glucose metabolism and lipid metabolism. In addition, MSPs prevent and treat metabolic syndrome by interacting with gut microbiota. MSPs can be degraded by gut microbes to produce metabolites such as short chain fatty acids (SCFAs) and free sulfate and affect the composition of gut microbiota. The difference between MSPs and other polysaccharides lies in the sulfation pattern and sulfate content, therefore, which is very important for anti-metabolic syndrome activity of MSPs. This review summarizes the latest findings on effects of MSPs on metabolic syndrome, mechanisms of MSPs in treatment/prevention of metabolic syndrome, interactions between MSPs and gut microbiota, and the role of sulfate group and sulfation pattern in MSPs activity. However, more clinical trials are needed to confirm the potential preventive and therapeutic effects on human body. It may be a better choice to develop new functional foods containing MSPs for dietary intervention in metabolic syndrome.


Subject(s)
Aquatic Organisms , Diabetes Mellitus, Type 2/drug therapy , Metabolic Syndrome/drug therapy , Polysaccharides/pharmacology , Animals , Gastrointestinal Microbiome/drug effects , Polysaccharides/chemistry , Polysaccharides/therapeutic use
17.
J Neuroinflammation ; 17(1): 134, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32345320

ABSTRACT

BACKGROUND: Acute spinal cord injury (SCI) could cause mainly two types of pathological sequelae, the primary mechanical injury, and the secondary injury. The macrophage in SCI are skewed toward the M1 phenotype that might cause the failure to post-SCI repair. METHODS: SCI model was established in Balb/c mice, and the changes in macrophage phenotypes after SCI were monitored. Bioinformatic analyses were performed to select factors that might regulate macrophage polarization after SCI. Mouse bone marrow-derived macrophages (BMDMs) were isolated, identified, and induced for M1 or M2 polarization; the effects of lncRNA guanylate binding protein-9 (lncGBP9) and suppressor of cytokine signaling 3 (SOCS3) on macrophages polarization were examined in vitro and in vivo. The predicted miR-34a binding to lncGBP9 and SOCS3 was validated; the dynamic effects of lncGBP9 and miR-34a on SOCS3, signal transducer and activator of transcription 1 (STAT1)/STAT6 signaling, and macrophage polarization were examined. Finally, we investigated whether STAT6 could bind the miR-34a promoter to activate its transcription. RESULTS: In SCI Balb/c mice, macrophage skewing toward M1 phenotypes was observed after SCI. In M1 macrophages, lncGBP9 silencing significantly decreased p-STAT1 and SOCS3 expression and protein levels, as well as the production of Interleukin (IL)-6 and IL-12; in M2 macrophages, lncGBP9 overexpression increased SOCS3 mRNA expression and protein levels while suppressed p-STAT6 levels and the production of IL-10 and transforming growth factor-beta 1 (TGF-ß1), indicating that lncGBP9 overexpression promotes the M1 polarization of macrophages. In lncGBP9-silenced SCI mice, the M2 polarization was promoted on day 28 after the operation, further indicating that lncGBP9 silencing revised the predominance of M1 phenotype at the late stage of secondary injury after SCI, therefore improving the repair after SCI. IncGBP9 competed with SOCS3 for miR-34a binding to counteract miR-34a-mediated suppression on SOCS3 and then modulated STAT1/STAT6 signaling and the polarization of macrophages. STAT6 bound the promoter of miR-34a to activate its transcription. CONCLUSIONS: In macrophages, lncGBP9 sponges miR-34a to rescue SOCS3 expression, therefore modulating macrophage polarization through STAT1/STAT6 signaling. STAT6 bound the promoter of miR-34a to activate its transcription, thus forming two different regulatory loops to modulate the phenotype of macrophages after SCI.


Subject(s)
Gene Expression Regulation/physiology , Macrophage Activation/physiology , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Signal Transduction/physiology , Spinal Cord Injuries/pathology , Animals , Macrophages/cytology , Macrophages/metabolism , Mice , Mice, Inbred BALB C , Phenotype , STAT1 Transcription Factor/metabolism , STAT6 Transcription Factor/metabolism , Spinal Cord Injuries/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism
18.
Opt Lett ; 45(5): 1152-1155, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32108793

ABSTRACT

The thermal quenching effect has been systematically investigated in bismuth (Bi)-doped phosphogermanosilicate fiber with varying thermal conditions. For the first time, to the best of our knowledge, the activation of phosphor-related Bi active center (BAC-P) is achieved by thermal quenching at 400°C with a heating time of 10 min, evidenced by the enhanced luminescence of BAC-P (${\sim}{1.3}$∼1.3 times) at 1300 nm. The experimental results reveal that a relatively low heating temperature with prolonged heating time stimulates the growth of BAC-P, whereas higher operating temperatures ($ {\ge} 500^\circ $≥500∘C) result in the irreversible destruction of BAC-P. The underlying mechanism for the thermally stimulated BAC-P process is also analyzed and discussed.

19.
Opt Lett ; 45(19): 5389-5392, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33001901

ABSTRACT

The first results of the study on photobleaching and thermally induced recovery in Bi-doped phosphosilicate fiber have been presented. It was revealed that the rate of bleaching of phosphor-related Bi active center (BAC-P) becomes slower with the decrease of photon energy. The quadratic dependence of the bleaching rate of BAC-P on laser power is obtained under 532 nm laser irradiation. The effect of temperature on the bleaching dynamics of BAC-P is also investigated under 532 nm radiation, suggesting a thermally aggravated bleaching process upon heating at certain temperatures (≥300∘C). Furthermore, the thermal recovery of bleached Bi-doped silica-based fiber (BDF) is investigated and a 13% increase of luminescence is achieved upon thermal quenching for 5 min at 400ºC. The underlying mechanism of photobleaching and thermo-stimulated recovery process of BAC-P is also discussed.

20.
Plasmid ; 107: 102476, 2020 01.
Article in English | MEDLINE | ID: mdl-31758959

ABSTRACT

Corynebacterium glutamicum is an important industrial strain used for the production of amino acids and vitamins. Most tools developed for overexpression of genes in C. glutamicum are based on the inducible promoter regulated by the lacIq gene or contain an antibiotic resistance gene as a selection marker. These vectors are essential for rapid identification of recombinant strains and detailed study of gene functions, but, as a considerable disadvantage, these vectors are not suitable for large-scale industrial production due to the need for the addition of isopropyl-ß-D-thiogalactopyranoside (IPTG) and antibiotics. In this study, the novel Escherichia coli-C. glutamicum shuttle expression vector pLY-4, derived from the expression vector pXMJ19, was constructed. The constitutive vector pLY-4 contains a large multiple cloning site, the strong promoter tacM and two selective markers: the original chloramphenicol resistance gene cat is used for molecular cloning operations, and the auxotrophy complementation marker alr, which can be stably replicated in the auxotrophic host strain without antibiotic selection pressure, is used for industrial fermentation. Heterologous expression of the gapC gene using the vector pLY-4 in C. glutamicum for L-methionine production indicated the potential application of pLY-4 in the development of C. glutamicum strain engineering and industrial fermentation.


Subject(s)
Corynebacterium glutamicum/genetics , Genetic Vectors/genetics , Plasmids/genetics , Cloning, Molecular , Corynebacterium glutamicum/growth & development , Gene Expression Regulation, Bacterial/genetics , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL