ABSTRACT
Comammox bacteria have proved to be one dominant and significant ammonia-oxidizing microorganisms (AOMs) in municipal wastewater treatment plants (WWTPs), however, it still remains unknown about their abundance and diversity in industrial WWTPs. In this study, activated sludge samples from 8 municipal WWTPs and 6 industrial WWTPs treating refinery wastewater were taken and analyzed using qPCR and amoA gene sequencing. Intriguingly, quantitative real-time PCR (qPCR) results suggested that comammox bacteria had a higher numerical abundance compared with ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in municipal WWTPs but did not in refinery WWTPs. Moreover, comammox amoA sequences obtained from high-throughput sequencing were retrieved from all the 8 municipal samples but only 1 industrial sample. Further phylogenetic analysis revealed that N. nitrosa cluster accounted for as high as 79.56% of the total comammox affiliated sequences, which was the most numerically abundant comammox species in municipal WWTPs. This study provided new insights into the abundance and diversity of comammox bacteria in the biological nitrification process in municipal and refinery wastewater treatment systems.
Subject(s)
Ammonia , Water Purification , Archaea/genetics , Bacteria/genetics , Nitrification , Oxidation-Reduction , PhylogenyABSTRACT
Nitrous oxide (N2O) generated from wastewater treatment plants (WWTPs) has drawn attention due to its high emission load and significant greenhouse effect. In the present study, N2O emissions from a pilot-scale Carrousel oxidation ditch under various chemical oxygen demand (COD) to nitrogen ratio (COD/N) and aeration rates were systematically investigated. The highest N2O emission factor was 0.142 ± 0.013%, at COD/N of 5 and aeration rate of 1.8 m3 h-1, which was much lower than the majority of previous studies. The results could be attributed to the high internal recycle ratio of the oxidation ditch process which lightened the burden of influent load to the system. The profiles of N2O emissions and dissolved N2O concentration along the channels showed a distinct spatial variation that N2O emissions primarily occurred in the aeration zones due to the air stripping effect. However, both the aeration and anoxic zones contributed to N2O generation due to autotrophic nitrification (AN), which was considered to be the main N2O generation process. In addition, two simulated shock-load conditions, ammonia overload shock and aeration failure shock, were carried out to explore the response of the biological nitrogen removal (BNR) system. The results indicated that both shock-loads lead to excessive N2O emissions, especially at higher aeration rates, which could be explained by the improved N2O generation by AN process during the shock-load period. This study offered new insights into the role of operational parameters to N2O emission and the alternative approach for N2O mitigation during both the steady-state operation and shock-load conditions in the oxidation ditch process.
Subject(s)
Bioreactors , Nitrous Oxide , Biological Oxygen Demand Analysis , Denitrification , Nitrification , Nitrogen/analysis , Nitrous Oxide/analysisABSTRACT
Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are two microbial groups mediating nitrification, yet little is presently known about their abundances and community structures at the transcriptional level in wastewater treatment systems (WWTSs). This is a significant issue, as the numerical abundance of AOA or AOB at the gene level may not necessarily represent their functional role in ammonia oxidation. Using amoA genes as molecular markers, this study investigated the transcriptional abundance and community structure of active AOA and AOB in 14 WWTSs. Quantitative PCR results indicated that the transcriptional abundances of AOB amoA (averaged: 1.6 × 108 copies g-1 dry sludge) were higher than those of AOA (averaged: 3.4 × 107 copies g-1 dry sludge) in all WWTSs despite several higher abundances of AOA amoA at the gene level. Moreover, phylogenetic analysis demonstrated that Nitrosomonas europaea and unknown clusters accounted for 37.66% and 49.96% of the total AOB amoA transcripts, respectively, suggesting their dominant role in driving ammonia oxidation. Meanwhile, AOA amoA transcripts were only successfully retrieved from 3 samples, and the Nitrosospaera sister cluster dominated, accounting for 83.46%. Finally, the substrate utilization kinetics of different AOA and AOB species might play a fundamental role in shaping their niche differentiation, community composition, and functional activity. This study provides a basis for evaluating the relative contributions of ammonia-oxidizing microorganisms (AOMs) to nitrogen conversions in WWTSs.
Subject(s)
Archaea , Water Purification , Ammonia , Archaea/genetics , Nitrification , Oxidation-Reduction , Phylogeny , Soil MicrobiologyABSTRACT
Surface sediments are the inner source of contaminations in aquatic systems and usually maintain aerobic conditions. As the key participators of nitrification process, little is known about the activities and contributions of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in the surface sediments. In this study, we determined the net and potential nitrification rates and used 1-octyne as an AOB specific inhibitor to detect the contributions of AOA and AOB to nitrification in surface sediments of Danjiangkou reservoir, which is the water source area of the middle route of South-to-North Water Diversion Project in China. Quantitative PCR and Illumina high-throughput sequencing were used to evaluate the abundance and diversity of the amoA gene. The net and potential nitrification rates ranged from 0.42 to 1.93 and 2.06 to 8.79 mg N kg-1 dry sediments d-1, respectively. AOB dominated in both net and potential nitrification, whose contribution accounted for 52.7-78.6% and 59.9-88.1%, respectively. The cell-specific ammonia oxidation rate calculation also revealed the cell-specific rates of AOB were higher than that of AOA. The Spearman's rank correlation analysis suggested that ammonia accumulation led to the AOB predominant role in net nitrification activity, and AOB abundance played the key role in potential nitrification activity. Furthermore, phylogenetic analysis suggested AOB were predominantly characterized by the Nitrosospira cluster, while AOA by the Nitrososphaera and Nitrososphaera sister clusters. This study will help us to better understand the contributions and characteristics of AOA and AOB in aquatic sediments and provide improved strategies for nitrogen control in large reservoirs.
Subject(s)
Ammonia/metabolism , Archaea/metabolism , Bacteria/metabolism , Geologic Sediments/microbiology , Nitrification/physiology , Soil Microbiology , Archaea/classification , Bacteria/classification , China , Oxidation-Reduction , PhylogenyABSTRACT
Effects of heavy metals on aerobic denitrification have been poorly understood compared with their impacts on anaerobic denitrification. This paper presented effects of four heavy metals (Cd(II), Cu(II), Ni(II), and Zn(II)) on aerobic denitrification by a novel aerobic denitrifying strain Pseudomonas stutzeri PCN-1. Results indicated that aerobic denitrifying activity decreased with increasing heavy metal concentrations due to their corresponding inhibition on the denitrifying gene expression characterized by a time lapse between the expression of the nosZ gene and that of the cnorB gene by PCN-1, which led to lower nitrate removal rate (1.67â¼6.67 mg L-1 h-1), higher nitrite accumulation (47.3â¼99.8 mg L-1), and higher N2O emission ratios (5â¼283 mg L-1/mg L-1). Specially, promotion of the nosZ gene expression by increasing Cu(II) concentrations (0â¼0.05 mg L-1) was found, and the absence of Cu resulted in massive N2O emission due to poor synthesis of N2O reductase. The inhibition effect for both aerobic denitrifying activity and denitrifying gene expression was as follows from strongest to least: Cd(II) (0.5â¼2.5 mg L-1) > Cu(II) (0.5â¼5 mg L-1) > Ni(II) (2â¼10 mg L-1) > Zn(II) (25â¼50 mg L-1). Furthermore, sensitivity of denitrifying gene to heavy metals was similar in order of nosZ > nirS ≈ cnorB > napA. This study is of significance in understanding the potential application of aerobic denitrifying bacteria in practical wastewater treatment.
Subject(s)
Metals, Heavy/toxicity , Pseudomonas stutzeri/drug effects , Pseudomonas stutzeri/metabolism , Aerobiosis , Denitrification/drug effects , Gene Expression Regulation, Bacterial/drug effects , Water Pollutants, Chemical/toxicityABSTRACT
Cr(VI) is highly noted as a carcinogenic, mutagenic, and teratogenic pollutant. However, accurate determination of Cr(VI) in aqueous samples is difficult using the conventional diphenylcarbazide (DPCI) spectrophotometric method upon being interfered by co-existed nitrite. This paper illustrates how to eliminate the nitrite influence in a simple but efficient method based on a detailed analysis of interference mechanism. High-performance liquid chromatography analysis revealed that under acidic condition, DPCI was oxidized by nitrite to other substrates, which could not react with Cr(VI). The final oxidation product of DPCI was further purified by thin-layer chromatography and identified as diaryl carbodiazone by Fourier Transform Ion Cyclotron Resonance-Mass Spectrometry (FTICR-MS) and nuclear magnetic resonance. Consequently, an improved method was proposed by simply adding sulfamic acid for eliminating the nitrite interference in Cr(VI) determination. The proposed method was successfully confirmed by the accurate recovery of Cr(VI) from spiked water samples and further proven with inductively coupled plasma-atomic emission spectroscopy, which demonstrated a great potential for determining Cr(VI) concentration in aqueous samples containing nitrite.
Subject(s)
Chromium/analysis , Diphenylcarbazide/chemistry , Nitrites/chemistry , Spectrophotometry, Atomic/methods , Spectrophotometry/methods , Water Pollutants, Chemical/analysis , Oxidation-ReductionABSTRACT
Gray relational analysis is employed to analyze the effects of nano-drug features on phagocytosis of macrophages, including zeta potential, shape factor and scale size of drug particle, the correlation among such factors and macrophage cell is calculated. The results showed that the internalization processe is affected significantly by the zeta potential of the drug in the process of phagocytosis of macrophages, followed by the impact particle shape, and the effect of particle scale behaves relatively small.
Subject(s)
Drug Carriers/chemistry , Macrophages/cytology , Nanoparticles/chemistry , Phagocytosis , Humans , Particle SizeABSTRACT
Salicylic esters (SEs), the widely used ultraviolet (UV) absorbers in sunscreen products, have been found to have health risks such as skin sensitization and estrogenic effects. This study aims to design SE substitutes that maintain high UV absorbance while reducing estrogenicity. Using molecular docking and Gaussian09 software for initial assessments and further application of a combination of two-dimensional and three-dimensional quantitative structure-activity relationships (2D-QSAR and 3D-QSAR, respectively) models, we designed 73 substitutes. The best-performing molecules, ethylhexyl salicylate (EHS)-5 and EHS-15, significantly reduced estrogenicity (44.54 % and 17.60 %, respectively) and enhanced UV absorbance (249.56 % and 46.94 %, respectively). Through screening for human health risks, we found that EHS-5 and EHS-15 were free from skin sensitivity and eye irritation and exhibited reduced skin permeability compared with EHS. Furthermore, the photolysis and synthetic pathways of EHS-5 and EHS-15 were deduced, demonstrating their good photodegradability and potential synthesizability. In addition, we analyzed the mechanisms underlying the changes in estrogenic effects and UV absorption properties. We identified covalent hydrogen bond basicity and acidity Propgen value for atomic molecular properties and the highest occupied molecular orbital eigenvalue as the main factors affecting the estrogenic effect and UV absorbance of SEs, respectively. This study focuses on the design and screening of SEs, exhibiting enhanced functionality, reduced health risks, and synthetic feasibility.
Subject(s)
Estrogens , Molecular Docking Simulation , Quantitative Structure-Activity Relationship , Salicylates , Sunscreening Agents , Sunscreening Agents/chemistry , Sunscreening Agents/toxicity , Salicylates/chemistry , Salicylates/toxicity , Estrogens/chemistry , Estrogens/toxicity , Humans , Ultraviolet Rays , Photolysis , Animals , Skin/drug effects , Skin/radiation effectsABSTRACT
The discovery of Comammox bacteria (CMX) has changed our traditional concept towards nitrification, yet its role in constructed wetlands (CWs) remains unclear. This study investigated the contributions of CMX and two canonical ammonia-oxidizing microorganisms, ammonia-oxidizing bacteria (AOB) and archaea to nitrification in four regions (sediment, shoreside, adjacent soil, and water) of a typical CW using DNA-based stable isotope probing. The results revealed that CMX not only widely occurred in sediment and shoreside zones with high abundance (5.08 × 104 and 6.57 × 104 copies g-1 soil, respectively), but also actively participated in ammonia oxidation, achieving ammonia oxidation rates of 1.43 and 2.00 times that of AOB in sediment and shoreside, respectively. Phylogenetic analysis indicated that N. nitrosa was the dominant and active CMX species. These findings uncovered the crucial role of CMX in nitrification of sediment and shoreside, providing a new insight into nitrogen cycle of constructed wetlands.
Subject(s)
Betaproteobacteria , Nitrification , Ammonia , Wetlands , Phylogeny , Oxidation-Reduction , Soil Microbiology , Bacteria/genetics , Archaea/genetics , Soil , DNAABSTRACT
A multi-stage oxic biofilm system based on hydrophilic polyurethane foam was established and operated for advanced treatment of coking wastewater, in which distinct gradient variations of pollutants removal, biofilm properties and microbial community in the 5 stages were evaluated. The system rapidly achieved NH4+-N removal efficiency of 97.51⯱â¯2.29â¯% within 8â¯days. The biofilm growing attached on the carriers exhibited high biomass (≥10.29â¯g/L), which ensured sufficient microbial population. Additionally, the rising extracellular polymeric substance and declining proteins/polysaccharides ratios across stages suggested a dense-to-loose transition in the biofilm's structure, in response to the varying pollutant concentrations. The dominance of Nitrosomonas cluster in the first 3 stages and Nitrospira lineage in the following 2 stages facilitated the complete depletion of high NH4+-N concentration without NO2--N accumulation. Overall, the distinct biofilm property and community at each stage, shaped by the multi-stage configuration, maximized the pollutants removal efficiency.
Subject(s)
Biofilms , Coke , Wastewater , Wastewater/chemistry , Water Pollutants, Chemical , Bioreactors , Pilot Projects , Water Purification/methods , Polyurethanes/chemistry , Waste Disposal, Fluid/methods , Biodegradation, Environmental , Microbiota , Biomass , Nitrogen , Ammonium CompoundsABSTRACT
Carriers have been extensively employed to enhance nitrification performance during low-strength wastewater treatment by retaining slow-growing ammonia oxidizing microorganisms (AOMs). Still, there is a dearth of systematic understanding of biofilm properties and microbial community structure formed on different carriers. In this study, hydrophilic polyurethane foam (PUF) carriers were prepared and compared with five widely used commercial carriers, namely Kaldness 3, Biochip, activated carbon, volcanic rock, and zeolite. The results indicated that the biofilms formed on carriers enhanced microbial ammonia oxidation activity. Additionally, the biofilm developed on the PUF demonstrated the most superior performance among all selected carriers, not only exhibiting the highest abundant and the most active AOMs, with amoA gene abundance of 1.41 × 1013 copies/m3 and specific ammonia oxidation rate of 9.84 g NH4+-N/(m3 × h), but also possessing a compact structure, with 3.41 kg VSS/m3 and 46.83 mg extracellular polymeric substances/g VSS. The high-throughput sequencing analysis revealed that the comammox (CMX) Nitrospira dominated on biofilm due to the intrinsically low apparent half-saturation constant for substrate. A unique ecological community structure was established on PUF, characterized by low species diversity and high homogeneity in alignment with community characteristics of CMX. The biofilms on PUF contributed to the proliferation of CMX Nitrospira dominated by Nitrospira nitrosa, achieving the highest proportion among colonial three AOMs at 86.58 %. The appropriate average pore size, superior hydrophilicity, and large specific surface area of PUF carriers provided a robust foundation for the exceptional ammonia oxidation performance of the formed biofilms.
Subject(s)
Ammonia , Biofilms , Oxidation-Reduction , Polyurethanes , Waste Disposal, Fluid , Wastewater , Ammonia/metabolism , Waste Disposal, Fluid/methods , Wastewater/chemistry , Wastewater/microbiology , Hydrophobic and Hydrophilic Interactions , NitrificationABSTRACT
Coking wastewater is a typical high-strength organic wastewater, for which it is difficult to meet discharging standards with a single biological treatment. In this study, effective advanced treatment of coking wastewater was achieved by coagulation with freshly prepared polyaluminum silicate sulfate (PASS). The performance advantage was determined through comparison with commercial coagulants including ferric chloride, polyferric sulfate, aluminum sulfate and polyaluminum chloride. Both single-factor and Taguchi experiments were conducted to determine the optimal conditions for coagulation with CODCr and UV254 as indicators. A dosage of 7 mmol/L PASS, flocculation velocity of 75 r/min, flocculation time of 30 min, pH of 7, and temperature of 20 °C could decrease the CODCr concentration from 196.67 mg/L to 59.94 mg/L. Enhanced coagulation could further help to remove the organic compounds, including pre-oxidation with ozonation, adsorption with activated carbon, assistant coagulation with polyacrylamide and secondary coagulation. UV spectrum scanning and gas chromatography-mass spectrometry revealed that the coagulation process effectively removed the majority of organic compounds, especially the high molecular weight alkanes and heterocyclic compounds. Coagulation with PASS provides an effective alternative for the advanced treatment of coking wastewater.
Subject(s)
Coke , Water Pollutants, Chemical , Wastewater , Sulfates/analysis , Coke/analysis , Organic Chemicals , Oxidation-Reduction , Waste Disposal, Fluid/methods , Flocculation , Water Pollutants, Chemical/analysisABSTRACT
The recent discovery of complete ammonia oxidation (comammox) bacteria has fundamentally upended the traditional two-step nitrification conception, but their functional importance in wastewater treatment plants (WWTPs) is still poorly understood. This study investigated distributions of comammox Nitrospira, ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in activated sludge samples collected from 25 full-scale WWTPs. Using quantitative PCR (qPCR) and 16S rRNA gene amplicon sequencing, our results revealed that comammox Nitrospira ubiquitously occurred in all of 25 WWTPs and even outnumbered AOB and AOA with an average abundance of 1â¼183 orders of magnitude higher in 19 WWTPs. Moreover, DNA-based stable isotope probing (DNA-SIP) assays validated that comammox Nitrospira actively participated in ammonia oxidation in the three microcosms seeding with activated sludge from three typical WWTPs, in which the ratios of comammox amoA to AOB amoA were at the range of 1â¼10, 10â¼100 and >100, respectively. Phylogenetic analysis in heavy fractions further indicated that Nitrospira nitrosa (N. nitrosa) was the dominant and active species. We quantified the contribution of ammonia oxidizers based on the currently available kinetic parameters of the representative species and found that comammox made major contributions to ammonia oxidation than other nitrifiers (5 â¼ 106 times that of AOB). The findings not only demonstrate the ubiquitous occurrence of comammox, but also highlight their functional dominance in ammonia oxidation in WWTPs.
Subject(s)
Sewage , Water Purification , Ammonia , Phylogeny , RNA, Ribosomal, 16S/genetics , Oxidation-Reduction , Bacteria/genetics , Archaea/genetics , Nitrification , DNAABSTRACT
Since the onset of the COVID-19 Pandemic, large amounts of chlorine-containing disinfectants have been used to interrupt the spread of SARS-CoV-2 and residual chlorine eventually entered the hospital or municipal sewage treatment facilities. However, little is known about the effect of chlorine influx on the biological sewage treatment process. Here we investigated the effect of chlorine on the microbiome and the mechanism of microbial chlorine resistance in the activated sludge of the aerobic treatment process, using metagenomic and metatranscriptomic sequencing. We found that chlorine could negatively impact the aerobic treatment performance regarding nitrogen/COD removal with a dose-dependent effect, and the dual effects of chlorine dose and interaction time differentiated the microbial community in activated sludge. The decline of nitrogen/COD removal was attributed to the compressed activity of functional microorganisms, such as the ammonia oxidation bacteria, under chlorinated conditions, and the damage cannot be recovered in a short term. In addition, some microorganisms could survive in chlorinated conditions by up-regulating the chlorine resistance genes (CRGs) expression (approximately 1.5 times) and stimulating new CRGs expression. In particular, species Acinetobacter johnsonii could resist high concentrations of chlorine through various mechanisms, especially the overexpression of efflux pump function encoded by qac genes play a key role. Based on these results, considering the persistence of the epidemic and extensive use of chlorine disinfectants, it cannot be ignored that large amounts of residual chlorine are entering the biological treatment facility, and strictly de-chlorination measures or microbial chlorine resistance regulations before entering should be implemented.
Subject(s)
COVID-19 , Disinfectants , Humans , Disinfectants/pharmacology , Chlorine/pharmacology , Sewage/microbiology , Pandemics , SARS-CoV-2 , Nitrogen/metabolismABSTRACT
It is difficult for beginners to learn and use amplicon analysis software because there are so many software tools to choose from, and all of them need multiple steps of operation. Herein, we provide a cross-platform, open-source, and community-supported analysis pipeline EasyAmplicon. EasyAmplicon has most of the modules needed for an amplicon analysis, including data quality control, merging of paired-end reads, dereplication, clustering or denoising, chimera detection, generation of feature tables, taxonomic diversity analysis, compositional analysis, biomarker discovery, and publication-quality visualization. EasyAmplicon includes more than 30 cross-platform modules and R packages commonly used in the field. All steps of the pipeline are integrated into RStudio, which reduces learning costs, keeps the flexibility of the analysis process, and facilitates personalized analysis. The pipeline is maintained and updated by the authors and editors of WeChat official account "Meta-genome." Our team will regularly release the latest tutorials both in Chinese and English, read the feedback from users, and provide help to them in the WeChat account and GitHub. The pipeline can be deployed on various platforms, and the installation time is less than half an hour. On an ordinary laptop, the whole analysis process for dozens of samples can be completed within 3 h. The pipeline is available at GitHub (https://github.com/YongxinLiu/EasyAmplicon) and Gitee (https://gitee.com/YongxinLiu/EasyAmplicon).
ABSTRACT
The recently recognized adverse environmental and toxic effects of neonicotinoid insecticides (NNIs) on non-target organisms are alarming. A comprehensive design, screening, and regulatory system was developed to generate NNI derivatives and mutant receptors with selective-ecotoxicological effects to overcome such adverse effects. For ligand design, taking ACE-09 derivative as an example, the toxicity on non-target animals (aboveground: bees; underground: earthworms), plant absorption, and soil absorption decreased by 4.80% and 13.7%, 10.0%, and 121%, while the toxicity on target animals (aboveground: aphids; underground: B. odoriphagas), plant metabolism, and soil degradation increased by 70.2% and 51.7%, 5.08%, and 8.28%. For receptor modification, the ability of mutants to absorb ACE-09 derivative decreased by 31.0%, while the ability of mutants to metabolize ACE-09 derivative increased by 28.0% in scenario 2 (mainly plant selectivity); the ability of mutants to degrade ACE-09 derivative increased by 11.6% in scenario 3 (mainly soil selectivity). The above results indicated that the selective-ecotoxicological effects of ligand design and receptor modification were both improved. Additionally, the combined effects of the ACE-09 derivative on plant absorption and metabolic mutants improved by 31.1% and 31.4% in scenario 2, respectively, while the effect on microbial degradation mutant improved by 14.9%, indicating that there was a synergistic effect between ligand design and receptor modification. Finally, based on the interaction between the ACE-09 derivative and mutants, the optimal environmental factors that improved the selectivity of their ecotoxicological effects were determined. For example, alternate application of nitrogen and phosphorus fertilizers effectively reduced the oxidative damage to plants caused by NNI residues. The novel ligand-receptor joint modification method, combined with the regulation of environmental factors under multiple scenarios, can biochemically address the ecotoxicological concern and highlight the harmful effects of pesticides on the environment and non-target organisms.
Subject(s)
Insecticides , Oligochaeta , Animals , Bees , Insecticides/metabolism , Ligands , Neonicotinoids/chemistry , Oligochaeta/metabolism , SoilABSTRACT
Although low-oxygen nitrification can significantly cut down the aeration demand in wastewater treatment plants, little is known about the community dynamics of relevant microorganisms under different oxygen concentrations. Here, by conducting a series of bioreactors with oxygen concentrations of 0%, 2%, 5%, 10%, 20%, 40%, and 70%, we provided a comprehensive investigation on the behaviors and performances of comammox bacteria (CMX), ammonia-oxidizing bacteria (AOB) and archaea (AOA) during the nitrification process. Quantitative PCR analysis demonstrated that CMX was the dominant ammonia-oxidizer under low oxygen condition (10%) after the four-month operation with the abundance increased by 8.65 times higher than the initial operation, whereas the growth of AOA and AOB was inhibited. Moreover, Nitrospira nitrosa dominated the CMX species (relative abundance >96%) in low dissolved oxygen concentrations, while Nitrospira nitrificans (3.39%) seemed to prefer high oxygen conditions. Our study indicates the long-term effects of oxygen concentrations on the niche differentiation of ammonia oxidizers, and highlights the significance of CMX in low-oxygen nitrification for reducing global carbon emission and energy consumption.
Subject(s)
Ammonia , Betaproteobacteria , Archaea , Bacteria/genetics , Carbon , Nitrification , Oxidation-Reduction , Oxygen , Phylogeny , Soil MicrobiologyABSTRACT
Dams are often regarded as greenhouse gas (GHG) emitters. However, our study indicated that the world's largest dam, the Three Gorges Dam (TGD), has caused significant drops in annual average emissions of CO2, CH4 and N2O over 4300 km along the Yangtze River, accompanied by remarkable reductions in the annual export of CO2 (79%), CH4 (50%) and N2O (9%) to the sea. Since the commencement of its operation in 2003, the TGD has altered the carbonate equilibrium in the reservoir area, enhanced methanogenesis in the upstream, and restrained methanogenesis and denitrification via modifying anoxic habitats through long-distance scouring in the downstream. These findings suggest that 'large-dam effects' are far beyond our previous understanding spatiotemporally, which highlights the fundamental importance of whole-system budgeting of GHGs under the profound impacts of huge dams.
ABSTRACT
Uranium (U) pollution is an environmental hazard caused by the development of the nuclear industry. Microbial reduction of hexavalent uranium (U(VI)) to tetravalent uranium (U(IV)) reduces U solubility and mobility and has been proposed as an effective method to remediate uranium contamination. In this review, U(VI) remediation with respect to U(VI)-reducing bacteria, mechanisms, influencing factors, products, and reoxidation are systematically summarized. Reportedly, some metal- and sulfate-reducing bacteria possess excellent U(VI) reduction capability through mechanisms involving c-type cytochromes, extracellular pili, electron shuttle, or thioredoxin reduction. In situ remediation has been demonstrated as an ideal strategy for large-scale degradation of uranium contaminants than ex situ. However, U(VI) reduction efficiency can be affected by various factors, including pH, temperature, bicarbonate, electron donors, and coexisting metal ions. Furthermore, it is noteworthy that the reduction products could be reoxidized when exposed to oxygen and nitrate, inevitably compromising the remediation effects, especially for non-crystalline U(IV) with weak stability.
Subject(s)
Uranium , Water Pollutants, Radioactive , Bacteria , Biodegradation, Environmental , Nitrates , Oxidation-Reduction , Uranium/analysisABSTRACT
Nitrous oxide (N2O) emission from wastewater treatment plants (WWTPs) requires urgent mitigation because of its significant contribution to the greenhouse effect. In this study, bioaugmentation was applied in a pilot-scale oxidation ditch with the aerobic denitrifying bacteria strain PCN-1 immobilized on polyurethane biocarriers, which demonstrated effective N2O mitigation. Microbial community analysis suggested that the bioaugmentation facilitated a symbiotic relationship of the bacterial populations between the activated sludge and the biocarriers. The denitrifying bacteria with well-known N2O reducing capabilities predominated on the biocarriers. Correspondingly, the increases of denitrifying genes and NO and N2O reductase provided evidence for the enhanced genetic potential for NO and N2O reduction. Besides, the enriched comammox Nitrospira on the biocarriers is proposed as another significant driver for N2O mitigation by avoiding nitrite accumulation. In addition, the bioaugmentation enhanced the stability and recovery capability of the system in the ammonia overload and aeration failure shock tests.