Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.232
Filter
Add more filters

Publication year range
1.
Cell ; 170(1): 114-126.e15, 2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28666113

ABSTRACT

Rice feeds half the world's population, and rice blast is often a destructive disease that results in significant crop loss. Non-race-specific resistance has been more effective in controlling crop diseases than race-specific resistance because of its broad spectrum and durability. Through a genome-wide association study, we report the identification of a natural allele of a C2H2-type transcription factor in rice that confers non-race-specific resistance to blast. A survey of 3,000 sequenced rice genomes reveals that this allele exists in 10% of rice, suggesting that this favorable trait has been selected through breeding. This allele causes a single nucleotide change in the promoter of the bsr-d1 gene, which results in reduced expression of the gene through the binding of the repressive MYB transcription factor and, consequently, an inhibition of H2O2 degradation and enhanced disease resistance. Our discovery highlights this novel allele as a strategy for breeding durable resistance in rice.


Subject(s)
Oryza/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Base Sequence , Breeding , Disease Resistance , Gene Knockout Techniques , Genome, Plant , Genome-Wide Association Study , Plant Diseases , Promoter Regions, Genetic
2.
Cell ; 171(6): 1437-1452.e17, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-29195078

ABSTRACT

We previously piloted the concept of a Connectivity Map (CMap), whereby genes, drugs, and disease states are connected by virtue of common gene-expression signatures. Here, we report more than a 1,000-fold scale-up of the CMap as part of the NIH LINCS Consortium, made possible by a new, low-cost, high-throughput reduced representation expression profiling method that we term L1000. We show that L1000 is highly reproducible, comparable to RNA sequencing, and suitable for computational inference of the expression levels of 81% of non-measured transcripts. We further show that the expanded CMap can be used to discover mechanism of action of small molecules, functionally annotate genetic variants of disease genes, and inform clinical trials. The 1.3 million L1000 profiles described here, as well as tools for their analysis, are available at https://clue.io.


Subject(s)
Gene Expression Profiling/methods , Cell Line, Tumor , Drug Resistance, Neoplasm , Gene Expression Profiling/economics , Humans , Neoplasms/drug therapy , Organ Specificity , Pharmaceutical Preparations/metabolism , Sequence Analysis, RNA/economics , Sequence Analysis, RNA/methods , Small Molecule Libraries
3.
Mol Cell ; 78(6): 1192-1206.e10, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32470318

ABSTRACT

Tumor-derived extracellular vesicles are important mediators of cell-to-cell communication during tumorigenesis. Here, we demonstrated that hepatocellular carcinoma (HCC)-derived ectosomes remodel the tumor microenvironment to facilitate HCC progression in an ectosomal PKM2-dependent manner. HCC-derived ectosomal PKM2 induced not only metabolic reprogramming in monocytes but also STAT3 phosphorylation in the nucleus to upregulate differentiation-associated transcription factors, leading to monocyte-to-macrophage differentiation and tumor microenvironment remodeling. In HCC cells, sumoylation of PKM2 induced its plasma membrane targeting and subsequent ectosomal excretion via interactions with ARRDC1. The PKM2-ARRDC1 association in HCC was reinforced by macrophage-secreted cytokines/chemokines in a CCL1-CCR8 axis-dependent manner, further facilitating PKM2 excretion from HCC cells to form a feedforward regulatory loop for tumorigenesis. In the clinic, ectosomal PKM2 was clearly detected in the plasma of HCC patients. This study highlights a mechanism by which ectosomal PKM2 remodels the tumor microenvironment and reveals ectosomal PKM2 as a potential diagnostic marker for HCC.


Subject(s)
Carrier Proteins/metabolism , Cell-Derived Microparticles/metabolism , Membrane Proteins/metabolism , Thyroid Hormones/metabolism , Adult , Aged , Aged, 80 and over , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carrier Proteins/genetics , Cell Differentiation/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell-Derived Microparticles/genetics , Cell-Derived Microparticles/pathology , Chemokine CCL1/metabolism , Disease Progression , Hep G2 Cells , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Macrophages/metabolism , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Middle Aged , Monocytes/metabolism , Prognosis , STAT3 Transcription Factor/metabolism , Thyroid Hormones/genetics , Tumor Microenvironment , Thyroid Hormone-Binding Proteins
4.
Proc Natl Acad Sci U S A ; 121(20): e2320674121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38684007

ABSTRACT

Identifying and protecting hotspots of endemism and species richness is crucial for mitigating the global biodiversity crisis. However, our understanding of spatial diversity patterns is far from complete, which severely limits our ability to conserve biodiversity hotspots. Here, we report a comprehensive analysis of amphibian species diversity in China, one of the most species-rich countries on Earth. Our study combines 20 y of field surveys with new molecular analyses of 521 described species and also identifies 100 potential cryptic species. We identify 10 hotspots of amphibian diversity in China, each with exceptional species richness and endemism and with exceptional phylogenetic diversity and phylogenetic endemism (based on a new time-calibrated, species-level phylogeny for Chinese amphibians). These 10 hotspots encompass 59.6% of China's described amphibian species, 49.0% of cryptic species, and 55.6% of species endemic to China. Only four of these 10 hotspots correspond to previously recognized biodiversity hotspots. The six new hotspots include the Nanling Mountains and other mountain ranges in South China. Among the 186 species in the six new hotspots, only 9.7% are well covered by protected areas and most (88.2%) are exposed to high human impacts. Five of the six new hotspots are under very high human pressure and are in urgent need of protection. We also find that patterns of richness in cryptic species are significantly related to those in described species but are not identical.


Subject(s)
Amphibians , Biodiversity , Phylogeny , Animals , Amphibians/classification , China , Conservation of Natural Resources
5.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38385872

ABSTRACT

Drug discovery and development constitute a laborious and costly undertaking. The success of a drug hinges not only good efficacy but also acceptable absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties. Overall, up to 50% of drug development failures have been contributed from undesirable ADMET profiles. As a multiple parameter objective, the optimization of the ADMET properties is extremely challenging owing to the vast chemical space and limited human expert knowledge. In this study, a freely available platform called Chemical Molecular Optimization, Representation and Translation (ChemMORT) is developed for the optimization of multiple ADMET endpoints without the loss of potency (https://cadd.nscc-tj.cn/deploy/chemmort/). ChemMORT contains three modules: Simplified Molecular Input Line Entry System (SMILES) Encoder, Descriptor Decoder and Molecular Optimizer. The SMILES Encoder can generate the molecular representation with a 512-dimensional vector, and the Descriptor Decoder is able to translate the above representation to the corresponding molecular structure with high accuracy. Based on reversible molecular representation and particle swarm optimization strategy, the Molecular Optimizer can be used to effectively optimize undesirable ADMET properties without the loss of bioactivity, which essentially accomplishes the design of inverse QSAR. The constrained multi-objective optimization of the poly (ADP-ribose) polymerase-1 inhibitor is provided as the case to explore the utility of ChemMORT.


Subject(s)
Deep Learning , Humans , Drug Development , Drug Discovery , Poly(ADP-ribose) Polymerase Inhibitors
6.
PLoS Pathog ; 20(6): e1012355, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38935808

ABSTRACT

Stress granules (SGs), formed by untranslated messenger ribonucleoproteins (mRNPs) during cellular stress in eukaryotes, have been linked to flavivirus interference without clear understanding. This study reveals the role of Zika virus (ZIKV) NS2B as a scaffold protein mediating interaction between protein phosphatase 1α (PP1α) and eukaryotic initiation factor 2α (eIF2α). This interaction promotes eIF2α dephosphorylation by PP1α, inhibiting SG formation. The NS2B-PP1α complex exhibits remarkable stability, resisting ubiquitin-induced degradation and amplifying eIF2α dephosphorylation, thus promoting ZIKV replication. In contrast, the NS2BV35A mutant, interacting exclusively with eIF2α, fails to inhibit SG formation, resulting in reduced viral replication and diminished impact on brain organoid growth. These findings reveal PP1α's dual role in ZIKV infection, inducing interferon production as an antiviral factor and suppressing SG formation as a viral promoter. Moreover, we found that NS2B also serves as a versatile mechanism employed by flaviviruses to counter host antiviral defenses, primarily by broadly inhibiting SG formation. This research advances our comprehension of the complex interplay in flavivirus-host interactions, offering potential for innovative therapeutic strategies against flavivirus infections.


Subject(s)
Eukaryotic Initiation Factor-2 , Protein Phosphatase 1 , Stress Granules , Viral Nonstructural Proteins , Virus Replication , Zika Virus Infection , Zika Virus , Zika Virus/physiology , Virus Replication/physiology , Humans , Zika Virus Infection/virology , Zika Virus Infection/metabolism , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Protein Phosphatase 1/metabolism , Eukaryotic Initiation Factor-2/metabolism , Stress Granules/metabolism , Animals
7.
Mol Ther ; 32(2): 490-502, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38098228

ABSTRACT

Inadequate T cell activation has severely limited the success of T cell engager (TCE) therapy, especially in solid tumors. Enhancing T cell activity while maintaining the tumor specificity of TCEs is the key to improving their clinical efficacy. However, currently, there needs to be more effective strategies in clinical practice. Here, we design novel superantigen-fused TCEs that display robust tumor antigen-mediated T cell activation effects. These innovative drugs are not only armed with the powerful T cell activation ability of superantigens but also retain the dependence of TCEs on tumor antigens, realizing the ingenious combination of the advantages of two existing drugs. Superantigen-fused TCEs have been preliminarily proven to have good (>30-fold more potent) and specific (>25-fold more potent) antitumor activity in vitro and in vivo. Surprisingly, they can also induce the activation of T cell chemotaxis signals, which may promote T cell infiltration and further provide an additional guarantee for improving TCE efficacy in solid tumors. Overall, this proof-of-concept provides a potential strategy for improving the clinical efficacy of TCEs.


Subject(s)
Neoplasms , T-Lymphocytes , Humans , Superantigens/therapeutic use , Antigens, Neoplasm , Cell Death
8.
Nano Lett ; 24(12): 3835-3841, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38498307

ABSTRACT

Edges and surfaces play indispensable roles in affecting the chemical-physical properties of materials, particularly in two-dimensional transition metal dichalcogenides (TMDCs) with reduced dimensionality. Herein, we report a novel edge/surface structure in multilayer 1T-TiSe2, i.e., the orthogonal (1 × 1) reconstruction, induced by the self-intercalation of Ti atoms into interlayer octahedral sites of the host TiSe2 at elevated temperature. Formation dynamics of the reconstructed edge/surface are captured at the atomic level by in situ scanning transmission electron microscopy (STEM) and further validated by density functional theory (DFT), which enables the proposal of the nucleation mechanism and two growth routes (zigzag and armchair). Via STEM-electron energy loss spectroscopy (STEM-EELS), a chemical shift of 0.6 eV in Ti L3,2 is observed in the reconstructed edge/surface, which is attributed to the change of the coordination number and lattice distortion. The present work provides insights to tailor the atomic/electronic structures and properties of 2D TMDC materials.

9.
BMC Plant Biol ; 24(1): 383, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724888

ABSTRACT

Taxus chinensis (Taxus cuspidata Sieb. et Zucc.) is a traditional medicinal plant known for its anticancer substance paclitaxel, and its growth age is also an important factor affecting its medicinal value. However, how age affects the physiological and metabolic characteristics and active substances of T. chinensis is still unclear. In this study, carbon and nitrogen accumulation, contents of active substances and changes in primary metabolites in barks and annual leaves of T. chinensis of different diameter classes were investigated by using diameter classes instead of age. The results showed that leaves and barks of small diameter class (D1) had higher content of non-structural carbohydrates and C, which were effective in enhancing defense capacity, while N content was higher in medium (D2) and large diameter classes (D3). Active substances such as paclitaxel, baccatin III and cephalomannine also accumulated significantly in barks of large diameter classes. Moreover, 21 and 25 differential metabolites were identified in leaves and barks of different diameter classes, respectively. The differential metabolites were enhanced the TCA cycle and amino acid biosynthesis, accumulate metabolites such as organic acids, and promote the synthesis and accumulation of active substances such as paclitaxel in the medium and large diameter classes. These results revealed the carbon and nitrogen allocation mechanism of different diameter classes of T. chinensis, and its relationship with medicinal components, providing a guidance for the harvesting and utilization of wild T. chinensis.


Subject(s)
Carbon , Metabolomics , Nitrogen , Plant Leaves , Taxus , Taxus/metabolism , Nitrogen/metabolism , Carbon/metabolism , Plant Leaves/metabolism , Plant Bark/metabolism , Plant Bark/chemistry
10.
Small ; 20(22): e2308851, 2024 May.
Article in English | MEDLINE | ID: mdl-38112252

ABSTRACT

Vanadium oxides have aroused attention as cathode materials in aqueous zinc-ion batteries (AZIBs) due to their low cost and high safety. However, low ion diffusion and vanadium dissolution often lead to capacity decay and deteriorating stability during cycling. Herein, vanadium dioxides (VO2) nanobelts are coated with a single-atom cobalt dispersed N-doped carbon (Co-N-C) layer via a facile calcination strategy to form Co-N-C layer coated VO2 nanobelts (VO2@Co-N-C NBs) for cathodes in AZIBs. Various in-/ex situ characterizations demonstrate the interfaces between VO2 layers and Co-N-C layers can protect the VO2 NBs from collapsing, increase ion diffusion, and enhance the Zn2+ storage performance. Additional density functional theory (DFT) simulations demonstrate that Co─O─V bonds between VO2 and Co-N-C layers can enhance interfacial Zn2+ storage. Moreover, the VO2@Co-N-C NBs provided an ultrahigh capacity (418.7 mAh g-1 at 1 A g-1), outstanding long-term stability (over 8000 cycles at 20 A g-1), and superior rate performance.

11.
Nat Methods ; 18(10): 1213-1222, 2021 10.
Article in English | MEDLINE | ID: mdl-34594034

ABSTRACT

Recent years have witnessed rapid progress in the field of epitranscriptomics. Functional interpretation of the epitranscriptome relies on sequencing technologies that determine the location and stoichiometry of various RNA modifications. However, contradictory results have been reported among studies, bringing the biological impacts of certain RNA modifications into doubt. Here, we develop a synthetic RNA library resembling the endogenous transcriptome but without any RNA modification. By incorporating this modification-free RNA library into established mapping techniques as a negative control, we reveal abundant false positives resulting from sequence bias or RNA structure. After calibration, precise and quantitative mapping expands the understanding of two representative modification types, N6-methyladenosine (m6A) and 5-methylcytosine (m5C). We propose that this approach provides a systematic solution for the calibration of various RNA-modification mappings and holds great promise in epitranscriptomic studies.


Subject(s)
Epigenesis, Genetic , Gene Library , High-Throughput Nucleotide Sequencing/methods , RNA/genetics , Transcriptome , Calibration , Gene Expression Regulation , HeLa Cells , Humans
12.
J Transl Med ; 22(1): 409, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38693581

ABSTRACT

With the aging global population, type 2 diabetes mellitus (T2DM) and osteoporosis(OP) are becoming increasingly prevalent. Diabetic osteoporosis (DOP) is a metabolic bone disorder characterized by abnormal bone tissue structure and reduced bone strength in patients with diabetes. Studies have revealed a close association among diabetes, increased fracture risk, and disturbances in iron metabolism. This review explores the concept of ferroptosis, a non-apoptotic cell death process dependent on intracellular iron, focusing on its role in DOP. Iron-dependent lipid peroxidation, particularly impacting pancreatic ß-cells, osteoblasts (OBs) and osteoclasts (OCs), contributes to DOP. The intricate interplay between iron dysregulation, which comprises deficiency and overload, and DOP has been discussed, emphasizing how excessive iron accumulation triggers ferroptosis in DOP. This concise overview highlights the need to understand the complex relationship between T2DM and OP, particularly ferroptosis. This review aimed to elucidate the pathogenesis of ferroptosis in DOP and provide a prospective for future research targeting interventions in the field of ferroptosis.


Subject(s)
Diabetes Mellitus, Type 2 , Ferroptosis , Osteoporosis , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Osteoporosis/complications , Osteoporosis/metabolism , Animals , Iron/metabolism
13.
Bioconjug Chem ; 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39180545

ABSTRACT

The crosstalk between glioma cells and astrocytes plays a crucial role in developing temozolomide (TMZ) resistance of glioblastomas, together with the existence of the BBB contributing to the unsatisfactory clinical treatment of glioblastomas. Herein, we developed a borneol-modified and gastrodin-loaded liposome (Bo-Gas-LP), with the intent of enhancing the efficacy of TMZ therapy after intranasal administration. The results showed that Bo-Gas-LP improved GL261 cells' sensitivity to TMZ and prolonged survival of GL261-bearing mice by blocking the crosstalk between astrocytes and glioblastoma cells with the decrease of Cx43. Our study showed that intranasal Bo-Gas-LP targeting the crosstalk in glioblastoma microenvironments proposed a promising targeted therapy idea to overcome the current therapeutic limitations of TMZ-resistant glioblastomas.

14.
Insect Mol Biol ; 33(2): 157-172, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38160324

ABSTRACT

Insect chitinases have been proposed as potential targets for pest control. In this work, a novel group IV chitinase gene, MdCht9, from Musca domestica was found to have multiple functions in the physiological activity, including chitin regulation, development and antifungal immunity. The MdCht9 gene was cloned and sequenced, its phylogeny was analysed and its expression was determined in normal and 20E treated larvae. Subsequently, RNA interference (RNAi)-mediated MdCht9 knockdown was performed, followed by biochemical assays, morphological observations and transcriptome analysis. Finally, the recombinant protein MdCht9 (rMdCht9) was purified and tested for anti-microbial activity and enzyme characteristics. The results showed that MdCht9 consists of three domains, highly expressed in a larval salivary gland. RNAi silencing of MdCht9 resulted in significant down-regulation of chitin content and expression of 15 chitin-binding protein (CBP) genes, implying a new insight that MdCht9 might regulate chitin content by influencing the expression of CBPs. In addition, more than half of the lethality and partial wing deformity appeared due to the dsMdCht9 treatment. In addition, the rMdCht9 exhibited anti-microbial activity towards Candida albicans (fungus) but not towards Escherichia coli (G-) or Staphylococcus aureus (G+). Our work expands on previous studies of chitinase while providing a potential target for pest management.


Subject(s)
Chitinases , Houseflies , Animals , Houseflies/genetics , Houseflies/metabolism , Chitinases/metabolism , Larva , Recombinant Proteins/genetics , Chitin/metabolism
15.
Rev Cardiovasc Med ; 25(6): 202, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39076323

ABSTRACT

Background: Clinically useful predictors for risk stratification of long-term survival may assist in selecting patients for endovascular abdominal aortic aneurysm (EVAR) procedures. This study aimed to analyze the prognostic significance of peroperative novel systemic inflammatory markers (SIMs), including the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), hemoglobin-to-red cell distribution width ratio (HRR), systemic immune-inflammatory index (SIII), and systemic inflammatory response index (SIRI), for long-term mortality in EVAR. Methods: A retrospective analysis was performed on 147 consecutive patients who underwent their first EVAR procedure at the Department of Vascular Surgery, Beijing Hospital. The patients were divided into the mortality group (n = 37) and the survival group (n = 110). The receiver operating characteristic curves were used to ascertain the threshold value demonstrating the most robust connection with mortality. The Kaplan-Meier survival analysis was performed between each SIM and mortality. The relationship between SIMs and survival was investigated using restricted cubic splines and multivariate Cox regression analysis. Results: The study included 147 patients, with an average follow-up duration of 34.28 ± 22.95 months. Deceased patients showed significantly higher NLR (p < 0.001) and reduced HRR (p < 0.001). The Kaplan-Meier estimates of mortality were considerably greater in the higher-NLR group (NLR > 2.77) and lower-HRR group (HRR < 10.64). The hazard ratio (HR) of 0.833 (95% confidence interval (95% CI): 0.71-0.97, p < 0.021) was determined to be statistically significant in predicting death in the multivariable analysis. Conclusions: Preoperative higher-NLR and lower-HRR have been associated with a lower long-term survival rate in abdominal aortic aneurysm (AAA) patients undergoing elective EVAR. Multivariate Cox regression showed that decreased preoperative HRR is an independent risk factor that increases mortality risk following EVAR. SIMs, such as the NLR and HRR, could be used in future clinical risk prediction methodologies for AAA patients undergoing EVAR. However, additional prospective cohort studies are needed to identify these findings.

16.
Stem Cells ; 41(4): 354-367, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36715298

ABSTRACT

Mesendodermal specification and cardiac differentiation are key issues for developmental biology and heart regeneration medicine. Previously, we demonstrated that FAM122A, a highly conserved housekeeping gene, is an endogenous inhibitor of protein phosphatase 2A (PP2A) and participates in multifaceted physiological and pathological processes. However, the in vivo function of FAM122A is largely unknown. In this study, we observed that Fam122 deletion resulted in embryonic lethality with severe defects of cardiovascular developments and significantly attenuated cardiac functions in conditional cardiac-specific knockout mice. More importantly, Fam122a deficiency impaired mesendodermal specification and cardiac differentiation from mouse embryonic stem cells but showed no influence on pluripotent identity. Mechanical investigation revealed that the impaired differentiation potential was caused by the dysregulation of histone modification and Wnt and Hippo signaling pathways through modulation of PP2A activity. These findings suggest that FAM122A is a novel and critical regulator in mesendodermal specification and cardiac differentiation. This research not only significantly extends our understanding of the regulatory network of mesendodermal/cardiac differentiation but also proposes the potential significance of FAM122A in cardiac regeneration.


Subject(s)
Embryonic Stem Cells , Protein Processing, Post-Translational , Animals , Mice , Cell Differentiation/physiology , Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/metabolism
17.
Opt Lett ; 49(15): 4154-4157, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090882

ABSTRACT

Due to their ultrahigh Q-factor and small mode volume, bound states in the continuum (BICs) are intriguing for the fundamental study of the strong coupling regime. However, the strong coupling generated by BICs in one metasurface is not always strong enough, which highly limits its efficiency in applications. In this work, we realize a giant strong coupling of at most 60 meV in a quasi-BICs' (Q-BICs) tetramer metasurface composed of four Si cylinders with two different sets of diagonal lengths. The Q-BICs are induced from two types of electric quadrupole (EQ), for which detuning can be flexibly controlled by manipulating the C4v symmetry breaking Δd. The giant Rabi splitting in our proposed metasurface performs more than 15 times of the previous works, which provides more possibilities for important nonlinear and quantum applications, such as nanolaser and quantum optics.

18.
Chemistry ; : e202402875, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39148303

ABSTRACT

Highly enantioselective Rh-catalyzed allylic substitution of the racemic branched allylic substrates with 2-fluoromalonate was realized enabled by a novel chiral sulfoxide-imine-olefin ligand under mild reaction conditions. The utilization of CuSO4 is beneficial for improving the enantioselectivity. Notably, the chiral fluoro-containing allyl products can be employed in a selective cyclic esterification to form chiral α-fluorolactone bearing vicinal stereogenic centers.

19.
Reprod Biol Endocrinol ; 22(1): 43, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627777

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder associated with infertility and pregnancy complications. The pathogenesis of PCOS and its impact on reproductive function may be influenced by the source of androgens, including testosterone, free androgen, dehydroepiandrosterone sulfate (DHEAS). However, the differential effects of these androgen on pregnancy and neonatal outcomes and the cut-off value of East Asian population with PCOS remain unclear. METHODS: A retrospective cohort study was conducted at the Reproductive Medicine Center of the First Affiliated Hospital of Sun Yat-sen University from January 2015 to November 2022, involving 636 cycles of in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI). Subgroup analyses were performed using cut-off values of 6.4 for free androgen index (FAI), 9.5 µmol/L for DHEAS. Pregnancy and neonatal outcomes were compared between groups. Restricted cubic spline (RCS) was used to identify significant cut-off values affecting pregnancy. RESULTS: Higher FAI levels (> 6.4) were associated with decrease in clinical pregnancy rate (PR) (50.61% vs. 41.66%, p = 0.024), live birth rate (LBR) (42.42% vs. 32.35%, p = 0.011). When DHEAS levels exceeded 9.5 µmol/L, there was a significant decrease in clinical PR (51.27% vs. 42.73%, P = 0.039), LBR (42.73% vs. 32.73%, P = 0.012). Negative correlations were also observed between DHEAS levels and cumulative pregnancy rate (70.57% vs 56.62% p = 0.002) and cumulative live birth rate (CLBR) (59.35% vs 43.37%, p = 0.0007). Both FAI and DHEAS elevated is associated with the lowest clinical pregnancy rate (37.84%). Conversely, when solely FAI is elevated, the pregnancy rate increases to 52.38%, while an elevation in DHEAS alone is associated with a pregnancy rate of, both of which are lower than when neither FAI nor DHEAS are elevated (60.68%). The live birth rates exhibit a similar trend (30.00% vs 40.00% vs 41.83% vs 44.48%). RCS revealed a significant decrease in CPR and CLBR when DHEA levels exceeded 7.69 umol/L, while the cut-off value of FAI was 6.36 for CPR and CLBR. CONCLUSION: In conclusion, PCOS patients with biochemical hyperandrogenism show unsatisfactory clinical PR and CLBR when undergoing assisted reproductive technology (ART). This may be attributed to the influence of both adrenal-derived DHEAS and ovarian-derived FAI on the unfavorable pregnancy outcomes.


Subject(s)
Polycystic Ovary Syndrome , Male , Pregnancy , Female , Infant, Newborn , Humans , Polycystic Ovary Syndrome/complications , Androgens , Dehydroepiandrosterone Sulfate , Retrospective Studies , Semen , Dehydroepiandrosterone
20.
BMC Cancer ; 24(1): 1013, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39148050

ABSTRACT

BACKGROUND: The chemotherapy regimens recommended for both rhabdomyosarcoma (RMS) and Ewing sarcoma (ES) patients are myelosuppressive and can reduce the absolute neutrophil count (ANC) and subsequently increase the risk of febrile neutropenia (FN). However, only a few studies have focused on the efficacy and safety of granulocyte-colony stimulating factor (G-CSF) drugs in pediatric and adolescent patients with RMS and ES. Our objective was to investigate the efficacy and safety of mecapegfilgrastim, a biosimilar of pegfilgrastim, in prophylaxis of FN for pediatric and adolescent patients with RMS or ES. METHODS: In this single-arm, single-center, prospective study, pediatric and adolescent patients with RMS or ES were enrolled to receive either VAC (vincristine, cyclophosphamide, dactinomycin) regimen or VDC (vincristine, cyclophosphamide, doxorubicin) regimen in a 3-week cycle, followed by treatment with mecapegfilgrastim (100 µg/kg, maximum 6 mg) given at 24 h after completing chemotherapy. The primary endpoint was the incidence rate of FN. Secondary endpoints included the incidence rate of grade 4 neutropenia, duration of ANC ≤ 0.5 × 109/L, incidence rate of chemotherapy delay or reduction, use of antibiotics, and safety profile. RESULTS: In total, 2 of the 30 (6.7%, 95% CI: 0.82-22.07) patients experienced FN after the first cycle of chemotherapy. Eight (26.7%, 95% CI: 12.28-45.89) patients experienced grade 4 neutropenia after receiving prophylactic mecapegfilgrastim. Eight patients experienced ANC ≤ 0.5 × 109/L with a median duration of 4.5 days; among them, 6 patients reached the lowest point of their ANC level on day 7, and 5 of them recovered by day 10. No dose reductions, delays, or discontinuation of chemotherapy was reported. Twenty-one (70.0%) patients received antibiotics during the treatment period. No patient experienced FN in the 0-5 years and the 13-18 years groups, and 2 patients experienced FN in the 6-12 years group. Two patients, 6 patients, and no patient experienced grade 4 neutropenia in the 0-5 years, 6-12 years, and 13-18 years groups, respectively. CONCLUSION: Mecapegfilgrastim showed acceptable efficacy and safety profile in pediatric and adolescent patients with RMS or ES. Further randomized studies with large sample size are warranted. TRIAL REGISTRATION: This clinical trial was registered at Chictr.org.cn (No.ChiCTR1900022249). Registered on March 31, 2019.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Febrile Neutropenia , Filgrastim , Rhabdomyosarcoma , Sarcoma, Ewing , Humans , Male , Female , Adolescent , Sarcoma, Ewing/drug therapy , Child , Pilot Projects , Prospective Studies , Child, Preschool , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Rhabdomyosarcoma/drug therapy , Febrile Neutropenia/prevention & control , Febrile Neutropenia/chemically induced , Febrile Neutropenia/etiology , Filgrastim/therapeutic use , Filgrastim/administration & dosage , Filgrastim/adverse effects , Cyclophosphamide/adverse effects , Cyclophosphamide/administration & dosage , Cyclophosphamide/therapeutic use , Dactinomycin/administration & dosage , Dactinomycin/adverse effects , Dactinomycin/therapeutic use , Doxorubicin/adverse effects , Doxorubicin/administration & dosage , Infant
SELECTION OF CITATIONS
SEARCH DETAIL